FINAL
 SUPPLEMENTAL ENVIRONMENTAL IMPACT REPORT FOR THE LONG BEACH COMMUNITY COLLEGE DISTRICT 2041 FACILITIES MASTER PLAN LIBERAL ARTS CAMPUS IMPROVEMENTS

Prepared for:

LONG BEACH COMMUNITY COLLEGE DISTRICT
4901 East Carson Street
Long Beach, California 90808

Prepared by:

CHAMBERS GROUP, INC.
5 Hutton Centre Drive, Suite 750
Santa Ana, California 92707

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY 1
E.S. 1 INTRODUCTION 1
E.S. 2 PURPOSE OF THE ENVIRONMENTAL IMPACT REPORT. 1
E.S. 3 PROJECT SUMMARY 1
E.S. 4 PROJECT BACKGROUND 2
E.S. 5 PROJECT DESCRIPTION 2
Master Plan Schedule 5
E.S. 6 TABLE OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES 6
E.S. 7 PROJECT ALTERNATIVES 11
CHAPTER 1.0 - INTRODUCTION 1
1.1 PURPOSE OF THE ENVIRONMENTAL IMPACT REPORT. 1
1.2 SCOPE OF THE SEIR 2
1.3 FINAL SEIR ORGANIZATION 3
CHAPTER 2.0 - PROJECT DESCRIPTION AND ENVIRONMENTAL SETTING 5
2.1 PROJECT BACKGROUND 5
2.1.1 Location 5
2.1.2 Adjacent Land Uses 5
2.1.3 LBCC and LAC History 10
2.1.4 2004 Master Plan Elements 10
2.1.5 2020 Unified Master Plan Elements 13
2.2 PROJECT DESCRIPTION 18
2.2.1 2041 Facilities Master Plan LAC Improvements 18
2.3 PROJECT DESIGN FEATURES 18
2.3.1 Master Plan Updates 18
2.3.2 Master Plan Schedule 22
2.3.3 Design Guidelines 23
2.3.4 Best Management Practices. 23
2.4 STATEMENT OF PROJECT GOALS AND OBJECTIVES 24
2.5 REQUIRED PERMITS AND APPROVALS 24
2.5.1 Lead Agency Approval 24
2.5.2 Required Permits and Approvals 25
2.5.3 Reviewing Agencies 25
2.6 CUMULATIVE SCENARIO 25
CHAPTER 3.0 - ENVIRONMENTAL ANALYSIS 28
3.1 ENVIRONMENTAL ISSUES ADDRESSED 28
3.2 ORGANIZATION OF ENVIRONMENTAL ANALYSIS 28
3.3 TERMINOLOGY USED IN THIS ANALYSIS 29
3.4 AESTHETICS 30
3.4.1 Existing Environmental Setting 30
3.4.2 Impacts and Mitigation 30
3.4.3 Cumulative Impacts 31
3.5 AIR QUALITY 32
3.5.1 Introduction 32
3.5.2 Existing Environmental Setting 32
3.5.3 Applicable Regulations 35
3.5.4 Impacts and Mitigation 42
3.6 GREENHOUSE GAS EMISSIONS 60
3.6.1 Introduction 60
3.6.2 Background Information 60
3.6.3 Regulatory Framework 61
3.6.4 Impacts and Mitigation 71
3.7 NOISE 81
3.7.1 Introduction. 81
3.7.2 Existing Environmental Setting 81
3.7.3 Applicable Regulations 83
3.7.4 Impacts and Mitigation 88
3.8 TRANSPORTATION 99
3.8.1 Introduction 99
3.8.2 Existing Environmental Setting 99
3.8.3 Impacts and Mitigation 109
3.8.4 Cumulative Impacts 128
CHAPTER 4.0 - ALTERNATIVES ANALYSIS 129
4.1 INTRODUCTION AND OVERVIEW 129
4.2 PROJECT OBJECTIVES 130
4.3 ALTERNATIVES TO THE PROPOSED PROJECT 130
4.3.1 No Project Alternative 131
4.3.2 Reduced Project Alternative 132
4.4 ENVIRONMENTALLY SUPERIOR ALTERNATIVE 136
CHAPTER 5.0 - OTHER CEQA CONSIDERATIONS 137
5.1 ENVIRONMENTAL EFFECTS FOUND NOT TO BE SIGNIFICANT. 137
5.2 IRREVERSIBLE ENVIRONMENTAL CHANGES 137
5.3 GROWTH-INDUCING IMPACTS 138
5.3.1 Direct Growth-Inducing Impacts in the Surrounding Environment 139
5.3.2 Indirect Growth-Inducing Impacts in the Surrounding Environment 139
5.4 SIGNIFICANT UNAVOIDABLE ENVIRONMENTAL IMPACT 139
CHAPTER 6.0 - FINAL SEIR INTRODUCTION 140
CHAPTER 7.0 - PUBLIC REVIEW PROCESS 141
CHAPTER 8.0 - RESPONSE TO COMMENTS 142
CHAPTER 9.0-CHANGES TO DRAFT SEIR 152
CHAPTER 10.0 - MITIGATION MONITORING AND REPORTING PLAN 166
CHAPTER 11.0 - ACRONYMS AND ABBREVIATIONS 170
CHAPTER 12.0 - REFERENCES 174
CHAPTER 13.0 - REPORT PREPARATION. 177

APPENDICES

APPENDIX A Notice of Preparation/Initial Study, and Comments
APPENDIX B Air Quality and Greenhouse Gas Modeling Assumptions
APPENDIX C Noise Analysis Data
APPENDIX D Traffic Impact Analysis
APPENDIX E 2041 Facilities Master Plan

LIST OF TABLES

Table ES-1: Updated 2041 Facilities Master Plan Improvements. 3
Table ES-2: 2041 Facilities Master Plan Construction by Planned Construction Years 6
Table ES-3: Summary of Significant Impacts and Mitigation Measures 7
Table 1-1: Required EIR Contents 3
Table 2-1: LAC Existing Building Inventory. 9
Table 2-3: Eliminated Master Plan Improvements 14
Table 2-4: 2020 LAC Master Plan Improvements 14
Table 2-5: Updated 2041 Facilities Master Plan Improvements. 20
Table 2-6: 2041 Facilities Master Plan Construction by Planned Construction Years 22
Table 3-1: Summary of Environmental Impacts Identified in the Initial Study. 28
Table 3-2: South Coast Air Basin Attainment Status 36
Table 3-3: Ambient Air Quality Monitoring Summary 41
Table 3-4: Regional Air Quality Significance Thresholds 44
Table 3-5: Localized Significance Thresholds South Coastal LA County. 45
Table 3-6: Projected Years 2019-2021 Construction Emissions Without CEQA Mitigation(Ibs/day) 46
Table 3-7: Projected Years 2021-2025 Construction Emissions Without CEQA Mitigation(Ibs/day) 47
Table 3-8: Projected Years 2026-2030 Construction Emissions Without CEQA Mitigation(Ibs/day) 48
Table 3-9: Projected Years 2031-2035 Construction Emissions Without CEQA Mitigation(Ibs/day) 49
Table 3-10: Projected Years 2036-2041 Construction Emissions Without CEQA Mitigation(Ibs/day) 49
Table 3-11: Projected Construction Local Criteria Pollutant Emissions Without CEQA Mitigation(lbs/day)51
Table 3-12: Summary of Total Estimated Buildout Year 2020 Operational and Construction Emissions. 51
Table 3-13: Summary of Total Estimated Buildout Year 2025 Operational and Construction Emissions. 52
Table 3-14: Summary of Total Estimated Buildout Year 2030 Operational and Construction Emissions. 52
Table 3-15: Summary of Total Estimated Buildout Year 2035 Operational and Construction Emissions. 53
Table 3-16: Summary of Total Estimated Buildout Year 2041 Operational and Construction Emissions. 53
Table 3-17: Buildout Year 2041 Operations-Related Local Criteria Pollutant Emissions (pounds/day). 54
Table 3-18: Global Warming Potentials, Atmospheric Lifetimes, and Abundances of GHGs 61
Table 3-19: Project Related Greenhouse Gas Annual Emissions 73
Table 3-20: Consistency with SCAG RTP/SCS GHG-Related Goals and Policies 74
Table 3-21: Consistency with CARB’s 2017 Scoping Plan Measures for Individual Projects 76
Table 3-22: Existing (Ambient) Noise Level Measurements at LAC 83
Table 3-23: FTA Construction Noise Criteria. 84
Table 3-24: FTA Project Effects on Cumulative Noise Exposure 85
Table 3-25: City of Long Beach Noise Element Standards 87
Table 3-26: City of Long Beach Exterior Noise Ordinance Standards 87
Table 3-30: Operational Noise Levels at the Nearest Receptors Prior to Mitigation 93
Table 3-31: Mitigated Operational Noise Levels at the Nearest Receptors 94
Table 3-32: Typical Vibration from Construction Equipment and Vibration Levels at Nearest Homes 96
Table 3-33: Project Study Intersections. 99
Table 3-34: Existing Peak Hour Intersection Capacity Analysis Summary 101
Table 3-35: Project Trip Generation 110
Table 3-36: Existing Plus Project Peak-Hour Intersection Capacity Analysis Summary 123
Table 3-37: Year 2041 Plus Project Peak Hour Intersection Capacity Analysis Summary 125
Table 4-1: Reduced Project Master Plan LAC Improvements 133
Table 4-2: Eliminated 2041 Facilities Master Plan LAC Improvements 134
Table 4-3: Comparison of Alternatives 135
Table ES-1: Updated 2041 Facilities Master Plan Improvements. 152
Table 2-5: Updated 2041 Facilities Master Plan Improvements. 155
Table 3-6: Projected Years 2019-2021 Construction Emissions Without CEQA Mitigation(Ibs/day) 157

Table 3-7: Projected Years 2021-2025 Construction Emissions Without CEQA Mitigation(Ibs/day)........ 158

Table 3-8: Projected Years 2026-2030 Construction Emissions Without CEQA Mitigation(Ibs/day)........ 159

Table 3-9: Projected Years 2031-2035 Construction Emissions Without CEQA Mitigation(lbs/day)........ 160

Table 3-10: Projected Years 2036-2041 Construction Emissions Without CEQA Mitigation(lbs/day) 161

Table 3-12: Summary of Total Estimated Buildout Year 2020 Operational and Construction Emissions. 162

Table 3-13: Summary of Total Estimated Buildout Year 2025 Operational and Construction Emissions. 162

Table 3-14: Summary of Total Estimated Buildout Year 2030 Operational and Construction Emissions. 163
Table 3-19: Project Related Greenhouse Gas Annual Emissions 164

LIST OF FIGURES

Figure ES-1: Regional and Local Settings 9
Figure ES-2: LBCCD 2041 Facilities Master Plan LAC Improvements 10
Figure 1-1: The Environmental Review Process. 1
Figure 2-1: Regional and Local Settings 6
Figure 2-2: USGS Topographic Map 7
Figure 2-3: Existing Campus and Adjacent Land 8
Figure 2-4: 2020 Unified Master Plan 17
Figure 2-5: LBCC 2041 Facilities Master Plan LAC Improvements 19
Figure 3-1: Long Beach Airport Noise Contours. 98
Figure 3-2: Locations of Study Intersections. 100
Figure 3-3: Existing AM Peak-Hour Traffic Volumes 103
Figure 3-4: Existing PM Peak-Hour Traffic Volumes 104
Figure 3-5: Existing Long Beach Transit Routes 106
Figure 3-6: Transit Stop Locations. 107
Figure 3-7: Long Beach Bikeway Facilities. 108
Figure 3-8: AM Peak-Hour Project Traffic Volumes 111
Figure 3-9: PM Peak-Hour Project Traffic Volumes 112
Figure 3-10: Existing Plus Project AM Peak-Hour Traffic Volumes 114
Figure 3-11: Existing Plus Project PM Peak-Hour Traffic Volumes 115
Figure 3-12: Year 2041 Buildout AM Peak-Hour Traffic Volumes. 116
Figure 3-13: Year 2041 Buildout PM Peak-Hour Traffic Volumes. 117
Figure 3-14: Year 2041 Buildout Plus Project AM Peak-Hour Traffic Volumes. 118
Figure 3-15: Year 2041 Buildout Plus Project PM Peak-Hour Traffic Volumes 119

EXECUTIVE SUMMARY

E.S. 1 INTRODUCTION

The Long Beach Community College District (LBCCD or District) is proposing to implement the LBCCD 2041 Facilities Master Plan at the Long Beach City College Liberal Arts Campus (LAC, Project Site). The District's goal as part of the California Community College system is to offer academic and vocational education to students at the lower college division level.

The objective of the LBCCD 2041 Facilities Master Plan is to provide plans to implement proposed necessary construction, renovation, and general capital improvements at the campus in order to meet the District's goals. The improvements are intended to update and improve existing technological and program services in order to meet the increasing needs of students and faculty.

This document is a Draft Supplemental Environmental Impact Report (SEIR) prepared in accordance with the California Environmental Quality Act (CEQA); and it provides an overview of the Proposed Project and considered alternatives, identifies the anticipated environmental impacts from the Proposed Project and the alternatives, and identifies mitigation measures designed to reduce the level of significance of any impact.

E.S. 2 PURPOSE OF THE ENVIRONMENTAL IMPACT REPORT

The primary purpose of CEQA is to inform the public and decision makers as to the potential impacts of a project and to allow an opportunity for public input to ensure informed decision-making. CEQA requires all State and local government agencies to consider the environmental effects of projects over which they have discretionary authority. CEQA also requires each public agency to mitigate or avoid the significant environmental impacts resulting from proposed projects, when feasible, and to identify a range of feasible alternatives to the Proposed Project that could reduce those environmental effects.

Under CEQA, a project SEIR analyzes the impacts of an individual activity or specific project and focuses primarily on changes in the environment that would result from the activity or project. The SEIR must include the contents required by CEQA and the CEQA Guidelines (California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387) and is required to examine all phases of the project, including planning, construction, operation, and any reasonably foreseeable future phases.

E.S. 3 PROJECT SUMMARY

This overview is intended to provide a summary of the LBCCD 2041 Facilities Master Plan Liberal Arts Campus (LAC) Improvements Final SEIR. A complete copy of the Final SEIR may be inspected at:

- LBCCD Bond Management Team office, Building O-1, 4901 East Carson Street, Long Beach, California 90808
- Online at the LBCCD website (https://www.lbcc.edu/pod/facilities-master-plans)

The Project Site is located approximately 3.0 miles west of Interstate 605 (San Gabriel River Freeway), 3.0 miles east of Interstate 710 (Long Beach Freeway), 1.5 miles north of Interstate 405 (San Diego Freeway), and 0.5 mile east of Lakewood Boulevard (State Highway 19). Additionally, the Project Site is located
approximately 0.3 mile northeast of Long Beach Municipal Airport (LBMA). LBCC LAC is bounded by Harvey Way on the north, Clark Avenue on the east, Skylinks Golf Course on the south, and Faculty Avenue on the west. Figure ES-1 presents the regional and local settings surrounding the Project Site.

The District has prepared this Draft SEIR to address implementation of the LBCC 2041 Facilities Master Plan. Through implementation of the LBCC 2041 Facilities Master Plan, the District's goals are to provide academic and vocational education to students at the lower college division level and to advance California's economic growth and global competitiveness using education, training, and services to lead to a continuous workforce improvement.

E.S. 4 PROJECT BACKGROUND

The District's goal as part of the California Community College system is to offer academic and vocational education to students at the lower college division level. In addition, the District's goal is to advance California's economic growth and global competitiveness through education, training, and services that contribute to continuous workforce improvement. Long Beach City College is committed to providing equitable student learning and achievement, academic excellence, and workforce development by delivering high quality educational programs and support services to their diverse communities.

The objective of the 2041 Facilities Master Plan is to provide plans to implement proposed necessary construction, renovation, and general capital improvements at the campus in order to meet the District's goals and to support the District's Strategic Plan. The improvements are intended to create and improve building space to support the LBCCD Strategic Plan and Student Learning Outcomes in all areas.

Since the 2020 Unified Master Plan, the District prepared the LBCCD 2041 Facilities Master Plan to provide an understanding of the projects envisioned to be constructed in the near future. This Facilities Master Plan breaks down the type and size of each project for both campuses, as well as estimating the probable cost of each project. The 2041 Facilities Master Plan allows the District to re-evaluate available funds and expanded details of priority projects that the District is working to complete. Enrollment and the production of weekly student contact hours (WSCH) were used as the basis for quantifying growth as well as for determining the space needs of the future. Physical capacity was defined by the District as achieving student enrollment of 28,100 and $349,844 \mathrm{WSCH}$ at LAC. At this point in time, the campus will have effectively reached its physical limit for available land area, for parking, and the ability to effectively serve students.

E.S. 5 PROJECT DESCRIPTION

Looking to the year of 2041, LAC's priorities will lie with addressing the key areas for academic growth. These include the Life Sciences (Biology), Mathematics, Language Arts, Performing Arts, and Construction Trade facilities. From the Student Services side of the equation, an economic and workforce development center is a high priority. LAC will also need to address its Physical Education facilities including a new Aquatic Center, renovation of the stadium and gymnasiums, and outdoor kinesiology labs. Lastly, the provision of parking that is close and usable to the primary academic areas will also be a high priority at LAC.

The 2041 Facilities Master Plan provides updates to the 2020 Unified Master Plan and provides updated construction dates and budgets for the facilities projects. The projects incorporate the space and building needs identified to the year 2041. Table ES-1 presents the updates to the Master Plan through new project details determined since the previous SEIR.

Table ES-1: Updated 2041 Facilities Master Plan Improvements

Project	Scope/Usage	Gross Square Feet (GSF)/ Features
Building B Classroom	Renovate Building with electrical upgrades, data and communication, larger lecture halls, better lighting, and additional lab functions	Renovation - 44,357
Building D Science Building	Renovate Science Building for improved classroom learning environments, new fiber data backbone, and enhanced signage	Renovation - 16,000
Building E College Center	Campus-wide Student Support	Demolition - 50,276 New Construction - 50,276
Building F Family/Consumer Education	Outdated building that will be replaced with new landscape and hardscape	Demolition - 15,968
Building G Performing Arts	New Performing Arts Building replaces the existing and outmoded Music Building.	Demolition - 27,792 New Construction - 42,857
Building J Auditorium	Complete renovation of Auditorium building with expansion of the building as well as general refurbishment and updates	$\begin{aligned} & \text { Renovation - 37,878 } \\ & \text { Expansion }-14,119 \end{aligned}$
Building K Art Building	Fine Arts building needs complete renovation and modernization	Retrofit/Renovation - 29,479
Building M Liberal Arts	Replace Buildings M and N with new building for classrooms, laboratory facilities, and technology center	Demolition - 48,768 New Construction - 81,970
Building O1 IITS/Warehouse	Structural enhancements to obtain certification by Division of State Architect	Renovation - 26,560
Building O2 Economic \& Workforce Development/Foundation	Structural enhancements to obtain certification by Division of State Architect	Renovation - 51,302
Building P Language Arts	Upgrade building's functional systems with upgraded power systems, HVAC, plumbing, storm drainage, fire alarm, and telecommunication systems	Renovation - 16,016
Building Q Secondary Gymnasium	Renovation and upgrading to address issues related to instructional space, training needs, seismic upgrades, AHA compliance, and other upgrades	Renovation - 30,270

Table ES-1: Updated 2041 Facilities Master Plan Improvements

Project	Scope/Usage	Gross Square Feet (GSF)/ Features
Building R Primary Gymnasium	Comprehensive structural and seismic renovation, ADA access, HVAC upgrades	Renovation - 78,024 New Construction - 10,000
Building S Stadium	Renovation including ADA access, structural upgrades	Renovation - 57,455
Building W	Construction of a new 50-meter by 25-yard pool, with a new support building	New Construction - 54,660 including pool area
Outdoor Kinesiology Labs	New construction of physical education outdoor playing fields to include softball relocation, two soccer fields, six tennis courts, five sand volleyball courts, and supporting facilities, restrooms, field house, storage.	New Construction Supporting Facilities - 15,014
Walkways and	New and revised walkways, installation of uniform signage program	New construction/renovation
Wayfinding		

The LBCCD 2041 Facilities Master Plan LAC improvements would result in an estimated increase over the 2020 Unified Master Plan of 15,877 square feet of renovation, 69,564 square feet removed, and an estimated increase of 34,913 square feet of new construction.

The following descriptions identify specific improvements recommended for the 2041 Facilities Master Plan LAC Improvements that were not part of the 2020 Unified Master Plan or the original 2004 LAC Master Plan Program EIR.

- Building D, Science Building, renovation will be expanded from 9,326 square feet to 16,000 square feet
- Building E, the Existing College Center, will be demolished (50,276 gross square feet [GSF]) and a new building will be constructed with approximately the same GSF of 50,276 . The new construction will be in lieu of major renovation of Building E that was previously shown on the 2020 Master Plan.
- Building F will be demolished and replaced with new landscape and hardscape.
- The Performing Arts Building (Building G, previously shown as Building 3 on 2020 Master Plan) will replace the existing Buildings G and H , consisting of approximately 42,857 square feet instead of 46,671 square feet, which was shown on the 2020 Master Plan.
- Building M, Liberal Arts Building, (Previously shown as building 2 \& 6 on 2020 Master Plan) will replace the existing buildings M \& N , consisting of approximately 81,970 GSF instead of 77,693 GSF, which was shown on the 2020 Master Plan.
- Building 01 will undergo structural enhancements to the 26,560 -square-foot building to obtain Division of State Architect certification.
- Building O 2 will undergo structural enhancements to the 51,302 -square-foot building to obtain Division of State Architect certification.
- Building R, Primary Gymnasium, is anticipated to have an expansion with new construction to the south of 10,000 GSF to accommodate program needs.
- In order to meet programmatic needs, a new 10,000 GSF structure may be built between Buildings Q and R to accommodate swing space and Title IX needs while the buildings are being renovated.
- Building W, Aquatics Center, will be 31,692 GSF and approximately 21,871 GSF of building structure will be allocated to the pool facility including restrooms, locker rooms, team rooms, classroom and offices and will have a capacity of approximately 800 spectator seats. (An Olympicsized swimming pool with grandstands to accommodate a 3,000 -spectator-seat capacity was shown in the 2020 Master Plan.)
- Outdoor Kinesiology Labs, renovation and new construction of physical education outdoor playing fields to include softball relocation, two soccer fields, six tennis courts, and five sand volleyball courts and supporting facilities, such as restrooms, field house, and storage facilities. Approximately 9,821 square feet of Building W will be allocated to The Outdoor Kinesiology Labs as supporting facilities. Also, the existing field house for Softball Field will be removed and replaced with approximately 5,193 square feet of new supporting facilities. (Outdoor Physical Education Labs, including softball field relocation, were previously shown in the 2020 Master Plan.)
- In order for the District to meet the state requirements and Executive Order B-18-12 for Zero-NetEnergy, the LAC campus will be studied for possible Solar Photovoltaic systems at various locations. Parking Lot M as well as other parking lots may have two-thirds of the lot covered with photovoltaic carport structures to meet the statewide requirements for energy production and achieve a Zero Net Energy District.

Master Plan Schedule

The 2041 Facilities Master Plan provides an approximate schedule sequence that identifies timelines for construction and project scope. Table ES-2 summarizes the 2041 Facilities Master Plan Improvements for building renovation, expansion, and/or new construction. To determine the projects and sequencing in the 2041 Facilities Master Plan, the Board of Trustees of the Long Beach Community College District (Board) evaluated the District's urgent and critical capital needs, including school and student safety issues; enrollment trends; class size reduction; overcrowding; energy efficiency and computer technology; seismic safety requirements; and aging, outdated, or deteriorating school buildings, in developing the scope of projects to be funded. In developing the scope of projects, the District has prioritized the key health and safety and sustainability needs so that the most critical school site needs are addressed.

The timing of certain projects will be dependent on the completion of other projects and will ultimately occur over the different phases. For example, improvements to utilities will occur across the LAC. However, these improvements will be completed in portions following building construction or renovation. Other projects sequenced like this include the Photovoltaic Projects, Landscape Master Plan Projects, and Wayfinding/Walkway Projects.

The Master Plan projects called out the projects identified with the 2041 Facilities Master Plan and the time frame that is most likely to occur during these time periods. However, the time frame in which a project is planned may change if the priority characteristics change for an individual project due to program needs or state funding allocation. The general building scope by phase is shown in Table ES-2 for the 2041 Facilities Master Plan Updates.

Table ES-2: 2041 Facilities Master Plan Construction by Planned Construction Years

Construction Start Year	Projects Planned
Ongoing	Building P - Language Arts (Renovation), Building D - Science (Renovation), Building J - Auditorium, Minor Campus Improvements, Energy/Water Conservation Projects, Infrastructure Projects, Campus Landscaping
To be Determined	Walkways \& Wayfinding, Surface Parking Improvement

E.S. 6 TABLE OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

Table ES-3 summarizes the potential significant adverse impacts for the Proposed Project. Each environmental resource area covered in Chapter 3.0 is summarized. Impacts found to be significant are listed along with the proposed mitigation measures. The residual impact after application of mitigation is also indicated for each significant impact. Cumulative impacts, if any, are also identified.

Table ES-3: Summary of Significant Impacts and Mitigation Measures

Potential Impacts	Mitigation Measures	Level of significance after mitigation
3.4 - Aesthetics		
Create a new source of substantial light or glare, which would adversely affect day or nighttime views in the area.	None needed	Less than Significant
3.5 - Air Quality		
Result in conflict with or obstruct implementation of the applicable air quality plan.	None needed	Less than Significant
Violate any air quality standard or result in a cumulatively considerable net increase in an existing or projected air quality violation.	None needed	Less than Significant
Expose sensitive receptors to substantial pollutant concentrations.	None needed	Less than Significant
3.6-Greenhouse Gas Emissions		
Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment.	None needed	Less than Significant
Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases.	None needed	Less than Significant
3.7- Noise		
Result in a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.	MM N-1: The site plan and project design for the Swim Pool Facility shall include construction of a minimum 16-foot-high wall along the northern edge of the Swim Pool Facility that is adjacent to Carson Street. There shall be no cut outs or openings in the noise barrier. MM N-2: The LBCCD shall restrict any swimming or water polo competitions from occurring in the Swim Pool Facility between the hours of 10:00 p.m. and 7:00 a.m. This restriction shall not apply to swim and water polo practices and other nonintensive uses of the Swim Pool Facility.	Less than Significant
Result in generation of excessive groundborne vibration or groundborne noise levels.	None needed	Less than Significant

Table ES-3: Summary of Significant Impacts and Mitigation Measures

Potential Impacts	Mitigation Measures	Level of significance after mitigation
3.8-Transportation		
Conflict with a plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle lanes, and pedestrian paths.	MM TRA-1: Lakewood Boulevard at Harvey Way: Restripe Harvey Way to provide an exclusive westbound right-turn lane. Given that this key study intersection is located jointly in the cities of Long Beach and Lakewood, the installation of this improvement is subject to the approval of the City of Long Beach and the City of Lakewood. It should be noted that these improvements cannot be guaranteed by the Proposed Project or the City of Long Beach as the improvements would also require approval from the City of Lakewood. As such, the impact at this location is considered significant and unavoidable; and a statement of overriding considerations will be required for this location. MM TRA-2: Clark Avenue at Harvey Way: Restripe Harvey Way to provide an exclusive eastbound right-turn lane. The installation of this improvement is subject to the approval of the City of Long Beach. MM TRA-3: Faculty Avenue at Carson Street: Install signage to restrict southbound left-turn movements during the AM peak period (7:00 AM - 9:00 AM) and during the PM peak period (4:00 PM 6:00 PM). The installation of this improvement is subject to the approval of the City of Long Beach.	Significant and Unavoidable

Figure ES-1: Regional and Local Settings

Figure ES-2: LBCCD 2041 Facilities Master Plan LAC Improvements

Figure ES-2
2041 Facilities Master Plan LAC

E.S. 7 PROJECT ALTERNATIVES

Two alternatives for the Draft SEIR were identified and evaluated:

- No Project/No Build Alternative - assumes that no improvements beyond those described in the 2041 Facilities Master Plan LAC Improvements and its amendments would be implemented.
- Reduced Project Alternative - assumes that the campus would be developed consistent with planned improvements outlined in the LBCCD 2041 Facilities Master Plan but that the Kinesiology Lab and Aquatic Center projects would not be implemented.

Chapter 4.0 discusses the alternatives in detail.

CHAPTER 1.0 - INTRODUCTION

1.1 PURPOSE OF THE ENVIRONMENTAL IMPACT REPORT

The Long Beach Community College District (LBCCD or District) has prepared the LBCCD 2041 Facilities Master Plan, in which the District plans to complete renovation, demolition, and new construction projects on the LBCCD Liberal Arts Campus (LAC, Project Site). All "projects" within the State of California are required to undergo environmental review to determine the environmental impacts associated with implementation of the project in accordance with the California Environmental Quality Act (CEQA).

CEQA was enacted in 1970 by the California Legislature to disclose to decision makers and the public the significant environmental effects of a proposed project and identify possible ways to avoid or minimize significant environmental effects of a project by requiring implementation of mitigation measures or recommending feasible alternatives. CEQA applies to all California governmental agencies at all levels, including local, regional, and State, as well as boards, commissions, and special districts (such as LBCCD). As such, LBCCD is required to conduct an environmental review to analyze the potential environmental effects associated with the Proposed Project. LBCCD is the lead agency for the preparation of this Draft Supplemental Environmental Impact Report (Draft SEIR) in accordance with CEQA.

This Draft SEIR is circulated to the public and affected agencies for review and comment. One of the primary objectives of CEQA is to enhance public participation in the planning process; public involvement is an essential feature of CEQA. Community members are encouraged to participate in the environmental review process, request to be notified, monitor newspapers for formal announcements, and submit substantive comments at every possible opportunity afforded by the agency. The environmental review process provides ample opportunity for the public to participate through scoping, public notice, and public review of CEQA documents. A diagram illustrating the CEQA process is shown in Figure 1-1 below. Additionally, lead agencies are required to respond to public comments in Final EIRs and consider comments from the scoping process in the preparation of the Draft EIR.

Figure 1-1: The Environmental Review Process

1.2 SCOPE OF THE SEIR

This section provides a summary of the issues addressed in this Final SEIR. This Final SEIR was prepared following input from the public, responsible agencies, and affected agencies through the EIR scoping process, which included the following:

- In accordance with the State CEQA Guidelines (California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387), a Notice of Preparation (NOP) and Initial Study (IS) were prepared and distributed to responsible agencies, affected agencies, and other interested parties.
- The NOP was posted in the County Clerk's office for 30 days. The NOP was submitted to the State Clearinghouse to officially solicit participation in determining the scope of the SEIR.
- Information requested and input provided during the 30-day public review period regarding the contents of the NOP/IS and the scope of the EIR were incorporated in this Draft SEIR.

The content of the Final SEIR was established based on the findings of the IS and public and agency input. Under the CEQA Guidelines, the analysis in the Draft SEIR is focused on issues determined in the IS to be potentially significant, whereas issues found in the IS to have less than significant impacts (with or without mitigation) or no impact do not require further evaluation. Therefore, based on the analysis contained in the IS, the following issue areas were determined to have less than significant impacts or no impacts with respect to implementation of the Proposed Project and would not require further evaluation in the Draft SEIR:

- Agricultural and Forestry Resources
- Biological Resources
- Cultural Resources
- Energy
- Geology and Soils
- Hazards and Hazardous Materials
- Hydrology and Water Quality
- Land Use and Planning
- Mineral Resources
- Population and Housing
- Public Services
- Recreation
- Tribal Cultural Resources
- Utilities and Service Systems
- Wildfire

This Draft SEIR analyzes the following environmental issues:

- Aesthetics (lighting and glare)
- Air Quality
- Noise
- Transportation and Traffic

Mitigation measures to reduce impacts to a less-than-significant level are proposed whenever feasible. In addition to the environmental issues identified above, this Final SEIR also includes all of the sections required by the CEQA Guidelines. (Table 1-1 contains a list of sections required under CEQA Guidelines, along with reference to the chapter where these items can be found.)

Table 1-1: Required EIR Contents

Section Title	Location
Table of Contents (Section 15122)	Table of Contents
Summary (Section 15123)	Executive Summary
Introduction (Section 15122)	Chapter 1
Project Description (Section 15124) and Environmental Setting (Section 15125)	Chapter 2
Consideration and Discussion of Environmental Impacts (Section 15126)	Chapter 3.4-3.8
Unavoidable Significant Environmental Impacts (Section 15126.2)	Chapter 5
Mitigation Measures (Section 15126.4)	Chapter 3.4-3.8
Cumulative impacts (Section 15130)	Chapter 3.4-3.8
Alternatives to the Proposed Project (Section 15126.6)	Chapter 4
Growth-Inducing Impacts (Section 15126.2)	Chapter 5
Effects Found Not to Be Significant (Section 15128)	Chapter 5
Organizations and Persons Consulted (Section 15129)	Chapter 6 and 7
List of Preparers	Chapter 7

1.3 FINAL SEIR ORGANIZATION

The Final SEIR is organized into the following chapters so the reader can easily obtain information about the Proposed Project and related environmental issues:

- Executive Summary - Presents a summary of the Proposed Project and alternatives, potential impacts and mitigation measures, and impact conclusions regarding growth inducement and cumulative impacts.
- Chapter 1: Introduction - Describes the purpose and use of the Final SEIR, provides a brief overview of the Proposed Project, and outlines the organization of the Final SEIR.
- Chapter 2: Project Description and Environmental Setting - Describes the project location, project details, baseline environmental setting and existing physical conditions, and the LBCCD's overall objectives for the Proposed Project.
- Chapter 3: Environmental Analysis - Describes the existing conditions, or setting, before project implementation; methods and assumptions used in impact analysis; thresholds of significance; impacts that would result from the Proposed Project; and applicable mitigation measures that would eliminate or reduce significant impacts for each environmental issue.
- Chapter 4: Alternatives Analysis - Evaluates the environmental effects of project alternatives, including the No-Project Alternative and Environmentally Superior Project Alternative.
- Chapter 5: Other CEQA Considerations - Includes a discussion of issues required by CEQA that are not covered in other chapters. This includes unavoidable adverse impacts, impacts found not to be significant, irreversible environmental changes, and growth-inducing impacts.
- Chapter 6: Final SEIR Introduction - Outlines the environmental review process that occurred for the supplemental EIR.
- Chapter 7: Public Review Process - Identifies the public review periods and notices that were posted, as well as where documents were made available for review.
- Chapter 8: Response to Comments - Provides responses to comments that were received on the Draft SEIR.
- Chapter 9: Changes to the Draft SEIR - Identifies where revisions and clarifications were made to the Draft SEIR in strikeout and bold italics.
- Chapter 10: Mitigation Monitoring and Reporting Plan - Outlines the mitigation measures proposed for the Project and who is responsible for implementing them.
- Chapter 11: Acronyms/Abbreviations - Presents a list of the acronyms and abbreviations.
- Chapter 12: References - Identifies the documents and individuals consulted in preparing the Final SEIR.
- Chapter 13: Report Preparation - Lists the individuals involved in preparing the Final SEIR and organizations and persons consulted.

Appendices - Present data supporting the analysis or contents of this Final SEIR. The Appendices include the following:

- APPENDIX A Notice of Preparation, Initial Study, and Comments
- APPENDIX B Air Quality Analysis Data
- APPENDIXC Noise Analysis Data
- APPENDIXD Traffic Report
- APPENDIX E 2041 Facilities Master Plan

CHAPTER 2.0 - PROJECT DESCRIPTION AND ENVIRONMENTAL SETTING

$2.1 \quad$ PROJECT BACKGROUND

The LBCCD, founded in 1927, is one of the largest of the 114 California community college districts. The District comprises two campuses: the Pacific Coast Campus (PCC) located at 1305 East Pacific Coast Highway, and the Liberal Arts Campus (LAC) located at 4901 East Carson Street, the subject of this Supplemental EIR. Together, the campuses currently serve a student population of more than 24,000 .

The District's goal as part of the California Community College system is to offer academic and vocational education to students at the lower college division level. In addition, the District's goal is to advance California's economic growth and global competitiveness through education, training, and services that contribute to continuous workforce improvement. Long Beach City College is committed to providing equitable student learning and achievement, academic excellence, and workforce development by delivering high quality educational programs and support services to their diverse communities.

The objective of the 2041 Facilities Master Plan is to provide plans to implement proposed necessary construction, renovation, and general capital improvements at the campus in order to meet the District's goals and to support the District's Strategic Plan. The improvements are intended to create and improve building space to support the LBCCD Strategic Plan and Student Learning Outcomes in all areas.

2.1.1 Location

The LBCC LAC is located at 4901 East Carson Street in the City of Long Beach (City), California. The City of Long Beach is in the southwestern portion of Los Angeles County, adjacent to the northern border of Orange County. The LAC is bounded by Harvey Way on the north, Clark Avenue on the east, Skylinks Golf Course on the south, and Faculty Avenue on the west. Figure 2-1 illustrates the City in its regional and local contexts. Figure 2-2 depicts the site on the United States (U.S.) Geological Survey (USGS) Long Beach 7.5-minute quadrangle topographic map.

The Proposed Project Site is approximately 3.0 miles west of the Interstate 605 San Gabriel River Freeway, 3.0 miles east of Interstate 710 (Long Beach Freeway), 1.5 miles north of Interstate 405 (San Diego Freeway), and less than 0.5 mile east of Lakewood Boulevard, State Highway 19. In addition, the Proposed Project Site is located approximately one-third mile northeast of the Long Beach Municipal Airport.

2.1.2 Adjacent Land Uses

The Proposed Project Site is located along Carson Street between Bellflower and Lakewood Boulevards in the City of Long Beach, California. The campus is within the City of Long Beach General Plan Land Use District No. 10 - Institutions/Schools and is zoned Institutional (I).

As shown in Figure 2-3, existing land uses surrounding the LAC are single-family residences to the north, single-family residences and parkland to the east; parkland, Long Beach Fire Department Station No. 19 and the Skylinks Golf Course to the south; and large aerospace industrial, automotive, and storage facilities to the west.

Figure 2-1: Regional and Local Settings

Figure 2-2: USGS Topographic Map

Figure 2-3: Existing Campus and Adjacent Land

LAC Land Uses

The approximately 112-acre LAC site is improved with 33 buildings constructed between 1935 and 2017 that contain approximately $1,285,337$ square feet of gross area. The LAC is transected by Carson Street and is organized into three general areas: the North Campus, which contains administrative and classroom buildings; the Central Campus, which contains administrative buildings, classroom buildings, and physical education facilities; and the South Campus, which includes the Veterans Memorial Stadium complex, facilities buildings, and information technology/bond management team offices. The LAC also includes ancillary structures such as athletic fields, landscaped areas, parking lots, and pedestrian walkways. Table 2-1 provides a building inventory including age of construction, use, and square footage.

Table 2-1: LAC Existing Building Inventory

Building Letter	Building Name	Gross Square Footage	Year Built	Last Addition
A	ADMINISTRATION	33,967	1940	2013
B	TECHNICAL	44,357	1971	
C	NURSING HEALTH-TECHNOLOGY	23,250	1969	2016
D	SCIENCE BUILDING	81,132	1973	2000
E	COLLEGE CENTER	50,276	1968	1991
F	FAMILY- CONSUMER STUDIES	15,387	1952	1974
G	MUSIC	20,530	1952	1993
H	THEATER ARTS BLDG	7,262	1980	
1	CAMPUS BOOKSTORE	8,544	1992	2012
J	AUDITORIUM	37,878	1956	
K	ART	29,479	1952	1995
L	LIBRARY LEARNING CENTER	79,053	1958	2009
M	BUSINESS-SOCIAL SCIENCE-FOREIGN LANGUAGE	36,476	1935	1975
N	ENGLISH-JOURNALISM-LANGUAGE ARTS	12,292	1935	1975
01	INSTRUCTIONAL \& INFORMATIONAL TECHNOLOGY SERVICES	26,560	2001	2009
O 2	COLLEGE ADVANCEMENT AND ECONOMIC DEVELOPMENT	51,302	2001	2009
P	LANGUAGE ARTS	16,016	1935	1984
PS	PARKING STRUCTURE	295,485	2011	
Q	GYMNASIUM WOMEN	30,270	1952	
R	GYMNASIUM MEN	78,024	1952	1963
S	VETERANS' STADIUM	57,694	1950	1991

Table 2-1: LAC Existing Building Inventory

Building Letter	Building Name	Gross Square Footage	Year Built	Last Addition
	STADIUM PRESS BOX	1,920	1949	
T	ACADEMIC SERVICES	108,312	2009	
TS	TENNIS STORAGE	200	1960	
	FACILITIES STORAGE	988	1980	
RR	ATHLETIC FIELD HOUSE	1,656	1960	
TW	TW MODULAR	960	2007	
U	GROUNDS SHOP	4,800	1975	
V	MATH-TECHNOLOGY-CULINARY ARTS	73,650	2015	
X	CAMPUS SAFETY/CENTRAL PLANT	9,000	2009	
XT	PHYSICAL EDUCATION OFFICE	2,160	1989	
Y	MAINTENANCE SHOP	7,000	1989	
Z	MAINTENANCE/WAREHOUSE	39,457	2005	

Source: FUSION database 2017

2.1.3 LBCC and LAC History

Long Beach City College, formerly known as Long Beach Junior College (LBJC), celebrated its 90th Anniversary in 2017. LBJC opened at Woodrow Wilson High School in September 1927. LBJC was the second two-year college established in the metropolitan area of Los Angeles. LBJC served students not only from Long Beach, but also from as far away as Redondo Beach to the north and Laguna Beach to the south. In 1933 LBJC was offered 25 acres on Carson Street for a new campus by the Montana Land Company. The area was then known as "Lakewood Village." The Montana Land Company donated additional land parcels in 1934. The new campus with a total of 29.844 acres, now referred to as the Liberal Arts Campus, opened in 1935 with Mission architecture with tile roofs, white exterior walls, and patios. Bean, alfalfa, and carrot fields surrounded the new campus on Carson Street. The first mailing address of the Carson campus was Route No. 1, Clark and Carson Streets. The enrollment in 1935-36 was 1,603 students with 51 full-time faculty members. By 1942-43, the middle of the war years (194145), enrollment had climbed to 2,966 students with 56 full-time faculty members. In the postwar expansion period from 1945-52, the college acquired an additional 38.379 acres south of Carson Street.

In response to the postwar increase in enrollment, LBJC also acquired the former Hamilton Junior High School site at Pacific Coast Highway and Alamitos Avenue in 1949 for the newly formed Business and Technology Division of Long Beach City College. This site is now the Pacific Coast Campus of LBCC.

2.1.4 $\quad 2004$ Master Plan Elements

A general obligation bond election (Measure "E"/Proposition 39) was approved in March 2002 for both general and specific improvements at the LBCC at both the PCC and the LAC. The District was undertaking an extensive improvement and building program at the two campuses to meet increasing enrollment needs, evolving demands for post-secondary educational institutions, and the needs of the

Long Beach community. Additionally, the District will be using capital improvement funds from the State of California for renovation and new construction projects.

In 2004, the District prepared the LBCC LAC Master Plan to reflect LBCC's projected instructional and programmatic needs for the Liberal Arts Campus. The 2004 LBCC LAC Master Plan outlined capital improvements through 2015 and proposed construction of new buildings, renovation, modernization and additions to existing facilities, demolition of existing buildings, and landscaping enhancements. Improvements are intended to update existing technological and program services to meet increasing needs of students and faculty.

The District prepared a Program Environmental Impact Report (PEIR) to address implementation of the 2004 LBCC LAC Master Plan. The Board of Trustees of the LBCCD certified the Final PEIR for the 2004 LBCC LAC Master Plan, State Clearinghouse No. 2004051060, on January 25, 2005. Since the adoption of the PEIR, two Addendums to the PEIR were completed to address updates to the original project description. The September 2008 Addendum addressed a revision to the location of the parking structure proposed in the PEIR to one of three alternative locations on the LAC campus. This Addendum was approved by the Board of Trustees of the LBCCD on September 23, 2008. The May 2009 Addendum addressed a revision to the renovation/retrofit of Buildings M and N proposed in the PEIR to their replacement with an approximately 49,000-gross-square-foot building. This Addendum was approved by the Board of Trustees of the LBCCD on May 19, 2009. In addition, an Initial Study/Negative Declaration (IS/ND) was prepared for the acquisition of the property and buildings at 4900 and 4910 East Conant Street for use by LBCCD as classroom and administrative space. This IS/ND was approved by the Board of Trustees of the LBCCD on November 11, 2008. Table 2-2 presents LAC Master Plan Improvements previously approved under the PEIR, its Addendums, and/or the Final IS/MND for the Conant Street Project.

Table 2-2: 2004 LAC Master Plan Improvements

Project	Function/Support	Scope /GSF
Building A Administration/ Student Services	Reuse for Student Services	Retrofit/Renovation - 37,058
Building B Tech Studies	Technical Education Program	Retrofit/Renovation - 44,536
Building C Nursing/Health Technology	Nursing/Health Technology	Retrofit/Renovation - 22,260
Building E College Center	Campus-wide Student Support	Retrofit/Renovation - 50,276
Building F	Replace existing Building F with new	
Building G Music Building	Music	New Construction - 15,968
Building H Theater Arts	Drama, Dance	Retrofit/Renovation - 27,591
Building J Auditorium	Performing Arts	Retrofit/Renovation - 28,214

Table 2-2: 2004 LAC Master Plan Improvements

Project	Function/Support	Scope /GSF
Library/ Learning Resource Center (LRC)	Library/ LRC Functions	$\begin{aligned} & \hline \text { Renovation - 73,521 } \\ & \text { Expansion - 13,384 } \end{aligned}$
Liberal Arts Building	Replace existing Buildings M \& N with building. Language Arts, Speech Communication, CIS, Construction Education	New Construction - 67,948
Trailers O	Speech relocated to SQC	Demolition/Removal - 5,760
Building O1	ACIT, Bond Management Team, Warehouse	Retrofit/Renovation - 40,892
Building O2	LBCCD Foundation Organization, Economic Resource Development	Retrofit/Renovation - 70,972
Building P Language Arts	Language Arts	Retrofit/Renovation - 16,016
Building Q Secondary Gymnasium	Physical Education	Retrofit/Renovation - 30,270
Building R Primary Gymnasium	Physical Education	Retrofit/Renovation - 77,916
Trailers T	Relocate uses to Liberal Arts Building	Remove -6,240
Building U	Relocate Grounds Shop to Building Z	Remove - 4,800
Building V	Relocate Human Resources/Purchasing to SQC	Remove - 8,160
Trailers W	Relocate uses to SQC	Remove - 23,167
Building X Campus Police Facility	Campus Safety/ Central Plant/ Physical Education	New Construction - 18,859
Building Y	Relocate Maintenance Shop to Building Z	Remove - 7,000
Building Z Maintenance/ Warehouse	Maintenance Operations/ Warehousing	New Construction - 36,606
South Quad Complex (SQC)	Business, Social Sciences, Child Development, Administration	New Construction - 121,722
Child Development Center	Child Development	New Construction - 15,102
Outdoor Performance Area	Outdoor performance area and seating in Building 3 courtyard	New Construction - 31,250
Pedestrian Promenade	Renovate, widen, and extend Pedestrian Promenade	Retrofit/Renovation 5,970 linear ft.
Entry Plazas	Pedestrian entry plazas between parking lots and buildings	New Construction - 90,000
Swim Pool Facility	Infrastructure Support	Retrofit/Upgrades - 12,080
Sculpture Garden	Sculpture Garden between Buildings J and K	New Construction $13,727$
Landscape Improvements	Campus-wide	Retrofit/Renovation
Circulation Improvements	Campus-wide including closure of Faculty Drive at Carson Street	Retrofit/Renovation
Infrastructure Improvements	Campus-wide	Retrofit/Renovation

Table 2-2: 2004 LAC Master Plan Improvements

Project	Function/Support	Scope /GSF
Office/ Classroom Buildings (3 Buildings)	Office/ Classroom/ Lab	New Construction - 271,791
Parking Structure	Replace Surface Parking N with 4-story Parking Structure	New Construction - 175,000

(Note: These square footage numbers have been changed from assignable square footage (ASF) to gross square footage (GSF) for purposes of analysis within this Supplemental EIR. Only conversions from ASF to GSF or clarifications in numbers were made here.)

2.1.5 $\quad 2020$ Unified Master Plan Elements

The Measure E Bond Program approved in March 2002 provided a jump-start to the District's capital facilities program; however, it was never intended to address all building/facilities needs for the campus. The age of the existing facilities coupled with the need to meet both current and future growth of the academic program of instruction required improvements that go beyond Measure E .

The District addressed this need in 2006 when it requisitioned the Long Beach Community College Resource and Facilities Plan. The Resource and Facilities Plan identified the growth rates vis-à-vis the academic programs of instruction at LAC and PCC. Enrollment and the production of weekly student contact hours (WSCH) were used as the basis for quantifying growth as well as for determining the space needs of the future. The year 2020 was selected as the "target year." Based on the growth rates, the vectors for enrollment and WSCH were determined to intersect with the physical capacity of the two campuses at or about year 2020. Physical capacity was defined by the District as achieving student enrollment of 27,500 and 238,000 WSCH at LAC. At this point in time, the campus will have effectively reached its physical limit for available land area, for parking, and the ability to effectively serve students.

While the 2020 target year is somewhat relative, the enrollment and WSCH benchmarks are not. Enrollment and WSCH projections may be reached prior to the year 2020 or after that point in time. However, when 238,000 WSCH are reached at LAC, the campus will effectively be operating at maximum capacity.

While looking to 2020, LAC's priorities focused on addressing the key areas for academic growth. These included the Life Sciences (Biology), Mathematics, Language Arts, Performing Arts, and Child Development. From the Student Services side of the equation, a comprehensive student center for educational support was a high priority. LAC also addressed its Physical Education facilities. With the exception of cosmetic treatment, these facilities had remained unchanged since the 1940s and 1950s. Additionally, the physical capacity of the outdoor laboratories was understated for the enrollment served, the expansion of the athletics program, and the impacts of the Title IX program. LAC also focused on the renovation of its buildings north of Carson Street. While the structural integrity of the selected buildings to be retained was in good condition, the teaching/learning environments and the technology support offered are outdated for today's methods of instructional delivery. Additionally, these buildings have utility and mechanical systems that have been extended well beyond their intended life span. The provision of parking that is close and usable to the primary academic areas will also be a high priority at LAC.

The District prepared a Supplemental Environmental Impact Report (SEIR) to address implementation of the 2020 Unified Master Plan. The Board of Trustees of the LBCCD certified the Final SEIR for the 2020

Unified Master Plan, State Clearinghouse No. 2004051060, on December 8, 2009. Table 2-3 presents the updates to the Master Plan through eliminated projects. Table 2-4 and Figure 2-4 present LAC Master Plan Improvements previously approved under the SEIR.

Table 2-3: Eliminated Master Plan Improvements

Project	Function/Support	Scope (GSF)
Building E	Campus-wide Student Support	Retrofit/Renovation - 50,276
Building F	Replace existing Building F with new building	New Construction - 15,968
Building G Music Building	Music	Retrofit/Renovation - 27,591
Building H Theater Arts	Drama, Dance	Retrofit/Renovation - 7,262
Office/ Classroom Building	Office/ Classroom/ Lab	New Construction - 271,791
Parking Structure	Replace Surface Parking N with 4-story Parking Structure	New Construction - 175,000

(Note: These square footage numbers have been changed from assignable square footage (ASF) to gross square footage (GSF) for purposes of analysis within this Supplemental EIR. Only conversions from ASF to GSF or clarifications in numbers were made here.)

Table 2-4: 2020 LAC Master Plan Improvements

Project	Function/Support	Scope (GSF)
Building A	Reuse for Student Services	New Construction - 9,279
Building D Science Building	Renovate bottom floor for Biology	Retrofit/Renovation-9,326
Building E College Center	Campus-wide Student Support	Renovation - 50,276
Building F	Multi-Disciplinary	Retrofit/Renovation - 15,968
Building I Foundations Building	Conversion to Bookstore. LBCC Foundations Organization moves to Building O2	Retrofit/Renovation - 4,994 Expansion - 4,994
Building K Art Building	Fine Arts	Retrofit/Renovation - 29,479
Building S Stadium Building	Health/ Safety \& Fitness/ Wellness	Retrofit/Renovation - 57,455 Expansion - 57,455
Building 1 Math Tech	Math, Culinary Arts, Health, Instructional Support	New Construction - 83,202
Building 3 Performing Arts	Replace existing Buildings G \& H. Drama, Dance, Music	New Construction - 46,671 Remove - 27,792
Parking Structure 7	Replace Surface Parking J with 950 space Parking Structure	New Construction - 310,000
MPOE Building	Telecommunications	New Construction - 450
Outdoor Physical Education Labs	Physical Education	Relocation/Reconstruction
Olympic-sized Pool	Physical Education	New Construction - 37,062
Signage Improvements	Campus-wide improvement of directional signage; new	New Construction/Renovation

Table 2-4: 2020 LAC Master Plan Improvements

Project	Function/Support	Scope (GSF)
	electronic informational sign adjacent to Carson Street	
Circulation Improvements	Closure of Faculty Avenue at Lew Davis Drive	Reconstruction
Photovoltaic Projects	LAC buildings will be studied for possible Solar Photovoltaic systems.	New Construction

(Note: These square footage numbers have been changed from assignable square footage (ASF) to gross square footage GSF for purposes of analysis within this Supplemental EIR. Only conversions from ASF to GSF or clarifications in numbers were made here.)

The following descriptions identify specific improvements recommended for the 2020 Unified Master Plan LAC Improvements that were not part of the 2004 LAC Master Plan.

- The bottom floor of Building D will be renovated for Biology.
- Building E, the College Center (Student Center), will be renovated.
- Building F will be renovated for Multi-Disciplinary uses.
- Building I will be renovated and expanded by 4,994 square feet for use as the new Bookstore. The LBCCD Foundation organization will be moved to Building O2, located south of Conant Street.
- Building K, the Fine Arts Building, will be renovated.
- A new Math Tech Building (Building 1) will be built on the northwest portion of the existing surface Parking Lot J. This building will support Math, Culinary Arts, Health, and Instructional Support. It would consist of two stories and approximately 83,202 square feet of space.
- A new Performing Arts Building (Building 3) will replace the existing Buildings G and H, consisting of approximately 46,671 square feet.
- The proposed Parking Structure 7 will be built on a portion of surface Parking Lot J, immediately southeast of the proposed Building 1. It would consist of five stories and approximately 310,000 square feet. It would contain approximately 900 parking spaces with a maximum 950 parking spaces. The proposed structure would be accessed from two locations off Clark Street and one location off Lew Davis Street. These entrances would provide vehicle queuing space for eight cars entering and exiting the garage to reduce congestion on Clark Avenue. A solar photovoltaic system will be installed on the roof of the proposed parking structure to supply electricity to the structure. The Proposed Project will also include secure bicycle parking at ground level for 100 bicycles.
- A new telecommunications building will be built adjacent to Building P. This 400 -square-foot building will consolidate the telecommunications network, most of which is currently housed in Building N . This will include one or two parking spaces for electronic vehicles.
- An Olympic-sized swimming pool will be constructed between Buildings R and Q . It will include grandstands to accommodate 3,000 people.
- Improvements to directional signage will take place campus-wide. This will include monument, directional, and an electronic information sign adjacent to the north side of Carson Street, midway between Faculty Avenue and Clark Avenue. The electronic information sign will be approximately 22 feet tall and 16 feet wide.
- Faculty Drive between Lew Davis Street and Carson Street will be closed, and the closed area will be converted to an athletic field with a possible drop-off zone at Faculty Drive and Lew Davis Street.
- LAC buildings will be studied for possible solar photovoltaic systems. The first system will be placed on the roof of the new Parking Structure 7, and others may be added if appropriate rooftops are identified. Potential candidates include the new Math Tech Building (Building 1) and the new Performing Arts Building (Building 3).

Figure 2-4: 2020 Unified Master Plan

Figure 2-4
2020 Unified Master Plan LAC

Source: Long Beach Community College Website, 2009.

2.2 PROJECT DESCRIPTION

2.2.1 \quad 2041 Facilities Master Plan LAC Improvements

Since the 2020 Unified Master Plan, the District prepared the LBCCD 2041 Facilities Master Plan to provide an understanding of the projects envisioned to be constructed in the near future. This Facilities Master Plan breaks down the type and size of each project for both campuses, as well as estimating the probable cost of each project. The 2041 Facilities Master Plan allowed the District to re-evaluate available funds and expanded details of priority projects that the District is working to complete. Enrollment and the production of weekly student contact hours (WSCH) were used as the basis for quantifying growth as well as for determining the space needs of the future. Physical capacity was defined in the 2041 Facilities Master Plan as achieving student enrollment of 28,100 and 349,844 WSCH at LAC. At this point in time, the campus will have effectively reached its physical limit for available land area, for parking, and the ability to effectively serve students.

Looking to the year of 2041, LAC's priorities will lie with addressing the key areas for academic growth. These include the Life Sciences (Biology), Mathematics, Language Arts, Performing Arts, and Construction Trade facilities. From the Student Services side of the equation, an economic and workforce development center is a high priority. LAC will also need to address its Physical Education facilities including a new Aquatic Center, renovation of the stadium and gymnasiums, and outdoor kinesiology labs. Lastly, the provision of parking that is close and usable to the primary academic areas will also be a high priority at LAC.

2.3 PROJECT DESIGN FEATURES

2.3.1 Master Plan Updates

The 2041 Facilities Master Plan provides updates to the 2020 Unified Master Plan and provides updated construction dates and budgets for the facilities projects. The projects incorporate the space and building needs identified to the year 2041. Figure 2-5 presents the LBCC 2041 Facilities Master Plan LAC improvements. Table 2-5 presents the updates to the Master Plan through new project details determined since the previous SEIR.

Figure 2-5: LBCC 2041 Facilities Master Plan LAC Improvements

Figure 2-5

[^0]Table 2-5: Updated 2041 Facilities Master Plan Improvements

Project	Scope/Usage	Square Feet (GSF)/ Features
Building B Classroom	Renovate Building with electrical upgrades, data and communication, larger lecture halls, better lighting, and additional lab functions	Renovation - 44,357
Building D Science Building	Renovate Science Building for improved classroom learning environments, new fiber data backbone, and enhanced signage	Renovation - 16,000
Building E College Center	Campus-wide Student Support	Demolition - 50,276 New Construction - $50,276$
Building F Family/Consumer Education	Outdated building that will be replaced with new landscape and hardscape	Demolition - 15,968
Building G Performing Arts	New Performing Arts Building replaces the existing and outmoded Music Building.	Demolition - 27,792 New Construction 42,857
Building J Auditorium	Complete renovation of Auditorium building with expansion of the building as well as general refurbishment and updates	Renovation - 37,878 Expansion - 14,119
Building K Art Building	Fine Arts building needs complete renovation and modernization	Retrofit/Renovation - $29,479$
Building M Liberal Arts	Replace Buildings M and N with new building for classrooms, laboratory facilities, and technology center	Demolition - 48,768 New Construction 81,970
Building O1 IITS/Warehouse	Structural enhancements to obtain certification by Division of State Architect	Renovation - 26,560
Building O2 Economic \& Workforce Development/Foundation	Structural enhancements to obtain certification by Division of State Architect	Renovation - 51,302
Building P Language Arts	Upgrade building's functional systems with upgraded power systems, HVAC, plumbing, storm drainage, fire alarm, and telecommunication systems	Renovation - 16,016
Building Q Secondary Gymnasium	Renovation and upgrading to address issues related to instructional space, training needs, seismic upgrades, AHA compliance, and other upgrades	Renovation - 30,270
Building R Primary Gymnasium	Comprehensive structural and seismic renovation, ADA access, HVAC upgrades	Renovation - 78,024 New Construction - $10,000$
Building S Stadium	Renovation including ADA access, structural upgrades	Renovation - 57,455
Building W Aquatic Center	Construction of a new 50 meter by 25-yard pool, with a new support building	New Construction 54,660 including pool area
Outdoor Kinesiology Labs	New construction of physical education outdoor playing fields to include softball relocation, two soccer fields, six tennis courts, five sand	New Construction Supporting Facilities 15,014

Table 2-5: Updated 2041 Facilities Master Plan Improvements

Project	Scope/Usage	Square Feet (GSF)/ Features
	volleyball courts, and supporting facilities, restrooms, field house, storage.	New and revised walkways, installation of uniform signage program
Walkways and Wayfinding	New construction/renovation	

ADA: Americans with Disabilities Act; HVAC: heating, ventilation, and air conditioning
The LBCCD 2041 Facilities Master Plan LAC improvements would result in an estimated increase over the 2020 Unified Master Plan of 15,877 square feet of renovation, 69,564 square feet removed, and an estimated increase of 34,913 square feet of new construction.

The following descriptions identify specific improvements recommended for the 2041 Facilities Master Plan LAC Improvements that were not part of the 2020 Unified Master Plan or the original 2004 LAC Master Plan Program EIR.

- Building D, Science Building, renovation will be expanded from 9,326 square feet to 16,000 square feet
- Building E, the Existing College Center, will be demolished (50,276 gross square feet); and a new building will be constructed with approximately the same gross square footage of 50,276 . The new construction will be in lieu of major renovation of Building E that was previously shown on the 2020 Master Plan.
- Building F will be demolished and replaced with new landscape and hardscape.
- The Performing Arts Building (Building G, previously shown as Building 3 on 2020 Master Plan) will replace the existing Buildings G and H, consisting of approximately 42,857 square feet instead of 46,671 square feet, which was shown on the 2020 Master Plan.
- Building 01 will undergo structural enhancements to the 26,560 -square-foot building to obtain Division of State Architect certification.
- Building O 2 will undergo structural enhancements to the 51,302-square-foot building to obtain Division of State Architect certification.
- Building R, Primary Gymnasium, is anticipated to have an expansion with new construction to the south of 10,000 gross square feet to accommodate program needs.
- In order to meet programmatic needs a new 10,000-gross-square-foot structure may be built between Buildings Q and R to accommodate swing space and Title IX needs while the buildings are being renovated.
- Building W, Aquatics Center, will be 31,692 GSF approximately 21,871 gross square footage of building structure will be allocated to the pool facility including restrooms, locker rooms, team rooms, classrooms, and offices and will have a capacity of approximately 800 spectator seats. (An

Olympic-sized swimming pool with grandstands to accommodate a 3,000-spectator-seat capacity was shown in the 2020 Master Plan.)

- Outdoor Kinesiology Labs, Renovation and New construction of physical education outdoor playing fields to include softball relocation, two soccer fields, six tennis courts, and five sand volleyball courts, and supporting facilities, such as restrooms, field house, and storage facilities. Approximately 9,821 square feet of Building W will be allocated to The Outdoor Kinesiology Labs as supporting facilities. Also, the existing field house for Softball Field will be removed and replaced with approximately 5,193 square feet of new supporting facilities. (Outdoor Physical Education Labs, including softball field relocation, were previously shown in the 2020 Master Plan.)
- In order for the District to meet the state requirements and Executive Order B-18-12 for Zero-NetEnergy, the LAC campus will be studied for possible solar photovoltaic systems at various locations. Parking Lot M, as well as other parking lots, may have two-thirds of the lot covered with photovoltaic carport structures to meet the statewide requirements for energy production and achieve a Zero Net Energy District.

2.3.2 Master Plan Schedule

The 2041 Facilities Master Plan provides an approximate schedule sequence that identifies timelines for construction and project scope. Table 2-5 summarizes the 2041 Facilities Master Plan Improvements building renovation, expansion, and/or new construction. To determine the projects and sequencing in the 2041 Facilities Master Plan, the Board of Trustees of the Long Beach Community College District evaluated the District's urgent and critical capital needs, including school and student safety issues; enrollment trends; class size reduction; overcrowding; energy efficiency and computer technology; seismic safety requirements; and aging, outdated, or deteriorating school buildings in developing the scope of projects to be funded. In developing the scope of projects, the District has prioritized the key health and safety and sustainability needs so that the most critical school site needs are addressed.

The timing of certain projects will be dependent on the completion of other projects and will ultimately occur over different phases. For example, improvements to utilities will occur across the LAC; however, these improvements will be completed in portions following building construction or renovation. Other projects like this include the Photovoltaic Projects, Landscape Master Plan Projects, and Wayfinding/Walkway Projects.

The Master Plan projects called out the projects identified in the 2041 Facilities Master Plan and the time frame that is most likely to occur during these time periods. However, the time frame in which a project is planned may change if the priority characteristics change for an individual project due to program needs or state funding allocation. The general building scope by phase is shown in Table 2-6 for the 2041 Facilities Master Plan Updates.

Table 2-6: 2041 Facilities Master Plan Construction by Planned Construction Years

Construction Start Year	Projects Planned
Ongoing	Building P - Language Arts (Renovation), Building D - Science
	(Renovation), Building J - Auditorium, Minor Campus Improvements,

Table 2-6: 2041 Facilities Master Plan Construction by Planned Construction Years

Construction Start Year	Projects Planned
	Energy/Water Conservation Projects, Infrastructure Projects, Campus
Landscaping	

2.3.3 Design Guidelines

The Design Guidelines of the 2004 LAC Master Plan are incorporated by reference into the 2041 Facilities Master Plan. The Design Guidelines include "Guiding Principles" that govern the design of the proposed campus improvements, including the buildings, parking area, planting scheme, pavement and courtyards, traffic/circulation, signage, lighting, site furnishings, and screening (LBCCD 2004). The Long Beach City College Liberal Arts Campus has outstanding examples of Spanish Colonial Revival architecture that serve as the physical and emotional core of its campus. Additions to the campus should build on this strength and extend the underlying values of this historical core. According to the Design Guidelines:

- The design objectives and guidelines used for the improvement of the architectural character at the Liberal Arts Campus are based on new construction, rehabilitation of existing buildings, and demolition or removal of obsolete or deteriorated facilities.
- New facility design should contribute to a unified campus appearance with a consistent architectural character. All future construction shall employ a single, unifying architectural vernacular based on a contemporary interpretation of the original Spanish Colonial Revival Style.
- All new buildings shall be sited in groups or clusters to define interior public courtyards protected from public ways and parking areas. All new construction shall be sited to relate to existing or future buildings so that strongly defined edges to outdoor rooms are formed. These outdoor rooms should be simple and comprehensible in shape, and pedestrian connections between the clustered buildings should be carefully articulated.

2.3.4 Best Management Practices

All Best Management Practices (BMPs) from the PEIR will be incorporated by reference in this NOP/IS, as well as the proposed SEIR for the 2041 Facilities Master Plan.

2.4 STATEMENT OF PROJECT GOALS AND OBJECTIVES

The District's goal as part of the California Community College system is to offer academic and vocational education to students at the lower college division level. In addition, the District's goal is to advance California's economic growth and global competitiveness through education, training, and services that contribute to continuous workforce improvement.

The objective of the 2041 Facilities Master Plan is to provide plans to implement proposed necessary construction, renovation, and general capital improvements at the campus in order to meet the District's goals. The improvements are intended to update and improve existing technological and program services in order to meet the increasing needs of students and faculty. Specific objectives that have been identified by the LBCCD include the following:

- Provide equitable student learning and achievement, academic excellence, and workforce development by delivering high quality educational programs and support services to diverse communities
- Provide clear pathways to students to achieve their career and educational goals through providing adequate facilities to support the ability for students to earn an associate degree or certificate solely within each campus, without having to take classes at both campuses
- Provide upgraded athletic facilities that support physical activity on campus and provide opportunities and for organized recreational use for the community
- Provide renovated classrooms and educational facilities in order to properly serve current and future students on campus
- Ensure a sustainable and state-of-the-art facilities infrastructure

2.5 REQUIRED PERMITS AND APPROVALS

As required by the CEQA Guidelines, this section provides, to the extent the information is known to LBCCD, the CEQA Lead Agency, a list of the agencies that are expected to use this SEIR in their decisionmaking, and a list of permits and other approvals required to implement the project.

2.5.1 Lead Agency Approval

The Final SEIR must be certified by the LBCCD Board of Trustees (Board) as to its adequacy in complying with the requirements of CEQA before taking any action on the Proposed Project. The Board will consider the information contained in the SEIR in making a decision to approve or deny the 2041 Facilities Master Plan LAC Improvements that were not previously addressed under the 2020 Unified Master Plan SEIR or the 2004 PEIR (Proposed Project). The analysis in the SEIR is intended to provide environmental review for the whole of the Proposed Project, including the project planning, site acquisition, demolition of existing structures, site clearance, site excavation, and construction of school buildings and appurtenant facilities in accordance with CEQA requirements.

2.5.2 Required Permits and Approvals

A Responsible Agency is a public agency, other than the lead agency, that has discretionary approval power over a project. The Responsible Agencies, and their corresponding approvals, for this project include the following:

California Department of General Services

- Division of the State Architect (Approval of architectural plans)

City of Long Beach

- Department of Public Works (Approval of on- and offsite drainage infrastructure and roadway improvements)

2.5.3 Reviewing Agencies

Reviewing Agencies include those agencies that do not have discretionary powers, but that may review the SEIR for adequacy and accuracy. Potential Reviewing Agencies include the following:

State Agencies

- Department of Transportation (Caltrans)
- Environmental Protection Agency (Cal EPA)
- Department of Fish and Wildlife (CDFW)

Regional Agencies

- Southern California Association of Governments (SCAG)
- South Coast Air Quality Management District (SCAQMD)

2.6 CUMULATIVE SCENARIO

Cumulative impacts refer to the combined effect of Proposed Project impacts with the impacts of other past, present, and reasonably foreseeable future projects. Both CEQA and the CEQA Guidelines require that cumulative impacts be analyzed in an EIR. As set forth in the CEQA Guidelines, the discussion of cumulative impacts must reflect the severity of the impacts, as well as the likelihood of their occurrence; however, the discussion need not be as detailed as the discussion of environmental impacts attributable to the project alone. As stated in CEQA, "a project may have a significant effect on the environment if the possible effects of a project are individually limited but cumulatively considerable."

According to the CEQA Guidelines:
"'Cumulative impacts' refer to two or more individual effects which, when considered together, are considerable and which compound or increase other environmental impacts.

- The individual effects may be changes resulting from a single project or a number of separate projects.
- The cumulative impact from several projects is the change in the environment which results from the incremental impact of the Proposed Project when added to other closely related past, present, and reasonable foreseeable probable future projects. Cumulative impacts can result from individually minor but collectively significant projects taking place over a period of time.".

In addition, as stated in the CEQA Guidelines, it should be noted that:
"The mere existence of significant cumulative impacts caused by other projects alone shall not constitute substantial evidence that the Proposed Project's incremental effects are cumulatively considerable."

Cumulative impact discussions for each issue area are provided in the technical analyses contained within Section 4.0 - Environmental Impacts.

As previously stated, and as set forth in the CEQA Guidelines, related projects consist of "closely related, past, present, and reasonable foreseeable probable future projects that would likely result in similar impacts and are located in the same geographic area." An area of influence, defined by an approximate 1.5 -mile radius from the Proposed Project site, was utilized in order to capture specific locations of other approved and pending projects. Based on coordination with the City of Long Beach, an area projects list was created. Responses that were received from the City were incorporated in the analysis. A majority of the study area is located in a highly urbanized area. The ability to develop new major projects within or adjacent to the study area is limited. Twenty-six pending/approved developments were identified by the City of Lakewood and City of Long Beach within the study area:

- Staybridge Suites Hotel - 2640 North Lakewood Boulevard
- Retail/Carwash Project - 4201 East Willow Street
- New Coffee Shop - 5861-5865 Spring Street
- Northgate Market Expansion - 4700 Cherry Avenue
- Law Office of Jeff Lung - 4909 Lakewood Boulevard \#302
- Sparx Logistics - 4909 Lakewood Boulevard \#303
- Thrivent - 4909 Lakewood Boulevard \#305
- Image 2000-4909 Lakewood Boulevard \#540
- McDonalds - 4910 Lakewood Boulevard
- Petco - 5215 Lakewood Boulevard
- Kinecta Federal Credit Union - 4055 Hardwick Street
- Raising Cane's Chicken Fingers - 4624 Candlewood Street
- Dickey's Barbeque Pit - 5125 Candlewood Street
- Outback Steakhouse - 5305 Clark Avenue
- Journey's - 500 Lakewood Center Mall \#20
- Miniso - 500 Lakewood Center Mall \#39
- Play Live Nation - 500 Lakewood Center Mall \#127
- Box Lunch - 500 Lakewood Center Mall \#307
- Burgerim - 4131 Woodruff Avenue
- Morey's Music Store - 4834 Woodruff Avenue
- Piggie's Adobo Taco Bar - 2700 Carson Street
- Carwood Carwash - 2729-35 Carson Street
- Stone Yoga Studio - 3219 Carson Street
- Bubble Express Car Wash - 2711 Del Amo Boulevard
- Starbucks - 5906 Del Amo Boulevard
- Laborers Local 1309-3971 Pixie Avenue

CHAPTER 3.0 - ENVIRONMENTAL ANALYSIS

3.1 ENVIRONMENTAL ISSUES ADDRESSED

An Initial Study (IS) was prepared for the Proposed Project in February 2018 (see Appendix A). Based on the findings documented in the IS, LBCCD determined that a Supplemental Environmental Impact Report (SEIR) would be required for the Proposed Project. Environmental issue areas are listed in Table 3-1 by the level of significance of their impacts, as determined by the IS process. Those issue areas identified in the IS as having potentially significant impacts are further analyzed in this SEIR.

Table 3-1: Summary of Environmental Impacts Identified in the Initial Study

No Impact	Less Than Significant Impact	Potentially Significant Impact
Agricultural \& Forestry Resources	Biological Resources	Aesthetics (Lighting \& Glare)
Land Use \& Planning	Cultural Resources (with mitigation)	Air Quality
Mineral Resources	Energy	Greenhouse Gas Emissions
Population \& Housing	Geology \& Soils (with mitigation) Tribal Cultural Resources Hazards \& Hazardous Materials (with mitigation)Hydrology \& Water Quality	
	Public Services	
	Recreation	

LBCCD used the IS, as well as agency and public input received during the public comment period (February 8, 2018, to March 9, 2018), to determine the final scope for this SEIR. The four issue areas and their corresponding subchapter numbers discussed in their SEIR include:

- 3.4 - Aesthetics (Lighting \& Glare)
- 3.5- Air Quality
- 3.6 - Greenhouse Gas Emissions
- 3.7-Noise
- 3.8 - Transportation

Chapters 3.4 through 3.8 provide a detailed discussion of the environmental setting, applicable project design features, impacts associated with the Proposed Project, cumulative impacts, and mitigation measures designed to reduce significant impacts. Where impacts cannot be reduced to a less than significant level, LBCCD shall consider adopting a Statement of Overriding Considerations (SOC).

3.2 ORGANIZATION OF ENVIRONMENTAL ANALYSIS

To assist the reader in comparing information about the various environmental issues, each chapter contains the following information.

- Introduction
- Existing Environmental Setting
- Applicable Regulations
- Impacts and Mitigation
o Methodology
o Criteria for Determining Significance
o Project Impacts
- Mitigation Measures
- Residual Impacts
o Cumulative Impacts
- Mitigation Measures
- Residual Impacts

3.3 TERMINOLOGY USED IN THIS ANALYSIS

For each CEQA checklist question listed in the SEIR, a determination of the level of significance of the impact is provided. Impacts are categorized in the following categories:

- No Impact. A designation of no impact is given when no adverse changes in the environment are expected.
- Less Than Significant. A less than significant impact would cause no substantial adverse change in the environment.
- Less Than Significant with Mitigation. A potentially significant (but mitigable) impact would have a substantial adverse impact on the environment but could be reduced to a less-than-significant level with incorporation of mitigation measure(s).
- Potentially Significant. A significant and unavoidable impact would cause a substantial adverse effect on the environment and no feasible mitigation measures would be available to reduce the impact to a less-than-significant level.

3.4 AESTHETICS

3.4.1 Existing Environmental Setting

The visual character of the LAC and surrounding area is that of a fully developed urban corridor, developed with a mix of institutional, commercial, residential, and park uses. Implementation of the Proposed Project would involve redevelopment, renovation, demolition, and new construction on the LAC. The 2041 Facilities Master Plan LAC Improvements incorporate the design features of the 2004 LBCC LAC Master Plan and the 2020 Unified Master Plan LAC Improvements. The LBCCD LAC Master Plan has been developed to support the Long Beach Community College District vision, mission, and values. New design will contribute to a unified campus appearance with a consistent architectural character.

LBCCD LAC is an existing source of light in an urbanized area of the City of Long Beach. Sources of illumination on the LAC include street lighting, interior building lighting, lighting in parking lots, and security lighting.

3.4.2 Impacts and Mitigation

As outlined in the Initial Study (Appendix A), the Proposed Project will not have a substantial adverse impact on a scenic vista, damage scenic resources within a state scenic highway, or degrade the existing visual character of the site. The analysis below analyzes impacts from light and glare due to implementation of the 2041 Facilities Master Plan.

Impact 3.4-1: Create a new source of substantial light or glare that would adversely affect day or nighttime views in the area.

LBCCD LAC is an existing source of light and glare in an urbanized area of the City of Long Beach. The Proposed Project would provide updated lighting on campus as well as additional sources of nighttime illumination. Lighting associated with renovated or new buildings would be similar to that of the existing surrounding buildings. Pedestrian lighting will be coordinated with other elements such as signage, security, paving materials, and street furniture. New lighting proposed in the LBCCD 2041 Facilities Master Plan for the LAC campus includes improved field lights for the two soccer fields (Outdoor Kinesiology Labs) and stadium lights at the Aquatic Center. The new lights include three field lights on each of the two soccer fields, as well as five lights at the Aquatic Center. Lighting currently exists in that portion of the campus at the existing tennis courts. The sports courts and facilities in this portion of the campus will be reconfigured with the outdoor Kinesiology Lab project; therefore, the proposed addition of lighting will occur in a portion of the campus where lighting is already present. The soccer fields and the Aquatic Center could potentially be used from 8:00 a.m. to 10:00 p.m. any day of the week, both for use of the Outdoor Kinesiology Labs and for recreational use. All lighting will be shielded and directed onto the Proposed Project Site. In addition, the more current versions of stadium lights include specialized optics that focus the light directly to the areas where it is needed, which greatly reduces light spill while also minimizing glare. Although the addition of new lighting to the campus will cause an increase in substantial light and/or glare, this increase will not adversely affect the day or nighttime view on or around the campus.

Mitigation Measures

No mitigation measures are necessary.

Residual Impacts

Impacts would be less than significant.

3.4.3 Cumulative Impacts

Compliance with the architectural design principles identified in the LBCCD 2041 Facilities Master Plan will ensure that no cumulative impacts will occur as a result of the Proposed Project.

3.5 AIR QUALITY

3.5.1 Introduction

This section provides information on ambient air quality conditions in the vicinity of the Proposed Project Site, and potential impacts to air quality as a result of the construction and operation of the Proposed Project are identified. The air quality modeling output is included in this EIR as Appendix B.

3.5.2 Existing Environmental Setting

Long Beach City College (LBCC) Liberal Arts Campus (LAC) (i.e., Project Site) is located at 4901 East Carson Street in Long Beach, California. The City of Long Beach is located on the Pacific Coast of Southern California in the southwest region of the Los Angeles Basin, approximately 20 miles south of Los Angeles.

The Project Site is located in the northern region of the City of Long Beach. California is divided into 15 air basins based on meteorological and geographical similarity. The Proposed Project area lies within the South Coast Air Basin (Air Basin), which exhibits a distinctive climate due to its unique terrain and geographic location. The Air Basin incorporates approximately 12,000 square miles within four counties all of Orange County, most of Los Angeles and Riverside Counties, and the western portion of San Bernardino County. The Air Basin is a coastal plain with broad valleys and low hills and is bounded by the Pacific Ocean from the southwest and by the San Gabriel, San Bernardino, and San Jacinto Mountains from the northeast. The region lies in the semi-permanent high-pressure zone of the eastern Pacific, resulting in a mild climate tempered by cool sea breezes with light average wind speeds. The usually mild climatological pattern is interrupted occasionally by periods of extremely hot weather, winter storms, or Santa Ana winds.

Air quality within the Air Basin is some of the worst in the United States. The Air Basin has the highest recorded concentrations of ozone $\left(\mathrm{O}_{3}\right)$, carbon monoxide (CO), nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, and particulate matter. The extent and severity of the air pollution is a function of the area's natural physical characteristics (weather and topography), as well as man-made influences (development patterns and lifestyle). Factors such as wind, sunlight, temperature, humidity, rainfall, and topography all affect the accumulation and/or dispersion of pollutants throughout the Air Basin.

Regional Climate

The Air Basin experiences a Mediterranean climate characterized by warm summers, mild winters, infrequent rainfall, and plentiful sunshine. The Pacific Ocean is the primary moderating influence on the climate pattern, but the coastal mountain ranges lying along the north and east sides of the Air Basin act to buffer extreme summer heat and winter cold temperatures occurring in the interior desert and plateau areas.

The Proposed Project Site lies in the southwestern portion of Los Angeles County, within the boundaries of the City of Long Beach. The normal daily maximum temperature is 83.9 degrees Fahrenheit (${ }^{\circ} \mathrm{F}$) in August, while the normal daily minimum temperature is $45.3^{\circ} \mathrm{F}$ in December, according to the Western Regional Climate Center (2016). The area typically experiences warm, dry summers; and the annual average total precipitation is 12.01 inches (predominantly occurring in the winter and early spring months).

Wind patterns across the south coastal region are characterized by westerly and southwesterly onshore winds during the day and easterly or northeasterly breezes at night. Wind speed is somewhat greater during the dry summer months than during the rainy winter season.

Between the periods of dominant airflow, periods of air stagnation may occur, both in the morning and evening hours. Whether such a period of stagnation occurs is one of the critical determinants of air quality conditions on any given day. Although the Air Basin has a semi-arid climate, the air near the surface is generally moist due to the presence of a shallow marine layer. With very low average wind speeds, a limited capacity exists to disperse air contaminants (e.g., smog) horizontally. The dominant daily wind pattern is an onshore 8 to 12 miles per hour (mph) daytime breeze and an offshore 3 to 5 mph nighttime breeze. The typical wind flow pattern fluctuates only with occasional wind storms, or strong northeasterly Santa Ana winds from the mountains and deserts northeast of the Air Basin. During the winter and fall months, surface high pressure systems over the Air Basin, combined with other meteorological conditions, can result in very strong, downslope Santa Ana winds. These winds normally have durations of a few days before predominant meteorological conditions are reestablished.

On virtually all spring and early summer days, most of the pollution produced during an individual day is moved out of the Air Basin through mountain passes or is lifted by warm vertical current produced by the heating of adjacent mountain slopes. In those seasons, the Air Basin can be "flushed" of pollutants by a transport of ocean air in the afternoon.

From late summer through the winter months, flushing is less pronounced because of lower wind speeds and earlier appearance of offshore winds. With extremely stagnant wind flows, the drainage winds may begin near the mountains by late afternoon. Remaining pollutants are trapped and begin to accumulate during the night and the following morning. A low average morning wind speed in pollution source areas is an indicator of stagnation potential and pollutant accumulation.

Vertical dispersion of air pollutants in the Air Basin is hampered by the presence of a temperature inversion in the layers of the atmosphere near the surface of the Earth. In a normal situation, temperatures decrease with altitude and air continues to rise because it remains warmer than the surrounding air. With an inversion layer, air cannot expand upward because the warmer air above traps it. However, as day progresses and the sun warms the ground, the surface layer of the air approaches a temperature equal to the temperature of the inversion layer. When these temperatures become equal, the inversion layer begins to erode at the lower edge. If enough warming takes place, the inversion layer becomes weaker and weaker and finally "breaks." The surface air layers will then mix upward without limit. This phenomenon is frequently observed in the middle or late afternoon on hot summer days when the smog appears to clear up suddenly. Winter inversions frequently break by mid-morning, preventing contaminant build-up. The combination of low wind speeds and low level inversions produces the greatest concentration of pollutants. On high wind days, air pollutants are swept and carried in the air. On days of no inversion or on days of wind speed averaging 15 mph , concentration of pollutants is minimal, independent of season.

Air Pollutants of Concern

Criteria Air Pollutants

Federal and state laws regulate the air pollutants emitted into the ambient air by stationary and mobile sources. These regulated air pollutants are known as "criteria air pollutants" and are categorized as
primary and secondary pollutants. Primary air pollutants are those that are emitted directly from sources. Carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxides (NOx), sulfur dioxide (SO_{2}), and most fine particulate matter ($\mathrm{PM}_{10}, \mathrm{PM}_{2.5}$) including lead (Pb) and fugitive dust; are primary air pollutants. Of these $\mathrm{CO}, \mathrm{SO}_{2}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.55}$ are criteria pollutants. VOC and NOx are criteria pollutant precursors and go on to form secondary criteria pollutants through chemical and photochemical reactions in the atmosphere. Ozone $\left(\mathrm{O}_{3}\right)$ and nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ are the principal secondary pollutants.

Toxic Air Contaminants

The public's exposure to toxic air contaminants (TACs) is a significant environmental health issue in California. In 1983, the California Legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health. The Health and Safety Code defines a TAC as "an air pollutant which may cause or contribute to an increase in mortality or in serious illness, or which may pose a present or potential hazard to human health." A substance that is listed as a hazardous air pollutant pursuant to subsection (b) of Section 112 of the Federal Act (42 United States Code [U.S.C.\} Sec. $7412[b]$) is a toxic air contaminant. Under State law, the California Environmental Protection Agency, acting through the California Air Resources Board (CARB), is authorized to identify a substance as a TAC if it determines the substance is an air pollutant which may cause or contribute to an increase in mortality or an increase in serious illness, or which may pose a present or potential hazard to human health.

One of the primary health risks of concern due to exposure to TACs is the risk of contracting cancer. The carcinogenic potential of TACs is a particular public health concern because it is currently believed by many scientists that there is no "safe" level of exposure to carcinogens; that is, any exposure to a carcinogen poses some risk of causing cancer. Health statistics show that one in four people, or 250,000 in a million, will contract cancer over their lifetime from all causes, including diet, genetic factors, and lifestyle choices.

Unlike carcinogens, for most noncarcinogens it is believed that there is a threshold level of exposure to the compound below which that compound will not pose a health risk. The California Environmental Protection Agency (Cal EPA) and California Office of Environmental Health Hazard Assessment (OEHHA) have developed reference exposure levels (RELs) for noncarcinogenic TACs that are health-conservative estimates of the levels of exposure at or below which health effects are not expected. The noncancerous health risk due to exposure to a TAC is assessed by comparing the estimated level of exposure to the REL. The comparison is expressed as the ratio of the estimated exposure level to the REL, called the hazard index (HI).

Other Effects on Air Pollution

Just as humans are affected by air pollution, so too are plants and animals. Animals must breathe the same air and are subject to the same types of negative health effects. Certain plants and trees may absorb air pollutants that can stunt their development or cause premature death.

Numerous additional impacts to the human economy include lost workdays due to illness, a desire on the part of business to locate in areas with a healthy environment, and increased expenses from medical costs. Pollutants may also lower visibility and cause damage to property. Certain air pollutants are responsible for discoloring painted surfaces, eating away at stones used in buildings, dissolving the mortar that holds bricks together, and cracking tires and other items made from rubber.

3.5.3 Applicable Regulations

The Proposed Project would be constructed in the City of Long Beach in Los Angeles County, within the South Coast Air Basin coastal area. The following subsections present a summary of air quality regulatory requirements for the 2041 Facilities Master Plan for the Liberal Arts Campus Improvements.

Federal Ambient Air Quality Standards

Air quality is defined by ambient air concentrations of specific pollutants identified by the United States Environmental Protection Agency (USEPA) to be of concern with respect to health and welfare of the general public. The USEPA is responsible for enforcing the Federal Clean Air Act (CAA) of 1970 and its 1977 and 1990 Amendments. The CAA required the USEPA to establish National Ambient Air Quality Standards (NAAQS), which identify concentrations of pollutants in the ambient air below for which no adverse effects on the public health and welfare are anticipated. In response, the USEPA established both primary and secondary standards for six primary air pollutants (called "criteria" pollutants): ozone (O_{3}), sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, carbon monoxide (CO), nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, lead (Pb), respirable particulate matter equal to or smaller than 10 microns in diameter (PM_{10}), and fine particulate matter equal to or smaller than 2.5 microns in diameter ($\mathrm{PM}_{2.5}$). Primary standards are designed to protect human health with an adequate margin of safety. Secondary standards are designed to protect property and the public welfare from air pollutants in the atmosphere.

Areas that do not meet the NAAQS for a particular pollutant are considered to be "nonattainment areas" for that pollutant. As part of its enforcement responsibilities, the USEPA requires each state with federal nonattainment areas to prepare and submit a State Implementation Plan (SIP) that demonstrates the means to attain the national standards. The SIP must integrate federal, State, and local components and regulations to identify specific measures to reduce pollution, using a combination of performance standards and market-based programs within the time frame identified in the SIP. The CARB defines attainment as the category given to an area with no violations in the past three years. As indicated below in Table 3-2, the Air Basin has been designated by USEPA for the national standards as a nonattainment area for ozone $\left(\mathrm{O}_{3}\right)$ and suspended particulates (PM_{10} and $\mathrm{PM}_{2.5}$) and partial nonattainment for lead. Currently, the Air Basin is in attainment with the national ambient air quality standards for carbon monoxide (CO), sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$.

Table 3-2: South Coast Air Basin Attainment Status

Criteria Pollutant	Standard	Averaging Time	Designation	Attainment Date
CO	NAAQS	1971 1-Hour (35 ppm)	Attainment (Maintenance)	6/11/2007 (attained)
	CAAQS	1-Hour (20 ppm)	Attainment	N/A (attained)
	NAAQS	8-Hour (9 ppm)	Attainment (Maintenance)	6/11/2007 (attained)
	CAAQS	8-Hour (9 ppm)	Attainment	N/A (attained)
Pb	NAAQS	2008 3-Months Rolling ($0.15 \mu \mathrm{~g} / \mathrm{m}^{3}$)	Nonattainment (Partial) (Attainment determination requested)	12/31/15
	CAAQS	30-Day Average (1.5 $\mathrm{mg} / \mathrm{m}^{3}$)	Attainment	N/A (attained)
NO_{2}	NAAQS	2010 1-Hour (100 ppb)	Unclassifiable/Attainment	N/A (attained)
	CAAQS	1-Hour (180 ppb)	Attainment	N/A (attained)
	NAAQS	1971 Annual (53 ppb)	Attainment (Maintenance)	9/22/1998 (attained)
	CAAQS	Annual (30 ppb)	Attainment	N/A (attained)
O_{3}	NAAQS	1979 1-Hour (0.12 ppm)	Nonattainment (Extreme)	$\begin{array}{\|l\|} \hline 2 / 26 / 2023 \\ \text { (revised deadline) } \end{array}$
	CAAQS	1-Hour (0.09 ppm)	Nonattainment	N/A
	NAAQS	2015 8-Hour (0.070 ppm)	Pending - Expect Nonattainment (Extreme)	Pending (beyond 2032)
	NAAQS	2008 8-Hour (0.075 ppm)	Nonattainment (Extreme)	7/20/2032
	NAAQS	1997 8-Hour (0.08 ppm)	Nonattainment (Extreme)	6/15/2024
	CAAQS	8-Hour (0.070 ppm)	Nonattainment	N/A
PM 10	NAAQS	1987 24-Hour (150 $\mu \mathrm{g} / \mathrm{m}^{3}$)	Attainment (Maintenance)	7/26/2013 (attained)
	CAAQS	24-Hour ($50 \mu \mathrm{~g} / \mathrm{m}^{3}$)	Nonattainment	N/A
	CAAQS	Annual ($20 \mu \mathrm{~g} / \mathrm{m}^{3}$)	Nonattainment	N/A
PM 2.5	NAAQS	2006 24-Hour ($35 \mu \mathrm{~g} / \mathrm{m}^{3}$)	Nonattainment (Serious)	12/31/2019
	NAAQS	2012 Annual ($12 \mu \mathrm{~g} / \mathrm{m}^{3}$)	Nonattainment (Moderate)	12/31/2021
	NAAQS	1997 Annual ($12 \mu \mathrm{~g} / \mathrm{m}^{3}$)	Attainment (final determination pending)	$\begin{aligned} & \text { 4/5/2015 (attained } \\ & 2013 \text {) } \end{aligned}$
	CAAQS	Annual ($12 \mathrm{mg} / \mathrm{m}^{3}$)	Nonattainment	N/A
SO_{2}	NAAQS	2010 1-Hour (75 ppb)	Designation Pending (expect Unclassifiable/Attainment)	N/A (attained)
	CAAQS	1-Hour (0.25 ppm)	Attainment	N/A (attained)
	NAAQS	1971 24-Hour (0.14 ppm)	Unclassifiable/Attainment	3/19/1979 (attained)
	CAAQS	24-Hour (0.04 ppm)	Attainment	N/A (attained)
	NAAQS	1971 Annual (0.03 ppm)	Unclassifiable/Attainment	3/19/1979 (attained)

Source: SCAQMD, 2016. $\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter; CAAQS = California Ambient Air Quality Standard; NAAQS = National Ambient Air Quality Standard; ppm = parts per million; ppb = parts per billion.

State Regulatory Setting

The CARB is the agency responsible for regulation of air quality in the State of California. The CAA allows states to adopt ambient air quality standards and other regulations provided they are at least as stringent as federal standards. The CARB has established the more stringent California Ambient Air Quality Standards (CAAQS) for the six criteria pollutants through the California Clean Air Act of 1988 and also has
established CAAQS for additional pollutants, including sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. As indicated above in Table 3-2, the Air Basin is currently classified as a nonattainment area under the CAAQS for $\mathrm{O}_{3}, \mathrm{PM}_{2.5}$, and PM_{10}.

The CARB is the State regulatory agency with authority to enforce regulations to both achieve and maintain the NAAQS and CAAQS. The CARB is responsible for the development, adoption, and enforcement of the State's motor vehicle emissions program as well as the adoption of the CAAQS. The CARB also reviews operations and programs of the local air districts and requires each air district with jurisdiction over a nonattainment area to develop its own strategy for achieving the NAAQS and CAAQS.

Local Regulatory Setting

The local air district has the primary responsibility for the development and implementation of rules and regulations designed to attain the NAAQS and CAAQS as well as the permitting of new or modified sources, development of air quality management plans, and adoption and enforcement of air pollution regulations.

The South Coast Air Quality Management District (SCAQMD) is the local agency responsible for the administration and enforcement of air quality regulations for the Air Basin. The SCAQMD has jurisdiction over an area of approximately 10,743 square miles, consisting of the four-county South Coast Air Basin, the Mojave Desert Air Basin, and the Riverside County portions of the Salton Sea Air Basin. The SCAQMD develops and administers local regulations for stationary air pollutant sources within the Air Basin and also develops plans and programs to meet attainment requirements for the NAAQS and the CAAQS. In addition, the SCAQMD, along with the CARB, maintains and operates ambient air quality monitoring stations at numerous locations throughout the Air Basin that monitor the ambient air quality.

The SCAQMD is responsible for developing and implementing the clean air plan for attainment and maintenance of the ambient air quality standards in the Basin. It has responded to this requirement by preparing a sequence of Air Quality Management Plans (AQMPs). The Final 2016 Air Quality Management Plan (2016 AQMP) was adopted by the SCAQMD Board on March 3, 2016, and was adopted by CARB on March 23, 2017, for inclusion into the California State Implementation Plan (SIP). The 2016 AQMP was prepared in order to meet the following standards:

- 8-hour ozone (75 parts per billion [ppb]) by 2032
- Annual $\mathrm{PM}_{2.5}$ (12 micrograms per meters cubed $\left[\mu \mathrm{g} / \mathrm{m}^{3}\right]$) by 2021-2025
- 8 -hour ozone (80 ppb) by 2024 (updated from the 2007 and 2012 AQMPs)
- 1-hour ozone (120 ppb) by 2023 (updated from the 2012 AQMP)
- 24 -hour PM $_{2.5}\left(35 \mu \mathrm{~g} / \mathrm{m}^{3}\right)$ by 2019 (updated from the 2012 AQMP)

In addition to meeting the above standards, the 2016 AQMP also includes revisions to the attainment demonstrations for the 1997 8-hour ozone NAAQS and the 1979 1-hour ozone NAAQS. The prior 2012 AQMP was prepared in order to demonstrate attainment with the 24-hour PM $\mathrm{P}_{2.5}$ standard by 2014 through adoption of all feasible measures. The prior 2007 AQMP demonstrated attainment with the 1997 8 -hour ozone (80 ppb) standard by 2023 through implementation of future improvements in control techniques and technologies. These "black box" emissions reductions represent 65 percent of the remaining NOx emission reductions needed by 2023 in order to show attainment with the 19978 -hour ozone NAAQS. Given the magnitude of these needed emissions reductions, additional NOx control measures have been provided in the 2012 AQMP even though the primary purpose was to show compliance with 24-hour $\mathrm{PM}_{2.5}$ emissions standards.

The 2016 AQMP provides a new approach that focuses on available, proven, and cost effective alternatives to traditional strategies, while seeking to achieve multiple goals in partnership with other entities to promote reductions in greenhouse gas (GHG) emissions and TAC emissions as well as efficiencies in energy use, transportation, and goods movement. The 2016 AQMP recognizes the critical importance of working with other agencies to develop funding and other incentives that encourage the accelerated transition of vehicles, buildings, and industrial facilities to cleaner technologies in a manner that benefits not only air quality but also local businesses and the regional economy.

Although SCAQMD is responsible for regional air quality planning efforts, it does not have the authority to directly regulate air quality issues associated with plans and new development projects throughout the Air Basin. Instead, this is controlled through local jurisdictions in accordance with the CEQA. In order to assist local jurisdictions with air quality compliance issues, the CEQA Air Quality Handbook (SCAQMD CEQA Handbook), prepared by SCAQMD (1993), with the most current updates found at http://www.aqmd.gov/ceqa/hdbk.html, was developed in accordance with the projections and programs detailed in the AQMPs. The purpose of the SCAQMD CEQA Handbook is to assist lead agencies, as well as consultants, project proponents, and other interested parties in evaluating a proposed project's potential air quality impacts. Specifically, the SCAQMD CEQA Handbook explains the procedures that SCAQMD recommends be followed for the environmental review process required by CEQA. The SCAQMD CEQA Handbook provides direction on how to evaluate potential air quality impacts, how to determine whether these impacts are significant, and how to mitigate these impacts. The SCAQMD intends that by providing this guidance, the air quality impacts of plans and development proposals will be analyzed accurately and consistently throughout the Air Basin, and adverse impacts will be minimized.

The following lists the SCAQMD rules that are applicable to but not limited to the Proposed Project:

Rule 402 - Nuisance

Rule 402 prohibits a person from discharging from any source whatsoever such quantities of air contaminants or other material which causes injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public; or which endanger the comfort, repose, health or safety of any such persons or the public; or which cause, or have a natural tendency to cause, injury or damage to business or property. Compliance with Rule 402 will reduce local air quality and odor impacts to nearby sensitive receptors.

Rule 403- Fugitive Dust

Rule 403 governs emissions of fugitive dust during construction activities and requires that no person shall cause or allow the emissions of fugitive dust such that dust remains visible in the atmosphere beyond the property line or the dust emission exceeds 20 -percent opacity if the dust is from the operation of a motorized vehicle. Compliance with this rule is achieved through application of standard Best Available Control Measures, which include but are not limited to the measures below. Compliance with these rules would reduce local air quality impacts to nearby sensitive receptors.

- Utilize either a pad of washed gravel 50 feet long, 100 feet of paved surface, a wheel shaker, or a wheel washing device to remove material from vehicle tires and undercarriages before leaving project site.
- Do not allow any track-out of material to extend more than 25 feet onto a public roadway and remove all track-out at the end of each workday.
- Water all exposed areas on active sites at least three times per day and pre-water all areas prior to clearing and soil-moving activities.
- Apply nontoxic chemical stabilizers according to manufacturer specifications to all construction areas that will remain inactive for 10 days or longer.
- Pre-water all material to be exported prior to loading, and either cover all loads or maintain at least 2 feet of freeboard in accordance with the requirements of California Vehicle Code Section 23114.
- Replant all disturbed areas as soon as practical.
- Suspend all grading activities when wind speeds (including wind gusts) exceed 25 mph .
- Restrict traffic speeds on all unpaved roads to 15 mph or less.

Rules 1108 and 1108.1 - Cutback and Emulsified Asphalt
Rules 1108 and 1108.1 govern the sale, use, and manufacturing of asphalt and limit the VOC content in asphalt. This rule regulates the VOC contents of asphalt used during construction as well as any ongoing maintenance during operations. Therefore, all asphalt used during construction and operation of the Proposed Project must comply with SCAQMD Rules 1108 and 1108.1.

Rule 1113 - Architectural Coatings

Rule 1113 governs the sale, use, and manufacturing of architectural coatings and limits the VOC content in sealers, coatings, paints, and solvents. This rule regulates the VOC contents of paints available during construction. Therefore, all paints and solvents used during construction and operation of the Proposed Project must comply with SCAQMD Rule 1113.

Rule 1143 - Paint Thinners

Rule 1143 governs the sale, use, and manufacturing of paint thinners and multi-purpose solvents that are used in thinning of coating materials, cleaning of coating application equipment, and other solvent cleaning operations. This rule regulates the VOC content of solvents used during construction. Solvents used during construction and operation of the Proposed Project must comply with SCAQMD Rule 1143.

Rule 2202 - On-Road Motor Vehicle Mitigation Options

Rule 2202 requires employers who employ 250 or more employees on a full or part-time basis at a worksite, to reduce vehicle emissions generated from employee commutes. Rule 2202 was developed by SCAQMD in order to comply with federal and state Clean Air Act requirements from Health \& Safety Code Section 40458 and Section 182(d)(1)(B) of the federal Clean Air Act. LAC has been required to pay an annual fee of $\$ 30,000$ for the last several years to SCAQMD per Rule 2202 requirements in order to offset emissions created by LAC employee commutes.

Southern California Association of Governments

The Southern California Association of Governments (SCAG) is the regional planning agency for Los Angeles, Orange, Ventura, Riverside, San Bernardino, and Imperial Counties and addresses regional issues relating to transportation, the economy, community development, and the environment. SCAG is the federally designated Metropolitan Planning Organization (MPO) for the majority of the southern California region and is the largest MPO in the nation. With respect to air quality planning, SCAG has prepared the 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), adopted April 2016 and the 2015 Federal Transportation Improvement Program (FTIP), adopted October 2013, which addresses regional development and growth forecasts. Although the RTP/SCS and FTIP are primarily planning documents for future transportation projects, a key component of these plans is to integrate land use planning with transportation planning that promotes higher density infill development in close proximity to existing transit service. These plans form the basis for the land use and transportation components of the AQMP, which are utilized in the preparation of air quality forecasts and in the consistency analysis included in the AQMP. The RTP/SCS, FTIP, and AQMP are based on projections originating within the City and County General Plans.

Existing Ambient Air Quality Monitoring Data

The air quality at any site is dependent on the regional air quality and local pollutant sources. Regional air quality is determined by the release of pollutants throughout the Air Basin. Estimates of the existing emissions in the Air Basin, provided in the 2012 AQMP, indicate that collectively, mobile sources account for 59 percent of the VOC, 88 percent of the NOx emissions, and 40 percent of directly emitted $\mathrm{PM}_{2.5}$, with another 10 percent of $\mathrm{PM}_{2.5}$ from road dust. The 2016 AQMP found that since the 2012 AQMP projections were made, stationary source VOC emissions have decreased by approximately 12 percent; but mobile VOC emissions have increased by 5 percent. The percentage of NOx emissions remained unchanged between the 2012 and 2016 projections.

SCAQMD has divided the Air Basin into 38 air-monitoring areas. The Project Site is located in Air Monitoring Area 4, which covers the South Coastal Los Angeles County monitoring region. Since not all air monitoring stations measure all of the tracked pollutants, the data from the following two monitoring stations, listed in the order of proximity to the Project Site, have been used: Long Beach Monitoring Station (Long Beach Station) and Compton Monitoring Station (Compton Station).

The Long Beach Station is located approximately 5 miles west of the Project Site at 2425 Webster Street, Long Beach; and the Compton Station is located approximately 6 miles northwest of the Project Site at 700 North Bullis Road, Compton. Table 3-3 presents the monitored pollutant levels from these Monitoring Stations. Ozone, PM_{10}, and NO_{2} were measured at the Long Beach Station; and $\mathrm{PM}_{2.5}$ was measured at the Compton Station. CO measurements have not been provided, since CO is currently in attainment in the Air Basin, and monitoring of CO within the Air Basin ended on March 31, 2013. It should also be noted that due to the air monitoring stations' distances from the Project Site, recorded air pollution levels at the air monitoring stations reflect, with varying degrees of accuracy, local air quality conditions at the Project Site.

Table 3-3: Ambient Air Quality Monitoring Summary

Pollutant (Standard)	Year		
	2014	2015	2016
Ozone			
Maximum 1-Hour Concentration (ppm)	0.087	0.087	0.079
Days > CAAQS (0.09 ppm)	0	0	0
Maximum 8-Hour Concentration (ppm)	0.072	0.067	0.059
Days > NAAQS (0.070 ppm)	1	0	0
Days > CAAQS (0.070 ppm)	1	0	0
Nitrogen Dioxide			
Maximum 1-Hour Concentration (ppb)	135.9	101.8	75.6
Days > NAAQS (100 ppb)	2	1	0
Respirable Particulate Matter (PM10)			
Maximum 24-Hour California Measurement ($\mu \mathrm{g} / \mathrm{m}^{3}$)	84.0	80.0	75.0
Days > NAAQS ($150 \mu \mathrm{~g} / \mathrm{m}^{3}$)	0	0	0
Days > CAAQS ($50 \mu \mathrm{~g} / \mathrm{m}^{3}$)	3	6	ND
Annual Arithmetic Mean (AAM) ($\mu \mathrm{g} / \mathrm{m}^{3}$)	29.6	31.5	31.9
Annual > NAAQS ($50 \mu \mathrm{~g} / \mathrm{m}^{3}$)	No	No	No
Annual > CAAQS ($20 \mu \mathrm{~g} / \mathrm{m}^{3}$)	Yes	Yes	Yes
Fine Particulate Matter (PM2.5)			
Maximum 24-Hour National Measurement ($\mu \mathrm{g} / \mathrm{m}^{3}$)	35.8	41.3	36.3
Days > NAAQS ($35 \mu \mathrm{~g} / \mathrm{m}^{3}$)	1	3	1
Annual Arithmetic Mean (AAM) ($\mu \mathrm{g} / \mathrm{m}^{3}$)	ND	11.7	11.0
Annual > NAAQS and CAAQS ($12 \mu \mathrm{~g} / \mathrm{m}^{3}$)	ND	No	No

Notes: Exceedances are listed in bold. CAAQS = California Ambient Air Quality Standard; NAAQS = National Ambient Air Quality Standard; ppm = parts per million; ppb = parts per billion; ND = no data available; $\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per meters cubed.

Toxic Air Contaminant Levels in the Air Basin

In order to determine the Air Basin-wide risks associated with major airborne carcinogens, the SCAQMD conducted the Multiple Air Toxics Exposure Study (MATES) studies. According to the SCAQMD's MATESIV study, the Project Site has an estimated cancer risk of 973 per million persons chance of cancer. In comparison, the average cancer risk for the Air Basin is 991 per million persons, which is based on the use of age-sensitivity factors detailed in the OEHHA Guidelines (OEHHA 2015).

In order to provide a perspective of risk, it is often estimated that the incidence in cancer over a lifetime for the United States' population ranges between 1 in 3 to 4 and 1 in 3 , or a risk of about 300,000 per million persons. The MATES-III study referenced a Harvard Report on Cancer Prevention, which estimated that of cancers associated with known risk factors, about 30 percent were related to tobacco, about 30 percent were related to diet and obesity, and about 2 percent were associated with environmental pollution related exposures that include hazardous air pollutants.

Sensitive Receptors

Some land uses are considered more sensitive to air pollution than others due to the types of population groups or activities involved. As adopted by the SCAQMD in their CEQA Air Quality Handbook (Chapter 4),
a sensitive receptor is a person in the population who is particularly susceptible to health effects due to exposure to an air contaminant. Hazards and hazardous materials regulators typically define sensitive receptors as schools (Preschool through 12th Grade), hospitals, resident care facilities, residences or daycare centers, or other facilities that may house individuals with health conditions. Residential areas are considered to be sensitive to air pollution because residents (including children and the elderly) tend to be at home for extended periods of time, resulting in sustained exposure to any pollutants present. Schools are also considered sensitive since children are present for extended durations and engage in regular outdoor activities. Recreational land uses are considered moderately sensitive to air pollution because exercise places a high demand on respiratory functions, which can be impaired by air pollution.

The nearest sensitive receptors are single-family homes located on the north side of Carson Street, approximately 130 feet north of the proposed recreational swimming pool, which would be located on the south side of Carson Street. Homes are also nearby the LAC campus on the west side of Faculty Avenue, north side of Harvey Way, and east side of Clark Avenue.

3.5.4 Impacts and Mitigation

Impact 3.5-1: Conflict with or obstruct implementation of the applicable air quality plan.
The Proposed Project may conflict with or obstruct implementation of the SCAQMD Air Quality Management Plan (AQMP). The following section discusses the Proposed Project's consistency with the SCAQMD AQMP.

SCAQMD Air Quality Management Plan

CEQA requires a discussion of any inconsistencies between a proposed project and applicable General Plans (GPs) and regional plans (CEQA Guidelines Section 15125). The regional plan that applies to the Proposed Project includes the SCAQMD AQMP. Therefore, this section discusses any potential inconsistencies of the Proposed Project with the AQMP.

The purpose of this discussion is to set forth the issues regarding consistency with the assumptions and objectives of the AQMP and discuss whether the Proposed Project would interfere with the region's ability to comply with federal and State air quality standards. If the decision makers determine that the Proposed Project is inconsistent, the lead agency may consider project modifications or inclusion of mitigation to eliminate the inconsistency.

The SCAQMD CEQA Handbook states that "New or amended GP Elements (including land use zoning and density amendments), Specific Plans, and significant projects must be analyzed for consistency with the AQMP." Strict consistency with all aspects of the plan is usually not required. A proposed project should be considered to be consistent with the AQMP if it furthers one or more policies and does not obstruct other policies. The SCAQMD CEQA Handbook identifies two key indicators of consistency:
(1) Whether the project will result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations, or delay timely attainment of air quality standards or the interim emission reductions specified in the AQMP
(2) Whether the project will exceed the assumptions in the AQMP or increments based on the year of project buildout and phase

Both of these criteria are evaluated in the following sections.

Criterion 1 - Increase in the Frequency or Severity of Violations?

The Project Site is located in the South Coast Air Basin, which is currently designated by the USEPA for federal standards as a nonattainment area for ozone and $\mathrm{PM}_{2.5}$ and by CARB for the State standards as a nonattainment area for ozone, PM_{10}, and $\mathrm{PM}_{2.5}$. Based on the air quality modeling and analysis contained in this report, short-term regional construction air emissions would not result in significant impacts based on SCAQMD regional thresholds of significance or local thresholds of significance discussed in Impact 3.52. The ongoing operation of the Proposed Project would generate air pollutant emissions that are inconsequential on a regional basis and would not result in significant impacts based on SCAQMD thresholds of significance. The analysis for long-term local air quality impacts showed that local pollutant concentrations would not be projected to exceed the air quality standards. Therefore, a less than significant long-term impact would occur, and no mitigation would be required.

Therefore, based on the information provided above, the Proposed Project would be consistent with the first criterion.

Criterion 2 - Exceed Assumptions in the AQMP?

Consistency with the AQMP assumptions is determined by performing an analysis of the Proposed Project with the assumptions in the AQMP. The emphasis of this criterion is to ensure that the analyses conducted for the Proposed Project are based on the same forecasts as the AQMP. The AQMP is developed through use of the planning forecasts provided in the RTP/SCS and FTIP. The RTP/SCS is a major planning document for the regional transportation and land use network within southern California. The RTP/SCS is a longrange plan that is required by federal and State requirements placed on SCAG and is updated every four years. The FTIP provides long-range planning for future transportation improvement projects that are constructed with State and/or federal funds within southern California. Local governments are required to use these plans as the basis of their plans for the purpose of consistency with applicable regional plans under CEQA.

Development of the proposed 2041 Facilities Master Plan would result in the demolition of 109,156 square feet of existing structures, renovation of 387,341 square feet of existing buildings, and construction of 246,018 square feet of new building space. Project construction would employ dust control measures (i.e., watering twice daily, application of soil stabilizers, daily removal of track-out onto public roads, etc.) and would utilize only CARB-certified off-road equipment and stationary equipment and would therefore be in compliance with strategies in the AQMP (SCAQMD 2017) for attaining and maintaining the air quality standards. Construction of the Proposed Project would therefore not conflict or obstruct the implementation of the AQMP or applicable portions of the SIP.

According to the Traffic Impact Analysis (Linscott Law \& Greenspan 2018), implementation of the proposed 2041 Facilities Master Plan is anticipated to result in the addition of 7,458 students to the LAC campus.

The project applicant has committed to a net zero building energy use campus by the buildout year 2041. To address the SCAQMD program for reducing toxic and smog-forming air pollutants from mobile sources, the Proposed Project would provide 36 electric vehicle charging stations that would be placed strategically throughout the campus. In addition, the LAC campus promotes the use of public transportation; and bus
stops are currently located on Clark Avenue, East Carson Street, and East Lew Davis Street, which are all in the immediate vicinity of the LAC campus. Operation of the Proposed Project would therefore be in compliance with strategies in the AQMP (SCAQMD 2017) for attaining and maintaining the air quality standards. Operation of the Proposed Project would therefore not conflict or obstruct the implementation of the AQMP or applicable portions of the SIP.

Therefore, based on the information provided above, the Proposed Project would be consistent with the second criterion.

Mitigation Measures

No mitigation measures are necessary.

Residual Impacts

Impacts would be less than significant.

Impact 3.5-2: Violate any air quality standard or result in a cumulatively considerable net increase in an existing or projected air quality violation?

Implementation of the proposed 2041 Facilities Master Plan may violate an air quality standard or result in a cumulatively considerable net increase in an existing or projected air quality violation. The following section calculates the potential air emissions associated with the construction and operations of the Proposed Project and compares the emissions to the following SCAQMD standards for regional air quality and local air quality.

Regional Air Quality

Many air quality impacts that derive from dispersed mobile sources, which are the dominate pollution generators in the Air Basin, often occur hours later and miles away after photochemical processes have converted primary exhaust pollutants into secondary contaminants such as ozone. The incremental regional air quality impact of an individual project is generally very small and difficult to measure. Therefore, SCAQMD has developed significance thresholds based on the volume of pollution emitted rather than on actual ambient air quality because the direct air quality impact of a project is not quantifiable on a regional scale. The SCAQMD CEQA Handbook states that any project in the Air Basin with daily emissions that exceed any of the identified significance thresholds should be considered as having an individually and cumulatively significant air quality impact. The quantitative SCAQMD regional emission thresholds are shown in Table 3-4.

Table 3-4: Regional Air Quality Significance Thresholds

Criteria Pollutants Mass Daily Thresholds (pounds/day)

Pollutant	Construction	Operation
NOx	100	55
VOC	75	55
PM_{10}	150	150
$\mathrm{PM}_{2.5}$	55	55

Criteria Pollutants Mass Daily Thresholds (pounds/day)

Sox	150	150
CO	550	550
Lead	3	3

Source: SCAQMD, 2015.

Local Air Quality

Project-related air emissions may have the potential to exceed the State and federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the Air Basin. In order to assess local air quality impacts, the SCAQMD has developed Localized Significant Thresholds (LSTs) to assess the project-related air emissions in the project vicinity. SCAQMD has also provided Final Localized Significance Threshold Methodology (LST Methodology), July 2008, which details the methodology to analyze local air emission impacts. The LST Methodology found that the primary emissions of concern are $\mathrm{NO}_{2}, \mathrm{CO}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$.

The LST Methodology provides Look-Up Tables with different thresholds based on the location and size of the project site and distance to the nearest sensitive receptors. LAC is located in Source-Receptor Area 4, the South Coastal Los Angeles County area. Table 3-5 presents the LSTs for the South Coastal Los Angeles County area.

Table 3-5: Localized Significance Thresholds South Coastal LA County

Size of Source	Distance to Receptors (meters)				
	25	50	100	200	500
Allowable NOx Emissions (pounds/day)					
1 acre	46	47	55	72	113
2 acres	66	64	70	85	121
5 acres	99	94	101	112	143
Allowable CO Emissions (pounds/day)					
1 acre	574	789	1,180	2,296	7,558
2 acres	827	1,158	1,611	2,869	8,253
5 acres	1,503	1,982	2,613	4,184	10,198
Allowable PM ${ }_{10}$ Construction Emissions (pounds/day)					
1 acre	4	13	29	61	158
2 acres	7	21	37	70	167
5 acres	14	42	58	92	191
Allowable PM $_{10}$ Operational Emissions (pounds/day)					
1 acre	1	3	7	15	38
2 acres	2	5	9	17	40
5 acres	4	10	14	22	46
Allowable PM ${ }_{2.5}$ Construction Emissions (pounds/day)					
1 acre	3	5	10	26	93
2 acres	5	7	13	30	101
5 acres	8	10	18	39	120
Allowable PM $\mathbf{2 . 5}^{\text {a }}$ Operational Emissions (pounds/day)					

Table 3-5: Localized Significance Thresholds South Coastal LA County

Size of Source	Distance to Receptors (meters)				
1 acre	1	2	3	7	23
2 acres	1	2	4	8	25
5 acres	1	3	5	10	29

Source: SCAQMD Mass Rate Look-Up Tables, 2009.
In the event that emissions exceed these thresholds, modeling would be required to demonstrate that the Project's total air quality impacts result in ground-level concentrations that are below the State and federal Ambient Air Quality Standards, including appropriate background levels (shown in Table 3-3). In addition to impacts from criteria pollutants, project impacts may include emissions of pollutants identified by the State and federal government as TACs or hazardous air pollutants (HAPs). With regard to evaluating whether a project would have a significant impact on sensitive receptors, air quality regulators typically define sensitive receptors as schools (Preschool through 12th Grade), hospitals, resident care facilities, residences or day-care centers, or other facilities that may house individuals with health conditions that would be adversely impacted by changes in air quality. Any project which has the potential to directly impact a sensitive receptor located within 1 mile and results in a health risk greater than ten in one million would be deemed to have a potentially significant impact. Sensitive receptors in the area include the single-family residences located approximately 130 feet around the Project Site.

Construction Impacts

The California Emissions Estimator Model (CalEEMod) has been utilized to calculate the constructionrelated regional emissions from the Proposed Project, and the input parameters utilized in this analysis model printouts are provided in Appendix B. The worst-case summer or winter daily construction-related criteria pollutant emissions from the Proposed Project for each phase of construction activities are shown below in Table 3-6 for years 2019-2021, Table 3-7 for years 2021-2025, Table 3-8 for years 2026-2030, Table 3-9 for years 2031-2035, and Table 3-10 for years 2036-2041.

Table 3-6: Projected Years 2019-2021 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOx	CO	SOx	PM ${ }_{10}$	PM2.5
Demolition ${ }^{1}$						
On site ${ }^{2}$	3.51	35.78	22.06	0.04	2.73	1.81
Off site ${ }^{3}$	0.22	4.20	1.64	0.01	0.42	0.13
Total	3.73	39.98	23.70	0.05	3.15	1.94
Grading ${ }^{1}$						
On site	2.58	28.35	16.29	0.03	3.95	2.60
Off site	0.11	0.76	0.91	0.00	0.21	0.06
Total	2.69	29.11	17.20	0.03	4.16	2.66
Building Construction \& Architectural Coating ${ }^{4}$						
On site	12.02	22.92	19.00	0.03	1.42	1.34
Off site	0.96	5.77	7.99	0.03	1.87	0.53
Total	13.00	28.69	26.99	0.06	3.29	1.87

Table 3-6: Projected Years 2019-2021 Construction Emissions Without CEQA Mitigation(lbs/day)

Source	VOC	NOx	CO	SOx	PM ${ }_{10}$	PM ${ }_{2.5}$
Paving						
On site	1.36	14.07	14.65	0.02	0.75	0.69
Off site	0.08	0.05	0.66	0.00	0.17	0.05
Total	1.44	14.12	15.31	0.02	0.92	0.74
Maximum Daily Emissions	13.00	39.98	26.99	0.06	4.16	2.66
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{lbs}=$ pounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently.
Source: CalEEMod Version 2016.3.2 (see Appendix B).

Table 3-7: Projected Years 2021-2025 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOx	CO	SOx	PM ${ }_{10}$	PM ${ }_{2.5}$
Demolition ${ }^{1}$						
On site ${ }^{2}$	3.17	31.44	21.57	0.04	2.52	1.59
Off site ${ }^{3}$	0.19	3.74	1.48	0.01	0.42	0.12
Total	3.36	35.18	23.05	0.05	2.94	1.71
Grading ${ }^{1}$						
On site	2.29	24.74	15.86	0.03	3.72	2.38
Off site	0.09	0.63	0.76	0.00	0.21	0.06
Total	2.38	25.37	16.62	0.03	3.93	2.44
Building Construction \& Architectural Coating ${ }^{4}$						
On site	6.32	18.96	18.40	0.03	1.05	0.99
Off site	0.57	3.32	4.69	0.02	1.30	0.36
Total	6.89	22.28	23.09	0.05	2.35	1.35
Paving						
On site	0.98	9.52	12.19	0.02	0.49	0.45
Off site	0.09	0.06	0.74	0.00	0.23	0.06
Total	1.07	9.59	12.93	0.02	0.72	0.51
Maximum Daily Emissions	6.89	35.18	23.09	0.05	3.93	2.44
SCAQMD Thresholds	75	100	550	150	150	55

Table 3-7: Projected Years 2021-2025 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOx	CO	SOx $_{x}$	PM $_{10}$	PM $_{\mathbf{2} .5}$
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{lbs}=$ pounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently.
Source: CalEEMod Version 2016.3.2 (see Appendix B).

Table 3-8: Projected Years 2026-2030 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOx	CO	SOx	PM ${ }_{10}$	PM ${ }^{\text {. } 5}$
Demolition ${ }^{1}$						
On site ${ }^{2}$	1.34	9.46	13.33	0.02	1.08	0.59
Off site ${ }^{3}$	0.09	1.44	0.85	0.01	0.30	0.08
Total	1.43	10.90	14.18	0.03	1.38	0.67
Grading ${ }^{1}$						
On site	1.19	9.10	8.49	0.02	3.05	1.77
Off site	0.05	0.43	0.40	0.00	0.15	0.04
Total	1.24	9.53	8.89	0.02	3.20	1.81
Building Construction \& Architectural Coating ${ }^{4}$						
On site	4.82	9.65	15.82	0.03	0.52	0.50
Off site	0.35	2.01	2.82	0.01	1.10	0.30
Total	5.17	11.66	18.64	0.04	1.62	0.80
Paving						
On site	0.79	7.44	11.67	0.02	0.35	0.32
Off site	0.05	0.03	0.39	0.00	0.17	0.05
Total	0.84	7.47	12.06	0.02	0.52	0.37
Maximum Daily Emissions	5.17	11.66	18.64	0.04	3.20	1.81
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{lbs}=$ pounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently. Source: CalEEMod Version 2016.3.2 (see Appendix B).

Table 3-9: Projected Years 2031-2035 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOx	CO	SOx	PM ${ }_{10}$	PM ${ }_{2.5}$
Grading ${ }^{1}$						
On site	1.62	4.54	14.45	0.04	2.79	1.55
Off site	0.05	0.41	0.42	0.00	0.21	0.06
Total	1.67	4.95	14.87	0.04	3.00	1.61
Building Construction \& Architectural Coating ${ }^{4}$						
On site	8.11	5.15	17.96	0.03	0.17	0.17
Off site	0.43	2.87	3.34	0.02	1.70	0.46
Total	8.54	8.02	21.30	0.05	1.87	0.63
Paving						
On site	1.15	6.23	13.09	0.02	0.25	0.25
Off site	0.05	0.02	0.38	0.00	0.22	0.06
Total	1.20	6.25	13.47	0.02	0.47	0.31
Maximum Daily Emissions	8.54	8.02	21.30	0.05	3.00	1.61
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{lbs}=$ pounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently.
Source: CalEEMod Version 2016.3.2 (see Appendix B).

Table 3-10: Projected Years 2036-2041 Construction Emissions Without CEQA Mitigation(lbs/day)

Source	VOC	NOx	CO	SOx	PM ${ }_{10}$	PM ${ }_{2.5}$
Demolition ${ }^{1}$						
On site ${ }^{2}$	1.83	3.36	18.71	0.05	0.53	0.27
Off site ${ }^{3}$	0.06	0.93	0.56	0.01	0.27	0.07
Total	1.89	4.29	19.27	0.06	0.80	0.34
Grading ${ }^{1}$						
On site	1.46	2.91	14.33	0.04	2.71	1.47
Off site	0.04	0.40	0.35	0.00	0.21	0.06
Total	1.50	3.31	14.68	0.04	2.92	1.53
Building Construction \& Architectural Coating ${ }^{4}$						
On site	4.83	3.85	17.91	0.03	0.10	0.10
Off site	0.24	1.95	1.88	0.01	1.18	0.32
Total	5.07	5.80	19.79	0.04	1.28	0.42

Table 3-10: Projected Years 2036-2041 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NO_{x}	CO	SOx	PM ${ }_{10}$	PM ${ }_{2.5}$
Paving						
On site	0.99	4.74	13.07	0.02	0.15	0.15
Off site	0.04	0.02	0.32	0.00	0.22	0.06
Total	1.03	4.76	13.39	0.02	0.37	0.21
Maximum Daily Emissions	5.07	5.80	19.79	0.06	2.92	1.53
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{lbs}=$ pounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently.
Source: CalEEMod Version 2016.3.2 (see Appendix B).
As shown in Table 3-6, Table 3 7, Table 3 8, Table 3 9, and Table 3 10, the emissions from construction activities associated with implementation of the 2041 Facilities Master Plan would be below the significance thresholds for all phases of construction. A less than significant impact would occur.

Construction-Related Local Impacts

Construction-related air emissions may have the potential to exceed the State and federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the Air Basin. The local air quality emissions from construction were analyzed through utilizing the methodology described in Localized Significance Threshold Methodology (LST Methodology), prepared by SCAQMD, revised October 2009. The LST Methodology found the primary criteria pollutant emissions of concern are $\mathrm{NOx}, \mathrm{CO}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$. In order to determine if any of these pollutants require a detailed analysis of the local air quality impacts, each phase of construction was screened using the SCAQMD's Mass Rate LST Look-up Tables. The Look-up Tables were developed by the SCAQMD in order to readily determine if the daily onsite emissions of CO, NOx, PM_{10}, and $\mathrm{PM}_{2.5}$ from the Proposed Project could result in a significant impact to the local air quality.

The project that would be closest to offsite receptors would be the proposed recreational pool, where homes are located as near as 130 feet (40 meters) from the proposed construction. In order to provide a conservative analysis, the 25 -meter thresholds provided in the Look-Up Tables were utilized in this analysis. Table 3-11 shows the onsite emissions from CalEEMod for the different construction phases and the calculated localized emissions thresholds that have been detailed above. Since this analysis assumed that building construction and architectural coating activities would occur concurrently, Table 3-11 also shows the combined local criteria pollutant emissions from the building construction and architectural coating phases of construction.

Table 3-11: Projected Construction Local Criteria Pollutant Emissions Without CEQA Mitigation(lbs/day)

Land Use Subtype in CalEEMod	Pollutant Emissions			
	NO $_{\mathbf{x}}$	CO	$\mathbf{P M}_{\mathbf{1 0}}$	$\mathbf{P M}_{\mathbf{2 . 5}}$
Demolition 1	38.32	22.30	2.64	1.91
Grading 1	59.52	35.09	6.02	3.83
Building Construction \& Architectural Coating	22.91	19.01	1.42	1.34
Paving	12.92	14.65	0.68	0.62
SCAQMD Thresholds for 25 meters (82 feet) ${ }^{\mathbf{2}}$	$\mathbf{6 6}$	$\mathbf{8 2 7}$	$\mathbf{7}$	$\mathbf{5}$
Exceeds Threshold?	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{Ibs}=$ pounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter.
${ }^{1}$ Demolition and Grading based on adherence to the fugitive dust suppression requirements from SCAQMD Rule 403.
${ }^{2}$ The nearest sensitive receptors are homes located approximately 130 feet (40 meters) from the proposed construction. In order to provide a conservative analysis, the 25-meter thresholds provided in the Look-Up Tables are utilized in this analysis. Source: Calculated from CaIEEMod and SCAQMD's Mass Rate Look-Up Tables for 2 acres in Air Monitoring Area 4, South Coastal Los Angeles County.

Operational Impacts

Operational emissions were calculated using CalEEMod, Version 2016.3.2, to take into account area sources (energy use, landscaping maintenance, architectural coatings use) and vehicle emissions at buildout of 387,341 square feet of renovation area and 264,018 square feet of new construction area at the LAC campus. Because the majority of the emissions are attributable to on-road vehicles, the LST methodology is not appropriate and emissions were not compared with LSTs. The estimated operational and construction emissions at LAC are shown in Table 312 for interim year 2020, Table 313 for interim year 2025, Table 314 for interim year 2030, Table 315 for interim year 2035, and Table 316 for buildout year 2041.

Table 3-12: Summary of Total Estimated Buildout Year 2020 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	NOx	CO	SOx	PM $_{\mathbf{1 0}}$	PM $_{\mathbf{2} \mathbf{2}}$
Area Sources 1	5.20	0.00	0.08	0.00	0.00	0.00
Energy Usage 2	0.14	1.31	1.10	0.01	0.10	0.10
Mobile Sources 3	1.94	9.14	25.25	0.08	6.30	1.74
Construction 4	13.00	39.98	26.99	0.06	4.16	2.66
Total	$\mathbf{2 0 . 2 8}$	$\mathbf{5 0 . 4 3}$	$\mathbf{5 3 . 4 2}$	$\mathbf{0 . 1 5}$	$\mathbf{1 0 . 5 6}$	$\mathbf{4 . 5 0}$
SCAQMD Thresholds	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{5 5 0}$	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$	$\mathbf{5 5}$
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic
compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2020 from Table 3-6.

Source: CalEEMod Version 2016.3.2.
Table 3-13: Summary of Total Estimated Buildout Year 2025 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	NOx	CO	SOx $^{\prime}$	PM $_{\mathbf{1 0}}$	PM $_{\mathbf{2 . 5}}$
Area Sources 1	7.53	0.00	0.31	0.00	0.00	0.00
Energy Usage 2	0.22	2.05	1.72	0.01	0.16	0.16
Mobile Sources 3	3.58	15.71	45.97	0.19	16.46	4.50
Construction 4	6.89	35.18	23.09	0.05	3.93	2.44
Total	$\mathbf{1 8 . 2 2}$	$\mathbf{5 2 . 9 4}$	$\mathbf{7 1 . 0 9}$	$\mathbf{0 . 2 5}$	$\mathbf{2 0 . 5 5}$	$\mathbf{7 . 1 0}$
SCAQMD Thresholds	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{5 5 0}$	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$	$\mathbf{5 5}$
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic
compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2025 from Table 3-7.
Source: CalEEMod Version 2016.3.2.
Table 3-14: Summary of Total Estimated Buildout Year 2030 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	NOx	CO	SOx $^{\prime}$	PM $\mathbf{1 0}$	PM $\mathbf{2 . 5}$
Area Sources 1	9.22	0.01	0.69	0.00	0.00	0.00
Energy Usage 2	0.28	2.58	2.16	0.02	0.20	0.20
Mobile Sources 3	5.98	22.11	50.21	0.22	21.47	5.87
Construction 4	5.17	11.66	18.64	0.04	3.20	6.07
Total	$\mathbf{2 0 . 6 5}$	$\mathbf{3 6 . 3 5}$	$\mathbf{7 1 . 6 9}$	$\mathbf{0 . 2 8}$	$\mathbf{2 4 . 8 7}$	$\mathbf{7 . 8 8}$
SCAQMD Thresholds	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{5 5 0}$	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$	$\mathbf{5 5}$
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2030 from Table 3-8.
Source: CaIEEMod Version 2016.3.2.

Table 3-15: Summary of Total Estimated Buildout Year 2035 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	NO $_{x}$	CO	SOx $^{\prime}$	PM $_{10}$	PM $_{2.5}$
Area Sources 1	12.94	0.01	1.23	0.00	0.00	0.00
Energy Usage 2	0.41	3.76	3.15	0.03	0.29	0.29
Mobile Sources 3	5.82	32.91	75.66	0.39	39.88	10.86
Construction 4	8.54	8.02	21.30	0.05	3.00	1.61
Total	$\mathbf{2 7 . 7 1}$	$\mathbf{4 4 . 7 1}$	$\mathbf{1 0 1 . 3 4}$	$\mathbf{0 . 4 7}$	$\mathbf{4 3 . 1 7}$	$\mathbf{1 2 . 7 6}$
SCAQMD Thresholds	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{5 5 0}$	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$	$\mathbf{5 5}$
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2035 from Table 3-9.
Source: CalEEMod Version 2016.3.2.
Table 3-16: Summary of Total Estimated Buildout Year 2041 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	NO $_{\mathbf{x}}$	CO	SOx $^{\prime}$	PM $_{\mathbf{1 0}}$	PM $_{\mathbf{2 . 5}}$
Area Sources 1	17.09	0.01	0.76	0.00	0.00	0.00
Energy Usage 2	0.56	5.11	4.29	0.03	0.39	0.39
Mobile Sources 3	6.36	42.34	74.56	0.41	42.71	11.54
Construction 4	5.07	5.80	19.79	0.06	2.92	1.53
Total	$\mathbf{2 9 . 0 8}$	$\mathbf{5 3 . 2 6}$	$\mathbf{9 9 . 4 0}$	$\mathbf{0 . 5 0}$	$\mathbf{4 6 . 0 2}$	$\mathbf{1 3 . 4 6}$
SCAQMD Thresholds	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{5 5 0}$	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$	$\mathbf{5 5}$
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2041 from Table 3-10.
Source: CalEEMod Version 2016.3.2.
As shown in Table 3 12, Table 3 13, Table 3 14, Table 3 15, and Table 3 16, the emissions associated with the 2041 Facilities Master Plan for the LAC Improvements would be less than the daily significance thresholds, and no significant impacts are anticipated.

Localized CO Impacts from Project-Generated Vehicular Trips

CO is the pollutant of major concern along roadways because the most notable source of CO is motor vehicles. For this reason, CO concentrations are usually indicative of the local air quality generated by a roadway network and are used as an indicator of potential local air quality impacts. Local air quality impacts can be assessed by comparing future without and with project CO levels to the State and federal CO standards of 20 ppm over one hour or 9 ppm over eight hours.

At the time of the 1993 Handbook, the Air Basin was designated nonattainment under the CAAQS and NAAQS for CO. With the turnover of older vehicles, introduction of cleaner fuels, and implementation of control technology on industrial facilities, CO concentrations in the Air Basin and in the State have steadily declined. In 2007, the Air Basin was designated in attainment for CO under both the CAAQS and NAAQS. SCAQMD conducted a CO hot spot analysis for attainment at the busiest intersections in Los Angeles during the peak morning and afternoon periods and did not predict a violation of CO standards. ${ }^{1}$ Since the intersections near the Proposed Project are much smaller with less traffic than what was analyzed by the SCAQMD, no local CO hot spots are anticipated to be created from the Proposed Project; and no CO hot spot modeling was performed. Therefore, a less than significant long-term air quality impact is anticipated to local air quality with the ongoing use of the Proposed Project.

Local Criteria Pollutant Impacts from Onsite Operations

Project-related air emissions from onsite sources such as architectural coatings, landscaping equipment, and onsite usage of natural gas appliances may have the potential to create emissions areas that exceed the State and federal air quality standards in the project vicinity, even though those pollutant emissions may not be significant enough to create a regional impact to the Air Basin.

The local air quality emissions from onsite operations were analyzed using the SCAQMD's Mass Rate LST Look-Up Tables and the methodology described in the LST Methodology (SCAQMD 2008). The Look-Up Tables were developed by the SCAQMD in order to readily determine if the daily emissions of CO, NOx, PM_{10}, and $\mathrm{PM}_{2.5}$ from the Proposed Project could result in a significant impact to the local air quality. Table 3-17 shows the onsite emissions from CalEEMod that includes area sources and energy usage in the immediate vicinity of the Project Site and the calculated emissions thresholds. Due to the nature of the Proposed Project, the individual proposed facilities are not expected to generate vehicle traffic; and, therefore, mobile sources are not included in this local emissions analysis.

Table 3-17: Buildout Year 2041 Operations-Related Local Criteria Pollutant Emissions (pounds/day)

Land Use Subtype in CalEEMod	Pollutant Emissions			
	$\mathbf{N O}_{\mathbf{x}}$	CO	$\mathbf{P M}_{\mathbf{1 0}}$	$\mathbf{P M}_{\mathbf{2 . 5}}$
Area Sources	0.01	0.76	0.00	0.00
Paving	5.11	4.29	0.39	0.39
Total	$\mathbf{5 . 1 2}$	$\mathbf{5 . 0 5}$	$\mathbf{0 . 3 9}$	$\mathbf{0 . 3 9}$

${ }^{1}$ The four intersections analyzed by the SCAQMD were: Long Beach Boulevard and Imperial Highway, Wilshire Boulevard and Veteran Avenue, Sunset Boulevard and Highland Avenue, and La Cienega Boulevard and Century Boulevard. The busiest intersection evaluated (Wilshire and Veteran) had a daily traffic volume of approximately 100,000 vehicles per day with Level of Service (LOS) E in the morning and LOS F in the evening peak hour.

Land Use Subtype in CaIEEMod	Pollutant Emissions			
	$\mathbf{N O}_{\mathbf{x}}$	CO	$\mathbf{P M}_{10}$	$\mathbf{P M}_{\mathbf{2} \mathbf{2}}$
	$\mathbf{6 6}$	$\mathbf{8 2 7}$	$\mathbf{2}$	$\mathbf{1}$
Exceeds Threshold?	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter.
${ }^{1}$ The nearest sensitive receptors are homes located approximately 130 feet (40 meters) from the proposed construction. In order to provide a conservative analysis, the 25-meter thresholds provided in the Look-Up Tables are utilized in this analysis. Source: Calculated from CalEEMod and SCAQMD's Mass Rate Look-Up Tables for 2 acres in Air Monitoring Area 4, South Coastal Los Angeles County.

As shown in Table 3-17, the ongoing operations of the Proposed Project would not exceed the local NOx, $\mathrm{CO}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$ thresholds of significance. Therefore, the ongoing operations of the Proposed Project would create a less than significant operations-related impact to local air quality due to onsite emissions, and no mitigation would be required.

Implementation of the proposed 2041 Facilities Master Plan may result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is non-attainment under an applicable federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).

Cumulative projects include local development as well as general growth within the Project area. However, as with most development, the greatest source of emissions is from mobile sources, which travel throughout the local area. Therefore, from an air quality standpoint, the cumulative analysis would extend beyond any local projects and, when wind patterns are considered, would cover an even larger area. Accordingly, the cumulative analysis for the Project's air quality must be generic by nature. The Project area is out of attainment for ozone and PM_{10} and $\mathrm{PM}_{2.5}$ particulate matter. In accordance with CEQA Guidelines Section 15130(b), this analysis of cumulative impacts incorporates a three-tiered approach to assess cumulative air quality impacts.

- Consistency with the SCAQMD project-specific thresholds for construction and operations;
- Project consistency with existing air quality plans; and
- Assessment of the cumulative health effects of the pollutants.

Consistency with Project Specific Thresholds

Construction-Related Impacts

The Project Site is located in the South Coast Air Basin, which is currently designated by the USEPA for federal standards as a non-attainment area for ozone and PM ${ }_{2.5}$ and by CARB for the State standards as a non-attainment area for ozone, PM_{10}, and $\mathrm{PM}_{2.5}$. The regional ozone, PM_{10}, and $\mathrm{PM}_{2.5}$ emissions associated with construction of the Proposed Project have been calculated above. The above analysis found that development of the Proposed Project would result in less than significant regional emissions of VOC and NOx (ozone precursors), PM_{10}, and $\mathrm{PM}_{2.5}$ during construction of the Proposed Project. Therefore, a less than significant cumulative impact would occur from construction of the Proposed Project.

Operations-Related Impacts

The greatest cumulative operational impact on the air quality to the Air Basin will be the incremental addition of pollutants mainly from increased traffic from residential, commercial, and industrial
development. In accordance with SCAQMD methodology, projects that do not exceed SCAQMD criteria or can be mitigated to less than criteria levels are not significant and do not add to the overall cumulative impact. The regional ozone, PM_{10}, and $\mathrm{PM}_{2.5}$ emissions created from the on-going operations of the Proposed Project have been calculated above under Impact 3.5-2. The above analysis found that development of the Proposed Project would result in less than significant regional emissions of VOC and NOx (ozone precursors), PM_{10}, and $\mathrm{PM}_{2.5}$ during operation of the Proposed Project. With respect to longterm emissions, this project would create a less than significant cumulative impact.

Consistency with Air Quality Plans

The analysis provided above under Impact 3.5-1 indicates that over the course of buildout, emissions from the proposed 2041 Facilities Master Plan would not result in significant impacts based on SCAQMD thresholds of significance. Additionally, project construction and operation would be in compliance with the strategies outlined in the AQMP. As such the Proposed Project is not anticipated to exceed the AQMP assumptions for the Project Site and is found to be consistent with the AQMPs for the Air Basin.

Therefore, air quality impacts resulting from construction and operation of the Proposed Project would not be cumulatively considerable.

Mitigation Measures

No mitigation measures are necessary.

Residual Impacts

Impacts would be less than significant.
Impact 3.5-3: Expose sensitive receptors to substantial pollutant concentrations.
Implementation of the proposed 2041 Facilities Master Plan may expose sensitive receptors to substantial pollutant concentrations. The local concentrations of criteria pollutant emissions produced in the nearby vicinity of the Proposed Project, which may expose sensitive receptors to substantial concentrations, have been calculated above under Impact 3.5-2 for both construction and operations, which are discussed separately below. The discussion below also includes an analysis of the potential impacts from toxic air contaminant emissions. The nearest sensitive receptor to the Project Site consists of a single-family home located adjacent at 130 feet north of the proposed recreational pool which is part of the proposed new construction.

Construction-Related Sensitive Receptor Impacts

Construction of the Proposed Project may expose sensitive receptors to substantial pollutant concentrations of localized criteria pollutant concentrations and from toxic air contaminant emissions created from onsite construction equipment, which are described below.

Local Criteria Pollutant Impacts from Construction

The local air quality impacts from construction of the Proposed Project have been analyzed above under Impact 3.5-2 and found that the construction of the Proposed Project would not exceed the local NOx, $\mathrm{CO}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$ thresholds of significance discussed above under Impact 3.5-1. Therefore,
construction of the Proposed Project would create a less than significant construction-related impact to local air quality, and no mitigation would be required.

Toxic Air Contaminants Impacts from Construction

The greatest potential for toxic air contaminant emissions would be related to diesel particulate matter (DPM) emissions associated with heavy equipment operations during construction of the Proposed Project. According to SCAQMD methodology, health effects from carcinogenic air toxics are usually described in terms of "individual cancer risk." "Individual cancer risk" is the likelihood that a person exposed to concentrations of toxic air contaminants over a 70 -year lifetime will contract cancer, based on the use of standard risk-assessment methodology. Given the relatively limited number of heavy-duty construction equipment and the short-term construction schedule, the Proposed Project would not result in a long-term (i.e., 70 years) substantial source of toxic air contaminant emissions and corresponding individual cancer risk. In addition, California Code of Regulations Title 13, Article 4.8, Chapter 9, Section 2449 regulates emissions from off-road diesel equipment in California. This regulation limits idling of equipment to no more than five minutes and requires equipment operators to label each piece of equipment and provide annual reports to CARB of their fleet's usage and emissions. This regulation also requires systematic upgrading of the emission Tier level of each fleet, and currently no commercial operator is allowed to purchase Tier 0 or Tier 1 equipment, and by January 2023 no commercial operator is allowed to purchase Tier 2 equipment. In addition to the purchase restrictions, equipment operators need to meet fleet average emissions targets that become more stringent each year between years 2014 and 2023. Therefore, no significant short-term toxic air contaminant impacts would occur during construction of the Proposed Project. As such, construction of the Proposed Project would result in a less than significant exposure of sensitive receptors to substantial pollutant concentrations.

Operations-Related Sensitive Receptor Impacts

The on-going operations of the Proposed Project may expose sensitive receptors to substantial pollutant concentrations of local CO emission impacts from the project-generated vehicular trips and from the potential local air quality impacts from onsite operations. The following analyzes the vehicular CO emissions, local criteria pollutant impacts from onsite operations, and toxic air contaminant impacts.

Local CO Hot spot Impacts from Project-Generated Vehicle Trips

CO is the pollutant of major concern along roadways because the most notable source of CO is motor vehicles. For this reason, CO concentrations are usually indicative of the local air quality generated by a roadway network and are used as an indicator of potential local air quality impacts to sensitive receptors. The analysis provided above in Impact $3.5-2$ shows that no local CO hot spots are anticipated to be created at any nearby intersections from the vehicle traffic generated by the Proposed Project. Therefore, operation of the Proposed Project would result in a less than significant exposure of offsite sensitive receptors to substantial pollutant concentrations.

Local Criteria Pollutant Impacts from Onsite Operations

The local air quality impacts from the operation of the Proposed Project would occur from onsite sources such as architectural coatings, landscaping equipment, and onsite usage of natural gas appliances. The analysis provided above in Impact 3.5-2 found that the operation of the Proposed Project would not exceed the local NOx, CO, PM_{10}, and $\mathrm{PM}_{2.5}$ thresholds of significance discussed above under Impact 3.5-1.

Therefore, the ongoing operations of the Proposed Project would create a less than significant operationsrelated impact to local air quality due to onsite emissions, and no mitigation would be required.

Operations-Related Toxic Air Contaminant Impacts

Particulate matter (PM) from diesel exhaust is the predominant TAC in most areas; and, according to The California Almanac of Emissions and Air Quality 2013 Edition, prepared by CARB, about 80 percent of the outdoor TAC cancer risk is from diesel exhaust. Some chemicals in diesel exhaust, such as benzene and formaldehyde, have been listed as carcinogens by State Proposition 65 and the Federal Hazardous Air Pollutants program. Due to the nominal number of diesel truck trips generated by the Proposed Project, a less than significant TAC impact would occur during the ongoing operations of the Proposed Project; and no mitigation would be required.

Mitigation Measures

No mitigation measures are necessary.

Residual Impacts

Impacts would be less than significant.
Impact 3.5-4: Result in substantial emissions (such as odors or dust) adversely affecting a substantial number of people.

The Proposed Project would not create objectionable odors affecting a substantial number of people. Potential odor impacts have been analyzed separately for construction and operations below.

Individual responses to odors are highly variable and can result in a variety of effects. Generally, the impact of an odor results from a variety of factors such as frequency, duration, offensiveness, location, and sensory perception. The frequency is a measure of how often an individual is exposed to an odor in the ambient environment. The intensity refers to an individual's or group's perception of the odor strength or concentration. The duration of an odor refers to the elapsed time over which an odor is experienced. The offensiveness of the odor is the subjective rating of the pleasantness or unpleasantness of an odor. The location accounts for the type of area in which a potentially affected person lives, works, or visits; the type of activity in which he or she is engaged; and the sensitivity of the impacted receptor.

Sensory perception has four major components: detectability, intensity, character, and hedonic tone. The detection (or threshold) of an odor is based on a panel of responses to the odor. There are two types of thresholds: the odor detection threshold and the recognition threshold. The detection threshold is the lowest concentration of an odor that will elicit a response in a percentage of the people that live and work in the immediate vicinity of the Project Site and is typically presented as the mean (or 50 percent of the population). The recognition threshold is the minimum concentration that is recognized as having a characteristic odor quality, this is typically represented by recognition by 50 percent of the population. The intensity refers to the perceived strength of the odor. The odor character is what the substance smells like. The hedonic tone is a judgment of the pleasantness or unpleasantness of the odor. The hedonic tone varies in subjective experience, frequency, odor character, odor intensity, and duration.

Construction-Related Odor Impacts

Potential sources that may emit odors during construction activities include the application of coatings such as asphalt pavement, paints, and solvents and from emissions from diesel equipment. The objectionable odors that may be produced during the construction process would be temporary and would not likely be noticeable for extended periods of time beyond the Project Site's boundaries. Due to the transitory nature of construction odors, a less than significant odor impact would occur; and no mitigation would be required.

Operations-Related Odor Impacts

The implementation of the proposed 2041 Facilities Master Plan would include development of institutional junior college land uses. Potential sources that may emit odors during the ongoing operations of the Proposed Project would primarily occur from odor emissions from the trash storage area and from vehicle emissions. Pursuant to City regulations, permanent trash enclosures that protect trash bins from rain as well as limit air circulation would be required for the trash storage areas. Perceptible odors may also be emitted from substances from other on-campus activities such as laboratory uses and combustion of fuels. However, the nominal amount of these substances would not result in a significant odor impact. Due to the distance of the nearest receptors from the Project Site and through compliance with City trash storage regulations, no significant impact related to odors would occur during the ongoing operations of the Proposed Project. Therefore, a less than significant odor impact would occur, and no mitigation would be required.

Mitigation Measures

No mitigation measures are necessary.

Residual Impacts

Impacts would be less than significant.

3.6 GREENHOUSE GAS EMISSIONS

3.6.1 Introduction

This section provides information on potential impacts from the greenhouse gas (GHG) emissions generated either directly or indirectly by the Proposed Project. This section also addresses the potential of the Proposed Project to conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs. The GHG modeling parameter and output is included in this EIR as Appendix B. This analysis follows the SCAQMD recommendations for preparing a GHG emissions analysis under CEQA.

3.6.2 Background Information

Global Climate Change

Climate change is a recorded change in the Earth's average weather measured by variables such as wind patterns, storms, precipitation, and temperature. Global temperatures are moderated by naturally occurring atmospheric gases, including water vapor, carbon dioxide $\left(\mathrm{CO}_{2}\right)$, methane $\left(\mathrm{CH}_{4}\right)$, and nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$), which are known as greenhouse gases (GHGs). Historical records show that global temperature changes have occurred naturally in the past, such as during previous ice ages. However, it has been shown that emissions from human activities, such as electricity production and vehicle use, have elevated the concentration of these gases in the atmosphere. The year 2016 ranks as Earth's warmest year since record keeping began in 1880, and 16 of the 17 warmest years in the instrumental record occurred since 2001. The average global temperature has risen about 2.0 degrees Fahrenheit (${ }^{\circ} \mathrm{F}$) (1.1 degree Celsius [$\left.{ }^{\circ} \mathrm{C}\right]$) since 1880 (NASA 2017).

The global atmospheric concentration of CO_{2} has increased from a pre-industrial (roughly 1750) value of about 280 parts per million (ppm) to a peak of 407 ppm and a seasonally adjusted 404 ppm in October 2017, primarily due to fossil fuel use, with land use change providing a significant but smaller contribution. The annual CO_{2} concentration growth rate during the 10 -year period between 1995 and 2005 was larger than the growth rate from the beginning of continuous direct measurements in 1960 to 2005 (NOAA 2018).

Greenhouse Gases

GHGs are global pollutants and are therefore unlike criteria air pollutants such as ozone (O_{3}), particulate matter (PM_{10} and $\mathrm{PM}_{2.5}$), and toxic air contaminants (TACs), which are pollutants of regional and local concern (see Section 3.5, Air Quality, of this SEIR). While pollutants with localized air quality effects have relatively short atmospheric lifetimes (generally on the order of a few days), GHGs have relatively long atmospheric lifetimes, ranging from one year to several thousand years. Long atmospheric lifetimes allow for GHGs to disperse around the globe. Therefore, GHG effects are global, as opposed to the local and/or regional air quality effects of criteria air pollutant and TAC emissions.

California Assembly Bill 32 (AB 32) defines greenhouse gases as any of the following compounds: $\mathrm{CO}_{2}, \mathrm{CH}_{4}$, $\mathrm{N}_{2} \mathrm{O}$, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF_{6}) (California Health and Safety Code Section $38505(\mathrm{~g})$). CO_{2}, followed by CH_{4} and $\mathrm{N}_{2} \mathrm{O}$, are the most common GHGs that result from human activity.

GHGs have varying global warming potential (GWP). The GWP is the potential of a gas or aerosol to trap heat in the atmosphere; it is the "cumulative radiative forcing effect of a gas over a specified time horizon resulting from the emission of a unit mass of gas relative to a reference gas" (USEPA 2018). The reference gas for GWP is CO_{2}; therefore, CO_{2} has a GWP of 1. The other main greenhouse gases that have been attributed to human activity include CH_{4}, which has a GWP of 21, and $\mathrm{N}_{2} \mathrm{O}$, which has a GWP of 310 . Table 3-18 presents the GWP and atmospheric lifetimes of common GHGs.

Table 3-18: Global Warming Potentials, Atmospheric Lifetimes, and Abundances of GHGs

Gas	Atmospheric Lifetime (year)	Global Warming Potential $\left(\mathbf{1 0 0}\right.$ Year Horizon) ${ }^{\mathbf{2}}$	Atmospheric Abundance
carbon dioxide $\left(\mathrm{CO}_{2}\right)$	$50-200$	1	379 ppm
methane $\left(\mathrm{CH}_{4}\right)$	$9-15$	25	$1,774 \mathrm{ppb}$
nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$	114	298	319 ppb
HFC-23	270	14,800	18 ppt
HFC-134a	14	1,430	35 ppt
HFC-152a	1.4	124	3.9 ppt
PFC: Tetrafluoromethane $\left(\mathrm{CF}_{4}\right)$	50,000	7,390	74 ppt
PFC: Hexafluoroethane	10,000	12,200	2.9 ppt
$\left(\mathrm{C}_{2} \mathrm{~F}_{6}\right)$	3,200	22,800	5.6 ppt
sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$			

Notes:
${ }^{1}$ Defined as the half-life of the gas.
${ }^{2}$ Compared to the same quantity of CO_{2} emissions and is based on the Intergovernmental Panel On Climate Change (IPCC) 2007 standard, which is utilized in CalEEMod (Version 2016.3.2), that is used in this report (CalEEMod user guide: Appendix B).
Definitions: HFC = hydrofluorocarbon; PFC = perfluorocarbon; ppm = parts per million; ppb = parts per billion; ppt = parts per trillion
Source: IPCC 2007, EPA 2015
Human-caused sources of CO_{2} include combustion of fossil fuels (coal, oil, natural gas, gasoline, and wood). Data from ice cores indicate that CO_{2} concentrations remained steady prior to the current period for approximately 10,000 years. Concentrations of CO_{2} have increased in the atmosphere since the industrial revolution. CH_{4} is the main component of natural gas and also arises naturally from anaerobic decay of organic matter. Human-caused sources of natural gas include landfills, fermentation of manure, and cattle farming. Human-caused sources of $\mathrm{N}_{2} \mathrm{O}$ include combustion of fossil fuels and industrial processes such as nylon production and production of nitric acid.

Other GHGs are present in trace amounts in the atmosphere and are generated from various industrial or other uses. The sources of GHG emissions, GWP, and atmospheric lifetime of GHGs are all important variables to be considered in the process of calculating carbon dioxide equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$ for discretionary land use projects that require a climate change analysis.

3.6.3 Regulatory Framework

The regulatory setting related to global climate change is addressed through the efforts of various international, federal, state, regional, and local government agencies. These agencies work jointly, as well as individually, to reduce GHG emissions through legislation, regulations, planning, policy-making,
education, and a variety of programs. The agencies responsible for global climate change regulations are discussed below.

International

International and federal legislation has been enacted to deal with global climate change issues. In 1988, the United Nations and the World Meteorological Organization established the Intergovernmental Panel On Climate Change (IPCC) to assess the scientific, technical, and socioeconomic information relevant to understanding the scientific basis for human-induced climate change, its potential impacts, and options for adaptation and mitigation. In 1992, the United States joined other countries around the world in signing the United Nations' Framework Convention on Climate Change (UNFCCC) agreement with the goal of controlling GHG emissions. The parties of the UNFCCC adopted the Kyoto Protocol, which set binding GHG reduction targets for 37 industrialized countries with the objective of reducing their collective GHG emissions by 5 percent below 1990 levels by 2012. The Kyoto Protocol has been ratified by 182 countries but has not been ratified by the United States. It should be noted that Japan and Canada opted out of the Kyoto Protocol, and the remaining developed countries that ratified the Kyoto Protocol have not met their Kyoto targets. The Kyoto Protocol expired in 2012, and the amendment for the second commitment period from 2013 to 2020 has not yet entered into legal force. The Parties to the Kyoto Protocol negotiated the Paris Agreement in December 2015, agreeing to set a goal of limiting global warming to less than 2 degrees Celsius compared with pre-industrial levels. The Paris Agreement has been adopted by 195 nations with 147 ratifying it, including the United States by President Obama, who ratified it by Executive Order on September 3, 2016. On June 1, 2017, President Trump announced that the United States is withdrawing from the Paris Agreement; however, the Paris Agreement is still legally binding by the other remaining nations.

Additionally, the Montreal Protocol was originally signed in 1987 and substantially amended in 1990 and 1992. The Montreal Protocol stipulates that the production and consumption of compounds that deplete ozone in the stratosphere-chlorofluorocarbons (CFCs), halons, carbon tetrachloride, and methyl chloroform - were to be phased out, the first three by the year 2000 and methyl chloroform by 2005.

Federal

U.S. Environmental Protection Agency

The USEPA is responsible for implementing federal policy to address global climate change. The federal government administers a wide array of public-private partnerships to reduce U.S. GHG intensity. These programs focus on energy efficiency, renewable energy, methane, and other non- $-\mathrm{CO}_{2}$ gases; agricultural practices; and implementation of technologies to achieve GHG reductions. USEPA implements several voluntary programs that substantially contribute to the reduction of GHG emissions. On December 7, 2009, the USEPA Administrator signed two distinct findings regarding GHGs under section 202(a) of the Clean Air Act. The findings state:

- Endangerment Finding: The Administrator finds that the current and projected concentrations of the six key well-mixed greenhouse gases: carbon dioxide $\left(\mathrm{CO}_{2}\right)$; methane $\left(\mathrm{CH}_{4}\right)$; nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$); hydrofluorocarbons (HFCs); perfluorocarbons (PFCs); and sulfur hexafluoride (SF_{6}), into the atmosphere, threaten the public health and welfare of current and future generations.
- Cause or Contribute Finding: The Administrator finds that the combined emissions of these wellmixed greenhouse gases from new motor vehicles and new motor vehicle engines contribute to the greenhouse gas pollution which threatens public health and welfare.

These findings did not impose any requirements on industry or other entities; however, since 2009 the USEPA has been providing GHG emission standards for vehicles and other stationary sources of GHG emissions that are regulated by the USEPA. On September 13, 2013, the USEPA Administrator signed 40 Code of Federal Regulations (CFR) Part 60, that limits emissions from new sources to 1,100 pounds of CO_{2} per megawatt hour (Mwh) for fossil fuel-fired utility boilers and 1,000 pounds of CO_{2} per Mwh for large natural gas-fired combustion units.

On August 3, 2015, the USEPA announced the Clean Power Plan, emissions guidelines for U.S. states to follow in developing plans to reduce GHG emissions from existing fossil fuel-fired power plants (Federal Register Vol. 80, No. 205, October 23, 2015). On February 9, 2016, the Supreme Court stayed implementation of the Clean Power Plan due to a legal challenge from 29 states; and, in April 2017, the Supreme Court put the case on a 60 -day hold and directed both sides to make arguments for whether it should keep the case on hold indefinitely or close it and remand the issue to the USEPA. On October 11, 2017, the USEPA issued a formal proposal to repeal the Clean Power Plan; however, the repeal of the Plan will require following the same rule-making system used to create regulations and will likely result in court challenges.

Light-Duty Vehicle Greenhouse Gas Emissions Standards and Corporate Average Fuel Economy Standards

The USEPA and the Department of Transportation's National Highway Traffic Safety Administration (NHTSA) have been working together on developing a National Program of regulations to reduce GHG emissions and to improve the fuel economy of light-duty vehicles. On April 1, 2010, the USEPA and NHTSA announced a joint Final Rulemaking establishing standards for 2012 through 2016 model year vehicles. This was followed up on October 15, 2012, when the agencies issued a Final Rulemaking with standards for model years 2017 through 2025. The rules require these vehicles to meet an estimated combined average emissions level of 295 grams of CO_{2} per mile by 2012, decreasing to 250 grams per mile by 2016, and finally to an average industry fleet-wide level of 163 grams per mile in model year 2025. The 2016 standard is equivalent to 35.5 miles per gallon (mpg), and the 2025 standard is equivalent to 54.5 mpg if the levels were achieved solely through improvements in fuel efficiency. The agencies expect, however, that a portion of these improvements will occur due to air conditioning technology improvements (i.e., they will leak less) and due to the use of alternative refrigerants, which would not contribute to fuel economy. These standards would cut GHG emissions by an estimated 2 billion metric tons and 4 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2017-2025). The combined USEPA GHG standards and NHTSA Corporate Average Fuel Economy (CAFE) standards resolve previously conflicting requirements under both federal programs and the standards of the State of California and other states that have adopted the California standards (USEPA 2010; USEPA an NHTSA 2012).

The State and federal government are offering limited financial incentives for electric vehicle purchases to promote the sale of hybrid and plug-in electric vehicles. Electric vehicles have the potential to reduce GHG emissions as compared to gasoline-fueled vehicles, but the change in GHG emissions is dependent on the type of fuel used for the generation of electric power.

State

The CARB has the primary responsibility for implementing State policy to address global climate change; however, State regulations related to global climate change affect a variety of State agencies. CARB, which is part of the California Environmental Protection Agency (Cal EPA), is responsible for the coordination and administration of both the federal and State air pollution control programs within California. In this capacity, the CARB conducts research, sets California Ambient Air Quality Standards (CAAQS), compiles emission inventories, develops suggested control measures, provides oversight of local programs, and prepares the SIP. In addition, the CARB establishes emission standards for motor vehicles sold in California, consumer products (e.g., hairspray, aerosol paints, and barbeque lighter fluid), and various types of commercial equipment. It also sets fuel specifications to further reduce vehicular emissions.

In 2008, CARB approved a Climate Change Scoping Plan that proposes a "comprehensive set of actions designed to reduce overall carbon GHG emissions in California, improve our environment, reduce our dependence on oil, diversify our energy sources, save energy, create new jobs, and enhance public health" (CARB 2008a). The Climate Change Scoping Plan has a range of GHG reduction actions which include direct regulations, alternative compliance mechanisms, monetary and non-monetary incentives, voluntary actions, and market-based mechanisms such as a cap-and-trade system. In 2014, CARB approved the First Update to the Climate Change Scoping Plan (CARB 2014) that identifies additional strategies moving beyond the 2020 targets to the year 2050. On December 14, 2017, CARB adopted California's 2017 Climate Change Scoping Plan of November 2017 (CARB 2017) that provides specific statewide policies and measures to achieve the 2030 GHG reduction target of 40 percent below 1990 levels by 2030 and the aspirational 2050 GHG reduction target of 80 percent below 1990 levels by 2050. In addition, the State has passed the following laws directing CARB to develop actions to reduce GHG emissions, which are listed below in chronological order, with the most current first.

Title 24, Part 6, Energy Efficiency Standards
California Code of Regulations (CCR) Title 24, Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings (Title 24) was first established in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficiency technologies and methods. Although it was not originally intended to reduce GHG emissions, electricity production by fossil fuels results in GHG emissions; and energy-efficient buildings require less electricity. Therefore, increased energy efficiency results in decreased GHG emissions.

Title 24 standards are updated on a three-year schedule, and the most current 2016 standards went into effect on January 1, 2017. The Title 24 standards require the installation of insulated hot water pipes, improved window performance, improved wall insulation, and mandatory duct sealing. Title 24 also requires roofs to be constructed to be solar ready, with cool roofing shingles, a minimum of 1-inch air space between roof material and roof deck, and a minimum of R-22 roof/ceiling insulation. All lighting is required to be high efficiency, and daylight sensors and motion sensors are required for outdoor lighting, bathrooms, utility rooms, and other spaces. The forced air systems are required to limit leakage to 5 percent or less, and all heat pump systems are required to be equipped with liquid line filter driers. The 2016 Title 24 Part 6 standards are anticipated to reduce electricity consumption by 281 gigawatt-hours per year and natural gas consumption by 16 million therms per year (CEC 2016).

Title 24, Part 11, California Green Building Standards

CCR Title 24, Part 11: California Green Building Standards (Title 24) was developed in response to continued efforts to reduce GHG emissions associated with energy consumption. The most current version is the 2016 California Green Building Standards Code (CALGreen), which became effective on January 1, 2017, and replaced the 2013 CALGreen.

The CALGreen Code contains requirements for construction site selection; stormwater control during construction, construction waste reduction, indoor water use reduction, material selection, natural resource conservation, site irrigation conservation, and more. The code provides for design options allowing the designer to determine how best to achieve compliance for a given site or building condition. The code also requires building commissioning, which is a process for verifying that all building systems (e.g., heating and cooling equipment and lighting systems) are functioning at their maximum efficiency.

The CALGreen Code provides standards for bicycle parking, carpool/vanpool/electric vehicle spaces, light and glare reduction, grading and paving, energy efficient appliances, renewable energy, graywater systems, water-efficient plumbing fixtures, recycling and recycled materials, pollutant controls (including moisture control and indoor air quality), acoustical controls, stormwater management, building design, insulation, flooring, and framing, among others. Implementation of the CALGreen Code measures reduce energy consumption and vehicle trips and encourage the use of alternative-fuel vehicles, which reduces pollutant emissions.

Some of the notable changes in the 2016 CALGreen Code over the prior 2013 CALGreen Code include: an increase in amount of bicycle parking requirements, an increase in number of electric vehicle (EV) charging stations and clean air vehicle parking at non-residential buildings, a reduction in water usage in urinals to 0.125 gallon per flush, an increased rate of diversion for construction and operational waste to 65 percent as well as adding organic waste as waste to be diverted, and a requirement for fireplaces to meet new Cal EPA standards.

Executive Order B-30-15, Senate Bill 32, and Assembly Bill 197 (Statewide Year 2030 GHG Targets)

California Executive Order (EO) B-30-15 (April 29, 2015) set an "interim" statewide emission target to reduce greenhouse emissions to 40 percent below 1990 levels by 2030 and directed state agencies with jurisdiction over greenhouse gas emissions to implement measures pursuant to statutory authority to achieve this 2030 target and the 2050 target of 80 percent below 1990 levels. Specifically, the Executive Order directed CARB to update the Scoping Plan to express this 2030 target in metric tons. Assembly Bill 197 (AB 197) (September 8, 2016) and Senate Bill 32 (SB 32) (September 8, 2016) codified into statute the GHG emissions reduction targets of at least 40 percent below 1990 levels by 2030 as detailed in EO B-3015. AB 197 also requires additional GHG emissions reporting to CARB from stationary sources and requires CARB to provide sources of GHG emissions on its website that is broken down to sub-county levels. $A B$ 197 requires CARB to consider the social costs of emissions impacting disadvantaged communities.

Senate Bill 350, Renewable Electricity Goals

SB 350, Signed October 7, 2015, is the Clean Energy and Pollution Reduction Act of 2015. SB 350 implements some of the goals of EO B-30-15. The objectives of SB 350 are as follows:
(1) To increase from 33 percent to 50 percent the procurement of our electricity from renewable sources
(2) To double the energy efficiency savings in electricity and natural gas final end uses of retail customers through energy efficiency and conservation (California Legislative Information 2015)

The text of SB 350 sets a December 31, 2030, target for 50 percent of electricity to be generated from renewable sources. SB 350 is being implemented by requiring all large utilities to develop and submit Integrated Resource Plans that detail how they will meet their customers' energy needs, reduce GHG emissions and deploy clean energy resources. SB 350 superseded the renewable energy requirements set by SB 1078, SB 107, and SB X1-2.

Executive Order B-29-15 and Senate Bill X7-7, Water Conservation Measures

The Water Conservation Act of 2009 sets an overall goal of reducing per-capita urban water use by 20 percent by December 31, 2020. The state is required to make incremental progress toward this goal by reducing per-capita water use by at least 10 percent by December 31, 2015. This is an implementing measure of the Water Sector of the AB 32 Scoping Plan. Reduction in water consumption directly reduces the energy necessary and the associated emissions to convene, treat, and distribute the water; it also reduces emissions from wastewater treatment.

The Department of Water Resources adopted a regulation on February 16, 2011, that sets forth criteria and methods for exclusion of industrial process water from the calculation of gross water use for purposes of urban water management planning. The regulation would apply to all urban retail water suppliers required to submit an Urban Water Management Plan, as set forth in the Water Code, Division 6, Part 2.6, Sections 10617 and 10620.

On April 1, 2015, the California Governor issued Executive Order B-29-15 that directed the State Water Resources Control Board to impose restrictions to achieve a statewide 25 -percent reduction in urban water usage and directed the Department of Water Resources to replace 50 million square feet of lawn with drought-tolerant landscaping through an update to the State's Model Water Efficient Landscape Ordinance. The Ordinance also requires installation of more efficient irrigation systems, promotes greywater usage and onsite stormwater capture, and limits the turf planted in new residential landscapes to 25 percent of the total area and restricts turf from being planted in median strips or in parkways unless the parkway is next to a parking strip and a flat surface is required to enter and exit vehicles. Executive Order B-29-15 and SB X7-7 would reduce GHG emissions associated with the energy used to transport and filter water.

Senate Bill 97 and Amendments to the California Environmental Quality Act Guidelines

SB 97 directed the California Natural Resources Agency (CNRA) to adopt amendments to the CEQA Guidelines that require evaluation of GHG emissions or the effects of GHG emissions by January 1, 2010. The CNRA has done so, and the amendments to the CEQA Guidelines, in a new Section 15064.4 entitled Determining the Significance of Impacts from Greenhouse Gas Emissions, provide that:
a) The determination of the significance of greenhouse gas emissions calls for a careful judgment by the lead agency consistent with the provisions in Section 15064. A lead agency should make a
good-faith effort, based to the extent possible on scientific and factual data, to describe, calculate, or estimate the amount of greenhouse gas emissions resulting from a project.
b) A lead agency should consider the following factors, among others, when assessing the significance of impacts from greenhouse gas emissions on the environment:

1) The extent to which the project may increase or reduce greenhouse gas emissions as compared to the existing environmental setting
2) Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project
3) The extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of greenhouse gas emissions. Such requirements must be adopted by the relevant public agency through a public review process and must reduce or mitigate the project's incremental contribution of greenhouse gas emissions

The amendments also add a new Section 15126.4(c), Mitigation Measures Related to Greenhouse Gas Emissions. Generally, this CEQA Guidelines section requires lead agencies to consider feasible meanssupported by substantial evidence and subject to monitoring or reporting-of mitigating the significant effects of GHG emissions. Potential measures to mitigate the significant effects of GHG emissions are identified, including those outlined in Appendix F, Energy Conservation, of the CEQA Guidelines.

Executive Order B-18-12

Signed on April 25, 2012, EO B-18-12 established targets for energy and water efficiency and GHG emissions. EO B-18-12 also rescinded previous EO S-20-04. Specifically, EO B-18-12 required State agencies to continue to reduce grid-based energy by a minimum of 20 percent below 2003 levels by 2020. The key element of EO B-18-12 required 50 percent of new State buildings and major renovations started after 2020 to be constructed as Zero Net Energy Facilities, with 100 percent of new and renovated State facilities beginning after 2025 constructed as Zero Net Energy Facilities. EO B-18-12 also required State agencies to take measures toward achieving Zero Net Energy for 50 percent of the square footage of existing State-owned building area by 2025. New construction or major renovation of State facilities larger than 10,000 square feet is required to use clean, on-site power generation, and new construction or major renovation of State facilities smaller than 10,000 square feet is required to obtain Leadership in Energy and Environmental Design (LEED) "Silver" certification or higher.

Senate Bill 375

SB 375 was adopted September 2008 in order to support the State's climate action goals to reduce GHG emissions through coordinated regional transportation planning efforts, regional GHG emission reduction targets, and land use and housing allocation. SB 375 requires CARB to set regional targets for GHG emissions reductions from passenger vehicle use. In 2010, CARB established targets for 2020 and 2035 for each Metropolitan Planning Organization (MPO) within the State. It was up to each MPO to adopt a sustainable communities strategy (SCS) that will prescribe land use allocation in that MPO's Regional Transportation Plan (RTP) to meet CARB's 2020 and 2035 GHG emission reduction targets. These reduction targets are required to be updated every eight years, and in June 2017 CARB released Staff Report Proposed Update to the SB 375 Greenhouse Gas Emission Reduction Target, which provides recommended GHG emissions reduction targets for SCAG of 8 percent by 2020 and 21 percent by 2035.

The 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), adopted by SCAG in April 2016, provides a 2020 GHG emission reduction target of 8 percent and a 2035 GHG emission reduction target of 18 percent. SCAG will need to develop additional strategies in its next revision of the RTP/SCS in order to meet CARB's new 21-percent GHG emission reduction target for 2035. CARB is also charged with reviewing SCAG's RTP/SCS for consistency with its assigned targets.

City and County land use policies, including General Plans, are not required to be consistent with the RTP and associated SCS. However, new provisions of CEQA incentivize, through streamlining and other provisions, qualified projects that are consistent with an approved SCS and categorized as "transit priority projects."

Assembly Bill 32, The California Global Warming Solutions Act of 2006

The California Legislature adopted the public policy position that global warming is "a serious threat to the economic well-being, public health, natural resources, and the environment of California" (California Health and Safety Code, Section 38501). Further, the State Legislature has determined that:
the potential adverse impacts of global warming include the exacerbation of air quality problems, a reduction in the quality and supply of water to the state from the Sierra Nevada snowpack, a rise in sea levels resulting in the displacement of thousands of coastal businesses and residences, damage to marine ecosystems and the natural environment, and an increase in the incidences of infectious disease, asthma, and other human healthrelated problems.

The State Legislature also states that:
Global warming will have detrimental effects on some of California's largest industries, including agriculture, wine, tourism, skiing, recreational and commercial fishing, and forestry. It will also increase the strain on electricity supplies necessary to meet the demand for summer air-conditioning in the hottest parts of the State (California Health and Safety Code, Section 38501).

These public policy statements became law with the enactment of AB 32, the California Global Warming Solutions Act of 2006, signed by Governor Arnold Schwarzenegger in September 2006. AB 32 is now codified as Sections 38500 through 38599 of the California Health and Safety Code.

AB 32 requires that statewide GHG emissions be reduced to 1990 levels by 2020. This reduction is to be accomplished through an enforceable statewide cap on GHG emissions to be phased in starting in 2012. AB 32 directs CARB to establish this statewide cap based on 1990 GHG emissions levels; to disclose how it arrived at the cap; to institute a schedule to meet the emissions cap; and to develop tracking, reporting, and enforcement mechanisms. Emissions reductions under AB 32 are to include carbon sequestration projects and best management practices that are technologically feasible and cost-effective. As of the date of this Draft SEIR, CARB has not promulgated GHG emissions or reporting standards that are directly applicable to the Project.

Executive Order S-3-05

On June 1, 2005, Governor Arnold Schwarzenegger signed Executive Order S-3-05, which proclaims that California is vulnerable to the impacts of climate change. It declares that increased temperatures could reduce snowpack in the Sierra Nevada Mountains, could further exacerbate California's air quality problems, and could potentially cause a rise in sea levels. In an effort to avoid or reduce the impacts of climate change, Executive Order S-3-05 calls for a reduction in GHG emissions to the year 2000 level by 2010, to year 1990 levels by 2020, and to 80 percent below 1990 levels by 2050. It should be noted that the 80 percent below 1990 levels by 2050 is currently an aspirational goal by Executive Order S-3-05 but has not yet been codified into law.

Assembly Bill 1493, Clean Car Standards

AB 1493, adopted September 2002, also known as Pavley I, requires the development and adoption of regulations to achieve the maximum feasible reduction of GHGs emitted by noncommercial passenger vehicles, light-duty trucks, and other vehicles used primarily for personal transportation in the state. Although setting emissions standards on automobiles is solely the responsibility of the USEPA, the Federal Clean Air Act allows California to set state-specific emission standards on automobiles if the State first obtains a waiver from the USEPA. The USEPA granted California that waiver on July 1, 2009. The emission standards become increasingly more stringent through the 2016 model year. California is also committed to further strengthening these standards beginning in 2017 to obtain a 45 -percent GHG reduction from 2020 model year vehicles (CARB 2008b, 2009).

In January 2012, CARB approved the Advanced Clean Cars Program, a new emissions-control program for model year 2017 through 2025. The program combines the control of smog, soot, and GHGs with requirements for greater numbers of zero-emission vehicles. By 2025, when the rules will be fully implemented, the new automobiles will emit 34 percent fewer global warming gases and 75 percent fewer smog-forming emissions. The program also requires car manufacturers to offer for sale an increasing number of zero-emission vehicles each year, including battery electric, fuel cell, and plug-in hybrid electric vehicles.

In December 2012, CARB adopted regulations allowing car manufacturers to comply with California's GHG emissions requirements for model years 2017-2025 through compliance with the USEPA GHG requirements for those same model years (CARB 2012).

Regional - Southern California

South Coast Air Quality Management District

The Project site lies within the boundaries of the SCAQMD. The SCAQMD is bounded by the Ventura County/Los Angeles County border to the northwest, the Mojave Desert Air Basin to the north, the Riverside County border to the east, and the San Diego County-Riverside County border the south.

The portion of the Project site under the jurisdiction of the SCAQMD lies within the South Coast Air Basin (Air Basin). The mission of the SCAQMD is to undertake all necessary steps to protect public health from air pollution, with sensitivity to the impacts of its actions on the community and businesses through a comprehensive program of planning, regulation, compliance assistance, enforcement, monitoring, technology advancement, and public education (SCAQMD 2015).

Beginning in April 2008, the SCAQMD convened a Working Group to provide guidance to local lead agencies on determining significance for GHG emissions in their CEQA documents. The Working Group is scheduled to meet once per month. On December 5, 2008, the SCAQMD Governing Board adopted its staff proposal for an interim CEQA GHG significance threshold of 10,000 metric tons of CO_{2} equivalent per year (MTCO_{2} e per year) for industrial projects where the SCAQMD is the lead agency. The policy objective for establishing this significance threshold is to capture projects that represent approximately 90 percent of GHG emissions from new sources and to avoid EIR-level analysis for relatively small impacts (SCAQMD 2008).

In September 2010, the Working Group proposed extending the $10,000 \mathrm{MTCO}_{2} \mathrm{e}$ per year screening threshold currently applicable to industrial projects where the SCAQMD is the lead agency, described above, to other lead agency industrial projects. For all other projects, SCAQMD staff proposed a multiple tier analysis to determine the appropriate threshold to be used. The draft proposal suggests the following tiers: Tier 1 is any applicable CEQA exemptions; Tier 2 is consistency with a GHG reduction plan; Tier 3 is a screening value or bright line; Tier 4 is a performance-based standard with three options that include percent emission reductions, early implementation of AB 32 scoping plan measures, or an efficiency target; and Tier 5 is GHG mitigation offsets. According to the presentation given at the September 28, 2010, Working Group meeting, SCAQMD staff proposed a Tier 3 draft threshold of 1,400 to 3,500 $\mathrm{MTCO}_{2} \mathrm{e}$ per year depending on whether the project was commercial, mixed use, or residential. For the Tier 4 draft threshold, SCAQMD staff presented a percent emission reduction target option but did not provide any specific recommendation for a percent emission reduction target; instead it referenced the San Joaquin Valley Air Pollution Control District approach. The percent reduction target is based on consistency with AB 32 as it was based on the same numeric reductions calculated in the Scoping Plan to reach 1990 levels by 2020. The second Tier 4 option is to assess the early implementation of applicable AB 32 scoping plan measures. The third Tier 4 option is to utilize an efficiency target for 2020 of $4.8 \mathrm{MTCO}_{2} \mathrm{e}$ per year per service population (SP) for project-level thresholds where SP is project residents plus employees and 6.6 MTCO_{2} e per year per SP for plan-level threshold (SCAQMD 2010). The Working Group has not convened since the fall of 2010. As of December 2016, the proposal has not been considered or approved for use by the SCAQMD Board.

Southern California Association of Governments

The SCAG is the regional planning agency for Los Angeles, Orange, Ventura, Riverside, San Bernardino, and Imperial Counties and addresses regional issues relating to transportation, the economy, community development and the environment. SCAG is the federally designated MPO for the majority of the southern California region and is the largest MPO in the nation. With respect to air quality planning, SCAG has prepared the 2016-2040 RTP/SCS, adopted in April 2016 and the 2015 FTIP, adopted in October 2013, which address regional development and growth forecasts. Although the RTP/SCS and FTIP are primarily planning documents for future transportation projects, a key component of these plans is to integrate land use planning with transportation planning that promotes higher density infill development in close proximity to existing transit service. These plans form the basis for the land use and transportation components of the AQMP, which are utilized in the preparation of air quality forecasts and in the consistency analysis included in the AQMP. The RTP/SCS, FTIP, and AQMP are based on projections originating within the City and County General Plans.

Local - City of Long Beach

Local jurisdictions, such as the City of Long Beach, have the authority and responsibility to reduce air emissions of GHGs through police power and decision-making authority. Specifically, SB 97 encourages Cities to quantify GHG emissions from new projects. The City of Long Beach is in the process of developing a Climate Action and Adaption Plan. However, because the City has not yet adopted a Climate Action Plan or greenhouse gas reduction strategy, the City currently relies on the expertise of the SCAQMD and utilizes the expertise, programs, procedures, and methodologies developed by the SCAQMD for the environmental review of plans and developmental proposals within its jurisdiction.

3.6.4 Impacts and Mitigation

Impact 3.6-1: Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.

The Proposed Project may generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment. The Proposed Project consists of a Master Plan for a junior college that would result in the demolition of 109,156 square feet of existing structures, renovation of 387,341 square feet of existing buildings, and construction of 246,018 square feet of new building space. These improvements are anticipated to increase the student enrollment of the LAC campus by 7,458 students. Implementation of the 2041 Facilities Master Plan is anticipated to generate GHG emissions from area sources, energy usage, mobile sources, waste disposal, water usage, and construction equipment.

In December 2008, SCAQMD adopted a threshold of $10,000 \mathrm{MTCO}_{2} \mathrm{e}$ per year for industrial, but only with respect to projects where SCAQMD is the lead agency. As of the time of this writing (January 2018), the SCAQMD has not yet adopted a threshold for residential or commercial projects or a threshold for projects where SCAQMD is not the lead agency.

In order to identify significance criteria under CEQA for all land use projects, SCAQMD initiated a Working Group, which provided detailed methodology for evaluating significance under CEQA. At the September 28, 2010, Working Group meeting, the SCAQMD released its most current version of the draft GHG emissions thresholds, which recommends a tiered approach that includes the following Tiers:

- Tier 1: Applicable CEQA Exemptions (e.g., SB 97, categorical and statutory exemptions)
- Tier 2: Consistency with a GHG Reduction Plan (an adopted plan by a local agency)
- Tier 3: Quantitative Screening Values. The following quantitative thresholds were proposed:
o 3,000 MTCO_{2} e per year for all land use types; or
o $3,500 \mathrm{MTCO}_{2}$ e per year for residential;
o $1,400 \mathrm{MTCO}_{2}$ e per year for commercial;
o $3,000 \mathrm{MTCO}_{2}$ e per year for mixed-use; and
o $10,000 \mathrm{MTCO}_{2} \mathrm{e}$ per year for industrial.
- Tier 4: Performance Standards. The following options were proposed as performance standards:
o Option 1: Percent Emission Reduction Target (Provide an undefined percent reduction in GHG emissions over business-as-usual emissions)
o Option 2: Early Implementation of Applicable AB32 Scoping Plan Measures (Require a set of AB 32 Scoping Plan measures to be implemented)
o Option 3: SCAQMD Efficiency Targets. The following targets were proposed:
- Year 2020 Targets
- $\quad 4.8 \mathrm{MTCO}_{2} \mathrm{e}$ per year per service population for project-level threshold (land use employment only)
- $\quad 6.6 \mathrm{MTCO}_{2} \mathrm{e}$ per year per service population for plan-level threshold
- Year 2035 Targets
- $\quad 3.0 \mathrm{MTCO}_{2} \mathrm{e}$ per year per service population for project-level threshold
- $\quad 4.1 \mathrm{MTCO}_{2} \mathrm{e}$ per year per service population for plan-level threshold
- Tier 5: Mitigation Offsets (either alone or in combination with above tiers to achieve target threshold)

Since the Proposed Project would consist of development of a Master Plan for LAC, the Project is not exempt from CEQA and Tier 1 is not applicable. Because the City of Long Beach has not yet adopted a Climate Action Plan or GHG reduction strategy, consistency with a GHG reduction plan by a local agency for the Tier 2 approach is not applicable. The quantitative screening values provided in Tier 3 were developed for project-level analyses and are not applicable to plan-level analyses. For Tier 4, the most applicable performance standard to the Proposed Project is the Option 3 Year 2035 Target for a plan-level analysis of $4.1 \mathrm{MTCO}_{2} \mathrm{e}$ per year per SP .

However, since the SCAQMD Working Group's thresholds were developed prior to AB 197 and SB 32 being codified into law in September 2016, these thresholds do not currently contain adequate thresholds to reduce California's GHG emissions to 40 percent below 1990 levels by 2030. The California's 2017 Climate Change Scoping Plan, prepared by CARB, November 2017, recommends that local agency thresholds for the year 2030 are 40 percent lower than the year 2020 thresholds. Since the SCAQMD's Year 2020 Target for a plan-level analysis is $6.6 \mathrm{MTCO}_{2}$ e per year per SP, a 40 -percent reduction of this threshold would result in a Target of $3.96 \mathrm{MTCO}_{2} \mathrm{e}$ per year per service population, which was utilized in this analysis.

According to the Traffic Impact Analysis (Linscott Law \& Greenspan 2018), implementation of the proposed 2041 Facilities Master Plan would result in an increase of 7,458 students at the LAC, which was utilized as the service population associated with the Proposed Project.

The Project's GHG emissions have been calculated with the CalEEMod model based on the construction and operational parameters detailed in Appendix B, which also provides printouts of the CalEEMod output files. A summary of the results is shown below in Table 3-19.

Table 3-19: Project Related Greenhouse Gas Annual Emissions

Sector	Greenhouse Gas Emissions (Metric Tons per Year)			
	CO_{2}	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	$\mathrm{CO}_{2} \mathrm{e}$
Area Sources ${ }^{1}$	0.19	0.00	0.00	0.20
Energy Uses ${ }^{2}$	3,256.76	0.11	0.04	3,270.81
Mobile Sources ${ }^{3}$	6,627.71	0.25	0.00	6,634.06
Solid Waste ${ }^{4}$	278.02	16.43	0.00	688.79
Water and Wastewater ${ }^{5}$	160.32	0.53	0.01	177.63
Construction Year $2020{ }^{6}$	12.20	0.00	0.00	12.24
Construction Year 2025 ${ }^{6}$	10.65	0.00	0.00	10.70
Construction Year 2030 ${ }^{6}$	8.53	0.00	0.00	8.56
Construction Year $2035{ }^{6}$	11.63	0.00	0.00	11.64
Construction Year 2041 ${ }^{6}$	10.40	0.00	0.00	10.41
Total 2040 Emissions	10,376.41	17.33	0.05	10,825.04
Service Population ${ }^{7}$				7,458
Metric Tons $\mathrm{CO}_{2} \mathrm{e}$ per Service Population				1.45
SCAQMD Modified Draft Threshold of Significance ${ }^{8}$ (Metric Tons CO_{2} e per Service Population)				3.96

Notes:
${ }^{1}$ Area sources consist of GHG emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of GHG emissions from electricity and natural gas usage. It should be noted the energy usage rates are based on a worst-case analysis as LBCCD is committed to achieving net zero energy usage for LAC by 2041.
${ }^{3}$ Mobile sources consist of GHG emissions from vehicles.
${ }^{4}$ Waste includes the CO_{2} and CH_{4} emissions created from the solid waste placed in landfills.
${ }^{5}$ Water includes GHG emissions from electricity used for transport of water and processing of wastewater.
${ }^{6}$ Construction emissions amortized over 30 years as recommended in the SCAQMD GHG Working Group on November 19, 2009.
${ }^{7}$ Service population based on the anticipated increase of students to the LAC campus.
${ }^{8}$ SCAQMD's Year 2020 threshold of $6.6 \mathrm{MTCO}_{2}$ e per year was reduced by 40 percent to account for AB 197 and SB 32.
Source: CalEEMod Version 2016.3.2 (see Appendix B)

Table 3-19 shows that implementation of the proposed 2041 Facilities Master Plan would create $10,825.04 \mathrm{MTCO}_{2} \mathrm{e}$ per year, which is equivalent to $1.45 \mathrm{MTCO}_{2} \mathrm{e}$ per year per SP , which would be within SCAQMD's modified draft threshold of $3.96 \mathrm{MTCO}_{2}$ e per year per SP that has been modified to account for the more stringent GHG emissions reduction required by $A B 197$ and $S B 32$. Therefore, a less than significant generation of GHG emissions would occur from implementation of the proposed 2041 Facilities Master Plan. Impacts would be less than significant.

Impact 3.6-2: Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases.

The Proposed Project would not conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing GHG emissions. As detailed above in Impact 3.6-1, the City of Long Beach has not yet adopted a climate action plan; as such, the only applicable plans for reducing GHGs are the SCAG 2016-2040 RTP/SCS and CARB's 2017 Climate Change Scoping Plan, which are discussed below.

Consistency with the SCAG 2016-2040 RTP/SCS

The Project's consistency with the SCAG 2016-2040 RTP/SCS GHG-related goals and policies is shown in Table 3-20.

Table 3-20: Consistency with SCAG RTP/SCS GHG-Related Goals and Policies

RTP/SCS Goal/Policy	Project Consistency
Goal 1: Align the plan investments and policies with improving regional economic development and competitiveness	Not Applicable. The goal is applicable to SCAG's implementation of the RTP/SCS.
Goal 2: Maximize mobility and accessibility for all people and goods in the region.	Consistent. All walkways and parking lots will be designed to be ADA-compliant and the LAC campus promotes the use of public transportation as bus stops are currently located adjacent to the campus on Clark Avenue, Carson
Street, and Lew Davis Street that promote multiple modes	
of travel.	

Table 3-20: Consistency with SCAG RTP/SCS GHG-Related Goals and Policies

RTP/SCS Goal/Policy	Project Consistency
Policy 2: Ensuring safety, adequate maintenance, and efficiency of operations on the existing multimodal transportation system should be the highest RTP/SCS priorities for any incremental funding in the region.	Not Applicable. The policy is applicable to SCAG's implementation of the RTP/SCS.
Policy 3: RTP/SCS land use and growth strategies in the RTP/SCS will respect local input and advance smart growth initiatives.	Not Applicable. The policy is applicable to SCAG's implementation of the RTP/SCS.
Policy 4: Transportation demand management (TDM) and active transportation will be focus areas, subject to Policy 1.	Not Applicable. The policy is applicable to SCAG's implementation of the RTP/SCS.
Policy 5: High-occupancy vehicle (HOV) gap closures that significantly increase transit and rideshare usage will be supported and encouraged, subject to Policy 1.	Not Applicable. The policy is applicable to SCAG's implementation of the RTP/SCS.
Policy 6: The RTP/SCS will support investments and	
strategies to reduce non-recurrent congestion and	
demand for single occupancy vehicle use, by	Not Applicable. The policy is applicable to SCAG's implementation of the RTP/SCS.
leveraging advanced technologies.	
Policy 7: The RTP/SCS will encourage	
transportation investments that result in cleaner	
air, a better environment, a more efficient	
transportation system, and sustainable outcomes	
in the long run.	Not Applicable. The policy is applicable to SCAG's implementation of the RTP/SCS.
Policy 8: Monitoring progress on all aspects of the	
Plan, including the timely implementation of	
projects, programs, and strategies, will be an	
important and integral component of the Plan.	Not Applicable. The policy is applicable to SCAG's implementation of the RTP/SCS.

Source: SCAG 2016
As shown in Table 3-20, with implementation of design features committed to by the LBCCD and statewide regulatory requirements including the CALGreen building standards, the Proposed Project would be consistent with all applicable policies of the RTP/SCS. Impacts would be less than significant.

Consistency with CARB's 2017 Scoping Plan

The Project's consistency with the list of feasible mitigation measures for individual projects provided in the CARB's 2017 Scoping Plan is shown in Table 3-21.

Table 3-21: Consistency with CARB's 2017 Scoping Plan Measures for Individual Projects

Measures from Scoping Plan	Project Consistency
Construction	
Enforce idling time restrictions for construction vehicles	Consistent. LBCCD will require that all off-road equipment utilized on the Project Site to be registered with CARB and adhere to CARB's idling limitation rules.
Require construction vehicles to operate with the highest tier engines commercially available	Consistent. LBCCD will include in all construction contracts that all off-road equipment utilized on site shall be the powered with the highest tier engine commercially available.
Divert and recycle construction and demolition waste and use locally sourced building materials with a high recycled material content to the greatest extent feasible.	Consistent. LBCCD will include in all construction contracts that construction and demolition waste shall be reused or recycled to the greatest extent feasible and that the contractor shall utilize building materials with a high recycled material content to the greatest extent feasible.
Minimize tree removal and mitigate indirect GHG emissions increases that occur due to vegetation removal, loss of sequestration, and soil disturbance.	Consistent. LBCCD will require all construction projects to be evaluated to minimize tree and other vegetation removal.
Utilize existing grid power for electric energy rather than operating temporary gasoline/diesel powered generators.	Consistent. LBCCD will include in all construction contracts a requirement that restricts the use of generators except for cases where no other power sources are available. LBCCD will also direct staff to provide contractors with access to existing power sources on the LAC campus.
Increase use of electric and renewable fuel powered construction equipment and require renewable diesel fuel where commercially available.	Consistent. LBCCD will include in all construction contracts the requirement that renewable diesel shall be utilized for all off-road equipment to the greatest extent feasible and that the contractor shall consider using electric equipment when electric off-road equipment becomes commercially available for use.
Require diesel equipment fleets to be lower emitting than any current emission standard.	Consistent. LBCCD will include in all construction contracts a requirement that each contractor's off-road equipment fleet shall exceed the emissions requirements provided CCR Title 13, Article 4.8, Chapter 9, Section 2449.
Operation	
Comply with lead agency's standards for mitigating transportation impacts under SB 743	Consistent. The proposed Master Plan conforms with the goals of SB 743 that promote infill projects in areas served by transit.
Require onsite EV charging capabilities for parking spaces serving the project to meet jurisdiction-wide EV proliferation goals.	Consistent. The proposed Master Plan includes the installation of a minimum of two electric vehicle (EV) charging stations per lot or a total of a minimum of 36 EV charging stations would be provided on the LAC Campus.

Table 3-21: Consistency with CARB’s 2017 Scoping Plan Measures for Individual Projects

Measures from Scoping Plan	Project Consistency
Allow for new construction to install fewer onsite parking spaces than required by local municipal building code, if appropriate.	Consistent. LBCCD will review all projects that are included in the proposed Master Plan to determine if it is possible to reduce the number of parking spaces in the immediate vicinity of each project.
Dedicate onsite parking for shared vehicles.	Consistent. As part of the proposed Master Plan, the LAC parking lots will be reconfigured to meet both current ADA requirements and CALGreen requirements that require dedicated spaces for carpools and clean air vehicles.
Provide adequate, safe, convenient, and secure onsite bicycle parking storage in multi-family residential projects and in non-residential projects.	Consistent. The LAC currently provides bicycle parking throughout the campus. All projects implemented as part of the proposed Master Plan would include additional bicycle parking that would exceed the CALGreen minimum bicycle parking requirements.
Provide on- and offsite safety improvements for	Consistent. The proposed Master Plan will include a pedestrian and bicycle network plan that details bike, pedestrian, and transit connections, and/or implement relevant improvements identified in an applicable bicycle and/or
pedestrian master plan.	located throughout the LAC.

Table 3-21: Consistency with CARB’s 2017 Scoping Plan Measures for Individual Projects

Measures from Scoping Plan	Project Consistency
standards prior to dates required by the Energy Code.	use campus by the buildout year of 2041.
Encourage new construction, including municipal building construction, to achieve third-party green building certifications, such as the GreenPoint Rated program, LEED rating	Consistent. LBCCD has committed to a net zero energy use campus by the buildout year of 2041, which will
require all new construction to designed to meet the	
third-party green building certifications.	

Table 3-21: Consistency with CARB's 2017 Scoping Plan Measures for Individual Projects

Measures from Scoping Plan	Project Consistency
Require the design of the electric outlets and/or wiring in new residential unit garages to promote electric vehicle usage.	Not Applicable. No residential homes would be a part of the Proposed Project.
Require electric vehicle charging station and signage for non-residential developments.	Consistent. The proposed Master Plan includes the installation of a minimum of two EV charging stations per parking lot, or a total of a minimum of 36 EV charging stations would be provided on the LAC Campus.
Provide electric outlets to promote the use of electric landscape equipment to the extent	Consistent. LBCCD will require all proposed buildings that are included in the Master Plan to meet the feasible on parks and public/quasi-public lands. CALGeen Building requirements that require
installation of outdoor outlets on non-residential	
structures.	

Table 3-21: Consistency with CARB's 2017 Scoping Plan Measures for Individual Projects

Measures from Scoping Plan	Project Consistency
offsite mitigation project which should generate carbon credits equivalent to the anticipated GHG emission reductions.	Proposed Project provided above in Impact 3.6-1 did not find an exceedance of the applicable GHG emissions thresholds; and, therefore, no offsite mitigation is needed or required.
Require the project to purchase carbon credits from the California Air Pollution Control Officers Association (CAPCOA) GHG Reduction Exchange Program, American Carbon Registry (ACR), Climate Action Reserve (CAR) or other similar carbon credit registry determined to be acceptable by the local air district.	Not Applicable. The GHG emissions calculations for the Proposed Project provided above in Impact 3.6-1 did not find an exceedance of the applicable GHG emissions thresholds; and, therefore, no offsite mitigation is needed or required.
Encourage the applicant to consider generating or purchasing local and California-only carbon credits as the preferred mechanism to implement its offsite mitigation measure for GHG emissions and that will facilitate the State's efforts in achieving the GHG emission reduction goal.	Not Applicable. The GHG emissions calculations for the Proposed Project provided above in Impact 3.6-1 did not find an exceedance of the applicable GHG emissions thresholds; and, therefore, no offsite mitigation is needed or required.

Source: CARB 2017

As shown in Table 3-21, with implementation of design features committed to by the LBCCD and Statewide regulatory requirements including the CALGreen building standards, the Proposed Project would be consistent with all feasible mitigation measure for individual projects provided in the CARB's 2017 Scoping Plan. Therefore, implementation of the proposed 2041 Facilities Master Plan would not conflict with any applicable plan that reduces GHG emissions. Impacts would be less than significant.

Mitigation Measures

No mitigation measures are necessary.

Residual Impacts

Impacts would be less than significant.

3.7 NOISE

3.7.1 Introduction

This section provides information on ambient noise conditions in the vicinity of the LAC and identifies potential impacts associated with noise as a result of the construction and operation of the Proposed Project. The noise measurement printouts and modeling output are included in this EIR as Appendix C.

3.7.2 Existing Environmental Setting

Noise Terminology

Noise Fundamentals

Noise is defined as unwanted or objectionable sound. The effect of noise on people can include general annoyance, interference with speech communication, sleep disturbance, and, in the extreme, hearing impairment. The unit of measurement used to describe a noise level is the decibel (dB). The human ear is not equally sensitive to all frequencies within the sound spectrum. Therefore, the "A-weighted" noise scale, which weights the frequencies to which humans are sensitive, is used for measurements. Noise levels using A-weighted measurements are written $\mathrm{dB}(\mathrm{A})$ or $\mathrm{dB} A$. Decibels are measured on a logarithmic scale, which quantifies sound intensity in a manner similar to the Richter scale used for earthquake magnitudes. Thus, a doubling of the energy of a noise source, such as doubling a traffic volume, would increase the noise level by 3 dBA ; a halving of the energy would result in a 3-dBA decrease.

A given level of noise may be more or less tolerable depending on the duration of exposure experienced by an individual. A number of measures of noise exposure consider not only the A-level variation of noise but also the duration of the disturbance. The Day-Night Average Level (L_{dn}) is the weighted average of the intensity of a sound, with corrections for time of day and averaged over 24 hours. The time of day corrections require the addition of 10 decibels to sound levels at night between $10 \mathrm{p} . \mathrm{m}$. and 7 a .m. The Community Noise Equivalent Level (CNEL) is similar to the L_{dn}, except that it adds another 4.77 decibels to sound levels during the evening hours between $7 \mathrm{p} . \mathrm{m}$. and $10 \mathrm{p} . \mathrm{m}$. These additions are made to the sound levels at these time periods because during the evening and nighttime hours, when compared to daytime hours, ambient noise levels decrease, which creates an increased sensitivity to sounds. For this reason, the sound appears louder in the evening and nighttime hours and is weighted accordingly. The City of Long Beach Noise Element uses the Day-Night Sound Level (Ldn).

It is widely accepted that the average healthy ear can barely perceive changes of 3 dBA , increases or decreases, that a change of 5 dBA is readily perceptible, and that an increase (or decrease) of 10 dBA sounds twice (half) as loud (Caltrans 2013).

Groundborne Vibration Fundamentals

Groundborne vibrations consist of rapidly fluctuating motions within the ground that have an average motion of zero. The effects of groundborne vibrations typically only cause a nuisance to people, but at extreme vibration levels damage to buildings may occur. Although groundborne vibration can be felt outdoors, it is typically only an annoyance to people indoors where the associated effects of the shaking of a building can be notable. Groundborne noise is an effect of groundborne vibration and only exists
indoors, since it is produced from noise radiated from the motion of the walls and floors of a room and may also consist of the rattling of windows or dishes on shelves.

Several different methods are used to quantify vibration amplitude such as the maximum instantaneous peak in the vibrations velocity, which is known as the peak particle velocity (PPV) or the root mean square (rms) amplitude of the vibration velocity. Due to the typically small amplitudes of vibrations, vibration velocity is often expressed in decibels and is denoted as (L_{v}) and is based on the rms velocity amplitude. A commonly used abbreviation is " VdB ", which in this text is when L_{v} is based on the reference quantity of 1 microinch per second.

Typically, developed areas are continuously affected by vibration velocities of 50 VdB or lower. These continuous vibrations are not noticeable to humans whose threshold of perception is around 65 VdB . Offsite sources that may produce perceptible vibrations are usually caused by construction equipment, steel-wheeled trains, and traffic on rough roads, while smooth roads rarely produce perceptible groundborne noise or vibration.

Existing Noise Conditions

Ambient Noise Levels

To determine the existing noise level at the LAC, noise measurements have been taken in the vicinity of the Project Site. The field survey noted that noise within the area of the Project Site is generally characterized by vehicular traffic on Carson Street, Clark Avenue, Harvey Way, and Faculty Avenue. Other noises are related to yard maintenance, pets, pedestrians, and parking lot activities.

Depending upon how close the proposed improvements are to the surrounding City arterials, traffic noise is generally the dominant noise source on campus. It does, however dissipate at receptors that are more removed from the arterials and in locations where existing buildings provide shielding from the traffic noise. Noise generated by student and general campus maintenance activities are also noticeable but relatively quiet. General outdoor activities that occur throughout LAC include people walking, talking, eating, and studying.

The results of the noise level measurements are presented in Table 3-22. The measured sound pressure levels in dBA have been used to calculate the minimum and maximum $L_{\text {eq }}$ averaged over 1-hour intervals. Table 3-22 also shows the $L_{\text {eq }}, L_{\text {max }}$, and $L_{d n}$, based on the entire measurement time. A photo index of the noise monitoring sites and the noise monitoring data printouts is included in Appendix C (see pages $\mathrm{C}-1$ to C-17 of Appendix C).

Table 3-22: Existing (Ambient) Noise Level Measurements at LAC

Site No.	Site Description	Average (dBA Leq)	Maximum (dBA Leq)	Min 1-Hour Interval (dBA Leq /Time)	Max 1-Hour Interval (dBA Leq /Time)	Average (dBA Ldn)
1	Located on a tree approximately 65 feet east of the Faculty Avenue centerline and 70 feet south of the Village Road centerline.	55.5	89.2	$\begin{gathered} 40.7 \\ \text { 2:57 a.m. } \end{gathered}$	$\begin{gathered} 60.8 \\ \text { 12:38 p.m. } \end{gathered}$	58.8
2	Located on the fence of a tennis court approximately 80 feet south of the Carson Street centerline and 110 feet west of the Faculty Avenue centerline	66.8	93.7	$\begin{gathered} 54.9 \\ \text { 2:42 a.m. } \end{gathered}$	$\begin{gathered} 69.8 \\ \text { 7:38 a.m. } \end{gathered}$	69.9
3	Located on the bus stop pole in front of Building D, approximately 150 feet west of the Clark Avenue centerline	59.5	88.2	$\begin{gathered} 49.3 \\ \text { 2:00 a.m. } \end{gathered}$	$\begin{gathered} 64.2 \\ \text { 5:07 p.m. } \end{gathered}$	63.2
4	Located on the light post in front of Building J approximately 85 feet south of the Harvey Way centerline	57.4	84.2	$\begin{gathered} 46.2 \\ \text { 2:58 a.m. } \end{gathered}$	$\begin{gathered} 61.9 \\ \text { 12:02 p.m. } \end{gathered}$	59.9

Source: Vista Environmental, 2017.

Long Beach Airport

Another source of noise is the Long Beach Municipal Airport. However, as shown in Figure 3-1, the LBCC LAC is located well outside the 65 dB CNEL contour for the airport.

3.7.3 Applicable Regulations

The Proposed Project would be constructed in the City of Long Beach in Los Angeles County, within the State of California. The following subsections present a summary of noise-related regulatory requirements for the 2041 Facilities Master Plan for the LAC Improvements.

Federal Regulations

The adverse impact of noise was officially recognized by the federal government in the Noise Control Act of 1972, which serves three purposes:

- Promulgating noise emission standards for interstate commerce
- Assisting state and local abatement efforts
- Promoting noise education and research

The Federal Office of Noise Abatement and Control (ONAC) was initially tasked with implementing the Noise Control Act. However, the ONAC has since been eliminated, leaving the development of federal noise policies and programs to other federal agencies and interagency committees. For example, the Occupational Safety and Health Administration (OSHA) agency prohibits exposure of workers to excessive
sound levels. The Department of Transportation (DOT) assumed a significant role in noise control through its various operating agencies. The Federal Aviation Administration (FAA) regulates noise of aircraft and airports. Surface transportation system noise is regulated by a host of agencies, including the Federal Transit Administration (FTA). Transit noise is regulated by the federal Urban Mass Transit Administration (UMTA), while freeways that are part of the interstate highway system are regulated by the Federal Highway Administration (FHWA). Finally, the federal government actively advocates that local jurisdictions use their land use regulatory authority to arrange new development in such a way that "noise sensitive" uses are either prohibited from being sited adjacent to a highway or, alternately, that the developments are planned and constructed in such a manner that potential noise impacts are minimized.

Although the Proposed Project is not under the jurisdiction of the FTA, the FTA is the only agency that has defined what constitutes a significant noise impact from implementing a project. The FTA recommends developing construction noise criteria on a project-specific basis that utilizes local noise ordinances if possible. Project construction noise criteria should take into account the existing noise environment, the absolute noise levels during construction activities, the duration of the construction, and the adjacent land uses. The FTA standards are based on extensive studies by the FTA and other governmental agencies on the human effects and reaction to noise and a summary of the FTA findings for a detailed construction noise assessment are provided below in Table 3-23.

Table 3-23: FTA Construction Noise Criteria

Land Use	Day (dBA Leq (8-hour))	Night (dBA Leq(8-hour))	30-Day Average (dBA Lan)
Residential	80	70	75^{1}
Commercial	85	85	80^{2}
Industrial	90	90	85^{2}

Notes:
${ }^{1}$ In urban areas with very high ambient noise levels ($L d n>65 d B$), Ldn from construction operations should not exceed existing ambient +10 dB
${ }^{2}$ 24-hour Leq not Ldn
Source: Federal Transit Administration, 2006.
Table 3-24 provides the thresholds of permanent noise level increase at the project level utilized by the FTA. As shown in Table 3-24, the allowable cumulative noise level increase created from a project would range from 0 to 7 dBA , which is based on the existing (ambient) noise levels in the project vicinity. The justification for the sliding scale is that people already exposed to high levels of noise should be expected to tolerate only a small increase in the amount of noise in their community. In contrast, if the existing noise levels are quite low, it is reasonable to allow a greater change in the community noise for the equivalent difference in annoyance.

Table 3-24: FTA Project Effects on Cumulative Noise Exposure

Existing Noise Exposure (dBA Leq or Len $^{\prime}$)	Allowable Noise Impact Exposure dBA Leq or L $_{\text {dn }}$		
	Project Only	Combined	Noise Exposure Increase
45	51	52	+7
50	53	55	+5
55	55	58	+3
60	57	62	+2
65	60	66	+1
70	64	71	+1
75	65	75	0

Source: Federal Transit Administration, 2006.

State Regulations

Noise Standards

California Department of Health Services Office of Noise Control

Established in 1973, the California Department of Health Services Office of Noise Control (ONC) was instrumental in developing regularity tools to control and abate noise for use by local agencies. One significant model is the "Land Use Compatibility for Community Noise Environments Matrix," which allows the local jurisdiction to clearly delineate compatibility of sensitive uses with various incremental levels of noise.

California Noise Insulation Standards

Title 24, Chapter 1, Article 4 of the California Administrative Code (California Noise Insulation Standards) requires noise insulation in new hotels, motels, apartment houses, and dwellings (other than single-family detached housing) that provides an annual average noise level of no more than 45 dBA CNEL. When such structures are located within a 60-dBA CNEL (or greater) noise contour, an acoustical analysis is required to ensure that interior levels do not exceed the 45-dBA CNEL annual threshold. In addition, Title 21, Chapter 6, Article 1 of the California Administrative Code requires that all habitable rooms, hospitals, convalescent homes, and places of worship shall have an interior CNEL of 45 dB or less due to aircraft noise.

Government Code Section 65302

Government Code Section 65302 mandates that the legislative body of each county and city in California adopt a noise element as part of its comprehensive general plan. The local noise element must recognize the land use compatibility guidelines published by the State Department of Health Services. The guidelines rank noise land use compatibility in terms of normally acceptable, conditionally acceptable, normally unacceptable, and clearly unacceptable.

California Vehicle Code Section 27200-27207 - On-Road Vehicle Noise

California Vehicle Code Section 27200-27207 provides noise limits for vehicles operated in California. For vehicles over 10,000 pounds noise is limited to 88 dB for vehicles manufactured before $1973,86 \mathrm{~dB}$ for
vehicles manufactured before 1975, 83 dB for vehicles manufactured before 1988, and 80 dB for vehicles manufactured after 1987. All measurements are based at 50 feet from the vehicle.

California Vehicle Code Section 38365-38380 - Off-Road Vehicle Noise

California Vehicle Code Section 38365-38380 provides noise limits for off-highway motor vehicles operated in California: 92 dBA for vehicles manufactured before 1973, 88 dBA for vehicles manufactured before 1975,86 dBA for vehicles manufactured before 1986 , and 82 dBA for vehicles manufactured after December 31, 1985. All measurements are based at 50 feet from the vehicle.

Vibration Standards

Title 14 of the California Administrative Code Section 15000 requires that all state and local agencies implement the California Environmental Quality Act (CEQA) Guidelines, which requires the analysis of exposure of persons to excessive groundborne vibration. However, no statute has been adopted by the state that quantifies the level at which excessive groundborne vibration occurs.

Caltrans issued the Transportation- and Construction-Induced Vibration Guidance Manual in 2004. The manual provides practical guidance to Caltrans engineers, planners, and consultants who must address vibration issues associated with the construction, operation, and maintenance of Caltrans projects. However, this manual is also used as a reference point by many lead agencies and CEQA practitioners throughout California, as it provides numeric thresholds for vibration impacts. Thresholds are established for continuous (construction-related) and transient (transportation-related) sources of vibration, which found that the human response becomes distinctly perceptible at 0.25 inch per second PPV for transient sources and 0.04 inch per second PPV for continuous sources.

Local Regulations - City of Long Beach

The City of Long Beach General Plan and Municipal Code establishes the following applicable policies related to noise and vibration.

City of Long Beach General Plan

Table 3-25 identifies the standards for transportation noise sources as listed in the Noise Element for the City of Long Beach General Plan.

Table 3-25: City of Long Beach Noise Element Standards

Major Land Use Type	Exterior			Interior Ldn
	Maximum Single Hourly Peak	L10 ${ }^{\text {a }}$	L50 ${ }^{\text {b }}$	
All noise-sensitive land-uses (residential, school, hospital, etc.) 7:00 a.m. - 10:00 p.m.	$70 \mathrm{~dB}(\mathrm{~A})$	$55 \mathrm{~dB}(\mathrm{~A})$	$45 \mathrm{~dB}(\mathrm{~A})$	$45 \mathrm{~dB}(\mathrm{~A})$
All noise-sensitive land uses (residential, school, hospital, etc.) 10:00 p.m. - 7:00 a.m.	$60 \mathrm{~dB}(\mathrm{~A})$	$45 \mathrm{~dB}(\mathrm{~A})$	$35 \mathrm{~dB}(\mathrm{~A})$	$35 \mathrm{~dB}(\mathrm{~A})$
Commercial (anytime)	$75 \mathrm{~dB}(\mathrm{~A})$	$65 \mathrm{~dB}(\mathrm{~A})$	$55 \mathrm{~dB}(\mathrm{~A})$	N/A
Industrial (anytime)	$85 \mathrm{~dB}(\mathrm{~A})$	$70 \mathrm{~dB}(\mathrm{~A})$	$60 \mathrm{~dB}(\mathrm{~A})$	N/A
Notes: a) Noise levels exceeded 10% of the time b) Noise levels exceeded 50% of the time Source: City of Long Beach General Plan Noise				

City of Long Beach Municipal Code

The City's Municipal Code identifies standards for noise intrusion from non-transportation sources within various Noise Districts. LBCC LAC is located in District One. Table 3-26 summarizes the applicable standards in Noise District One.

Table 3-26: City of Long Beach Exterior Noise Ordinance Standards

Noise level that may not be exceeded for more than...	Daytime $^{\text {a }}$ $\mathbf{7 a . m . ~} \mathbf{- 1 0}$ p.m.	Nighttime $^{\mathbf{a}}$ $\mathbf{1 0}$ p.m. $\mathbf{- 7}$ a.m.
30 minutes in any hour	$50 \mathrm{~dB}(\mathrm{~A})$	$\mathbf{4 5 \mathrm { dB } (\mathrm { A })}$
15 minutes in any hour	$55 \mathrm{~dB}(\mathrm{~A})$	$50 \mathrm{~dB}(\mathrm{~A})$
5 minutes in any hour	$60 \mathrm{~dB}(\mathrm{~A})$	$55 \mathrm{~dB}(\mathrm{~A})$
1 minute in any hour	$65 \mathrm{~dB}(\mathrm{~A})$	$60 \mathrm{~dB}(\mathrm{~A})$
Any time	$\mathbf{7 0 \mathrm { dB } (\mathrm { A })}$	$65 \mathrm{~dB}(\mathrm{~A})$

Notes:
a) In the event that the alleged offensive noise contains a steady audible tone such as a whine, screech, or hum, or is a repetitive noise such as hammering or riveting or contains music or speech conveying informational content, the specified noise limits are reduced by $5 \mathrm{~dB}(\mathrm{~A})$.
Source: City of Long Beach Municipal Code Chapter 8.80.160.
Section 8.80.202 of the City's Noise Ordinance regulates noise from construction activities. These regulations limit the permissible hours of construction to between 7:00 a.m. and 7:00 p.m. on weekdays or federal holidays and between 9:00 a.m. and 6:00 p.m. on Saturdays. Construction is generally prohibited on Sundays. The Noise Ordinance also limits hours of operation for mechanically powered tools (e.g., saws, sanders, drills, grinders, lawnmowers, and garden tools) from 7:00 a.m. to 10:00 p.m. Leaf blowers have more stringent standards and can only be used between 8:00 a.m. and 8:00 p.m. on weekdays, 9:00 a.m. and 5:00 p.m. on Saturdays, and 11:00 a.m. and 5:00 p.m. on Sundays.

The Noise Ordinance also provides standards for vibration (Section 8.80.200(G)). It is a violation to operate or permit the operation of any device that creates vibration that is above the vibration perception threshold of an individual at or beyond the property boundary of the source. The Noise Ordinance defines the perception threshold as 0.001 g 's in the frequency range of $0-30$ hertz and 0.003 g 's in the frequency range between 30 and 100 hertz. It should be noted that this perception threshold is only applicable to vibration caused during the operation of the Proposed Project.

3.7.4 Impacts and Mitigation

Impact 3.7-1: Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local General Plan or noise ordinance, or applicable standards of other agencies.

The Proposed Project may generate substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the General Plan or Noise Ordinance or applicable standards of other agencies. The following section calculates the potential noise emissions associated with the construction and operations of the Proposed Project and compares the noise levels to the City standards.

Construction-Related Noise

Construction activities for the Proposed 2041 Facilities Master Plan are anticipated to include demolition of 109,156 square feet of existing structures, grading up to 21 acres of the LAC, building construction of 246,018 feet of new building space and renovating 387,341 square feet of building space, paving the onsite roads and parking areas, and applying architectural coatings. Noise impacts from construction activities associated with the Proposed Project would be a function of the noise generated by construction equipment, equipment location, sensitivity of nearby land uses, and the timing and duration of the construction activities. The nearest sensitive receptors to the Project Site are single-family homes located as near as 130 feet from the areas where construction may occur.

Section 8.80.202 of the City's Noise Ordinance restricts construction activities from occurring between the hours of 7:00 p.m. and 7:00 a.m. on weekdays, between 6:00 p.m. and 9:00 a.m. on Saturdays, or anytime on Sundays or federal holidays. Through adherence to the construction-related noise requirements provided in the City's Noise Ordinance, construction-related noise levels would not exceed any noise standards established in the general plan or noise ordinance. However, the City construction noise standards do not provide any limits to the noise levels that may be created from construction activities; and, even with adherence to the City standards, the resultant construction noise levels may result in a significant substantial temporary noise increase to the nearby sensitive receptors.

In order to determine if the proposed construction activities would create a significant substantial temporary noise increase, the FTA construction noise criteria thresholds detailed above in Section 3.7.3 have been utilized, which show that a significant construction noise impact would occur if construction noise exceeds 80 dBA during the daytime at any of the nearby homes.

Construction noise impacts to the nearby sensitive receptors have been calculated through the use of the Roadway Construction Noise Model (RCNM) and the parameters and assumptions detailed in Appendix C. The results are shown below in Table 3-27, and the RCNM printouts are provided in Appendix C (see pages C-18 to C-35 of Appendix C).

Table 3-27 Worst Case Construction Noise Levels at Nearest Receptors

	Homes on West Side of Faculty Avenue		Homes on North Side of Carson Street		Homes on East Side of Clark Avenue		Homes on North Side of Harvey Way	
Construction Phase	Distance (feet)	Noise Level (dBA Ldn)	Distance (feet)	Noise Level (dBA Ldn)	Noise Distance (feet)	Level (dBA Ldn)	Distance (feet)	Level (dBA Ldn)
Demolition	160	74	135	76	260	70	230	71
Grading	160	74	135	75	260	71	230	71
Building Construction	160	72	135	73	230	70	180	72
Paving	160	68	135	69	260	65	230	66
Architectural Coatings	160	64	135	65	230	60	180	63
Noise Threshold	$\mathbf{8 0}$		$\mathbf{8 0}$		$\mathbf{8 0}$		$\mathbf{8 0}$	

Source: RCNM, Federal Highway Administration, 2006 (See pages C-18 to C-35 of Appendix C).
Table 3-27 shows that the greatest noise impact would occur during the demolition phase of construction at the homes on the north side of Carson Street with a noise level as high as 76 dBA , which is within the FTA's construction noise threshold of 80 dBA . Through adherence to the noise limitation of allowable construction times provided in Section 8.80.202 of the City's Municipal Code, the Proposed Project would not create a substantial temporary increase in ambient noise levels from construction of the proposed Project. Therefore, construction-related noise impacts would be less than significant.

Operational-Related Noise

The implementation of the proposed 2041 Facilities Master Plan would include development of institutional junior college land uses.

Potential noise impacts associated with the operations of the Proposed Project would be from Projectgenerated vehicular traffic on the nearby roadways and from onsite activities, which have been analyzed separately below.

Roadway Vehicular Noise

Vehicle noise is a combination of the noise produced by the engine, exhaust, and tires. The level of traffic noise depends on three primary factors: (1) the volume of traffic, (2) the speed of traffic, and (3) the number of trucks in the flow of traffic. The Proposed Project does not propose any uses that would require a substantial number of truck trips and would not alter the speed limit on any existing roadway. The Proposed Project's potential offsite noise impacts have been focused on the noise impacts associated with the change of volume of traffic that would occur with development of the Proposed Project.

The City of Long Beach General Plan Noise Element provides the goal of diminishing the transportation roar that impacts on the population. However, neither the General Plan nor the CEQA Guidelines define what constitutes a "substantial permanent increase to ambient noise levels;" as such, this impact analysis has utilized guidance from the Federal Transit Administration for a moderate impact that has been detailed above in Table 3-27.

The potential offsite traffic noise impacts created by the ongoing operations of the Proposed Project have been analyzed through utilization of the FHWA model. The FHWA model noise calculation spreadsheets that show the parameters utilized in the FHWA model are provided in Appendix C (see pages C-36 to C-71 of Appendix C). The Proposed Project's offsite traffic noise impacts have been analyzed for both the existing and year 2041 conditions, which are discussed below.

Existing Conditions

The Proposed Project's potential offsite noise impacts have been calculated through a comparison of the Existing scenario with the Existing plus Project scenario. The results of this comparison are shown in Table 3-28.

Table 3-28 Existing Year Project Traffic Noise Contributions

Roadway	Segment	dBA L ${ }_{\text {dn }}$ at Nearest Receptor ${ }^{\text {a }}$			Increase Threshold ${ }^{\text {b }}$
		Existing	Existing With Project	Project Contribution	
Cherry Avenue	North of Carson Street	65.9	65.9	0.0	+1 dBA
Cherry Avenue	South of Carson Street	65.9	65.9	0.0	+1 dBA
Paramount Boulevard	North of Carson Street	66.0	66.1	0.1	+1 dBA
Lakewood Boulevard	South of Del Amo Boulevard	65.1	65.2	0.1	+1 dBA
Lakewood Boulevard	North of Harvey Way	74.0	74.2	0.2	+1 dBA
Lakewood Boulevard	North of Carson Street	70.1	70.3	0.2	+1 dBA
Faculty Avenue	North of Carson Street	53.0	53.3	0.3	+5 dBA
Clark Avenue	South of Del Amo Boulevard	64.8	64.9	0.1	+2 dBA
Clark Avenue	North of Harvey Way	64.1	64.3	0.2	+2 dBA
Clark Avenue	North of Carson Street	65.2	65.5	0.3	+1 dBA
Clark Avenue	South of Carson Street	65.1	65.5	0.4	+1 dBA
Clark Avenue	South of Lew Davis Street	64.5	64.7	0.2	+2 dBA
Clark Avenue	South of Conant Street	61.8	62.1	0.3	+2 dBA
Clark Avenue	South of Wardlow Street	62.4	62.6	0.2	+2 dBA
Clark Avenue	South of Spring Street	64.4	64.5	0.1	+2 dBA
Bellflower Boulevard	North of Carson Street	64.9	65.0	0.1	+2 dBA
Bellflower Boulevard	South of Wardlow Road	64.2	64.3	0.1	+2 dBA
Bellflower Boulevard	South of Spring Street	65.9	65.9	0.0	+1 dBA
Del Amo Boulevard	West of Lakewood Boulevard	71.5	71.5	0.0	+1 dBA
Del Amo Boulevard	East of Clark Avenue	69.3	69.4	0.1	+1 dBA
Harvey Way	East of Lakewood Boulevard	57.7	57.9	0.2	+3 dBA
Harvey Way	East of Clark Avenue	56.9	57.2	0.3	+3 dBA
Carson Street	West of Cherry Avenue	68.6	68.7	0.1	+1 dBA
Carson Street	West of Paramount Boulevard	65.1	65.3	0.2	+1 dBA
Carson Street	West of Lakewood Boulevard	63.2	63.4	0.2	+2 dBA
Carson Street	West of Faculty Avenue	67.9	68.1	0.2	+1 dBA
Carson Street	East of Clark Avenue	67.9	68.1	0.2	+1 dBA
Carson Street	East of Bellflower Boulevard	69.4	69.5	0.1	+1 dBA
Carson Street	East of Woodruff Avenue	64.7	64.8	0.1	+2 dBA
Conant Street	East of Clark Avenue	45.7	46.3	0.6	+7 dBA

Table 3-28 Existing Year Project Traffic Noise Contributions

Roadway	Segment	dBA L $\mathrm{d}_{\text {d }}$ at Nearest Receptor ${ }^{\text {a }}$			Increase Threshold ${ }^{\text {b }}$
		Existing	Existing With Project	Project Contribution	
Wardlow Road	East of Clark Avenue	65.3	65.5	0.2	+1 dBA
Wardlow Road	East of Bellflower Boulevard	64.6	64.7	0.1	+2 dBA
Spring Street	East of Clark Avenue	63.2	63.3	0.1	+2 dBA
Spring Street	East of Bellflower Boulevard	63.5	63.6	0.1	+2 dBA

Notes:
a. Distance to nearest residential uses are shown in Appendix C. Noise levels do not take into account existing noise barriers.
b. Increase Threshold obtained from the FTA's allowable noise impact exposures.

Source: FHWA Traffic Noise Prediction Model FHWA-RD-77-108 (see pages C-36 to C-53 of Appendix C).
Table 3-28 shows that for the existing conditions, the Proposed Project's permanent noise increases to the nearby homes from the generation of additional vehicular traffic would not exceed the FTA's allowable increase thresholds detailed above. Therefore, the Proposed Project would not result in a substantial permanent increase in ambient noise levels for the existing conditions. Impacts would be less than significant.

Year 2041 Conditions

The Proposed Project's potential offsite noise impacts have been calculated through a comparison of the year 2041 without Project scenario to the year 2041 with Project scenario. The results of this comparison are shown in Table 3-29.

Table 3-29 Year 2041 Project Traffic Noise Contributions

Roadway	Segment	dBA Ldn at Nearest Receptor ${ }^{\text {a }}$			Increase Threshold ${ }^{\text {b }}$
		$2041 \text { No }$ Project	2041 With Project	Project Contribution	
Cherry Avenue	North of Carson Street	66.6	66.6	0.0	+1 dBA
Cherry Avenue	South of Carson Street	66.6	66.6	0.0	+1 dBA
Paramount Boulevard	North of Carson Street	66.7	66.8	0.1	+1 dBA
Lakewood Boulevard	South of Del Amo Boulevard	65.8	66.0	0.2	+1 dBA
Lakewood Boulevard	North of Harvey Way	74.8	75.0	0.2	+1 dBA
Lakewood Boulevard	North of Carson Street	70.9	71.0	0.1	+1 dBA
Faculty Avenue	North of Carson Street	53.7	54.0	0.3	+5 dBA
Clark Avenue	South of Del Amo Boulevard	65.5	65.6	0.1	+1 dBA
Clark Avenue	North of Harvey Way	64.8	65.0	0.2	+2 dBA
Clark Avenue	North of Carson Street	66.0	66.2	0.2	+1 dBA
Clark Avenue	South of Carson Street	65.8	66.1	0.3	+1 dBA
Clark Avenue	South of Lew Davis Street	65.2	65.4	0.2	+1 dBA
Clark Avenue	South of Conant Street	62.5	62.8	0.3	+2 dBA
Clark Avenue	South of Wardlow Street	63.1	63.3	0.2	+2 dBA
Clark Avenue	South of Spring Street	65.2	65.3	0.1	+1 dBA
Bellflower Boulevard	North of Carson Street	65.1	65.2	0.1	+1 dBA

Table 3-29 Year 2041 Project Traffic Noise Contributions

Roadway	Segment	dBA Ldn at Nearest Receptor ${ }^{\text {a }}$			Increase Threshold ${ }^{\text {b }}$
		$2041 \text { No }$ Project	2041 With Project	Project Contribution	
Bellflower Boulevard	South of Wardlow Road	64.9	64.9	0.0	+2 dBA
Bellflower Boulevard	South of Spring Street	66.6	66.6	0.0	+1 dBA
Del Amo Boulevard	West of Lakewood Boulevard	72.3	72.3	0.0	+1 dBA
Del Amo Boulevard	East of Clark Avenue	70.1	70.1	0.0	+1 dBA
Harvey Way	East of Lakewood Boulevard	58.4	58.5	0.1	+3 dBA
Harvey Way	East of Clark Avenue	57.6	57.9	0.3	+3 dBA
Carson Street	West of Cherry Avenue	69.3	69.4	0.1	+1 dBA
Carson Street	West of Paramount Boulevard	65.8	66.0	0.2	+1 dBA
Carson Street	West of Lakewood Boulevard	63.9	64.1	0.2	+2 dBA
Carson Street	West of Faculty Avenue	68.7	68.8	0.1	+1 dBA
Carson Street	East of Clark Avenue	68.6	68.8	0.2	+1 dBA
Carson Street	East of Bellflower Boulevard	70.1	70.3	0.2	+1 dBA
Carson Street	East of Woodruff Avenue	65.4	65.5	0.1	+1 dBA
Conant Street	East of Clark Avenue	46.4	46.9	0.5	+7 dBA
Wardlow Road	East of Clark Avenue	66.0	66.2	0.2	+1 dBA
Wardlow Road	East of Bellflower Boulevard	65.3	65.4	0.1	+2 dBA
Spring Street	East of Clark Avenue	64.0	64.0	0.0	+2 dBA
Spring Street	East of Bellflower Boulevard	64.2	64.3	0.1	+2 dBA

Notes:
a. Distance to nearest residential uses are shown in Appendix C. Noise levels do not take into account existing noise barriers.
b. Increase Threshold obtained from the FTA's allowable noise impact exposures.

Source: FHWA Traffic Noise Prediction Model FHWA-RD-77-108 (see pages C-54 to C-71 of Appendix C).
Table 3-29 shows that for the year 2041 conditions, the Proposed Project's permanent noise increases to the nearby homes from the generation of additional vehicular traffic would not exceed the FTA's allowable increase thresholds detailed above. Therefore, the Proposed Project would not result in a substantial permanent increase in ambient noise levels for the year 2041 conditions. Impacts would be less than significant.

Therefore, roadway vehicle noise impacts resulting from the ongoing operation of the Proposed Project would be less than significant.

Onsite Noise Sources

The operation of the Proposed Project would create an increase in onsite noise levels from rooftop mechanical equipment, parking lot activities, delivery truck activities, and from activities at the proposed swim pool facility and soccer fields adjacent to Carson Street.

Section 8.80.160 of the City's Municipal Code limits noise levels at the nearby residential properties to 50 dBA between 7:00 a.m. and 10:00 pm. and 45 dBA between 10:00 p.m. and 7:00 a.m. the following day.

In order to determine the noise impacts from rooftop mechanical equipment, parking lot activities, and delivery truck activities and from activities at the proposed swim pool facility and soccer fields, reference noise measurements were taken of each noise source and are shown below in Table 3-30. Table 3-30 also shows the anticipated noise level from each source at the nearest offsite receptors, which were analyzed based on the propagation rates for point sources of 6 dB per doubling of distance (i.e., if the noise level is 56 dB at 50 feet from the source it would be 50 dB at 100 feet). It should also be noted that the distances utilized in the reference noise measurements vary between 5 feet and 50 feet, so in some cases the reference noise level may be higher; but, depending on the distances it was taken, it may result in a lesser noise impact at the nearby homes. The operational reference noise measurements are shown in Appendix C (see pages C-72 to C-85 of Appendix C).

Table 3-30: Operational Noise Levels at the Nearest Receptors Prior to Mitigation

Noise Source	Homes on West Side of Faculty Avenue		Homes on North Side of Carson Street		Homes on East Side of Clark Avenue		Homes on North Side of Harvey Way	
	Distance (feet)	Noise Level (dBA Leq)						
Rooftop Equipment ${ }^{1}$	170	42	200	41	240	39	190	41
Parking Lot ${ }^{2}$	85	38	140	34	100	37	90	38
Truck Delivery ${ }^{3}$	150	41	130	42	220	37	180	39
Swim Pool Facility ${ }^{4}$	N/A	N/A	140	58	N/A	N/A	N/A	N/A
Soccer Fields ${ }^{5}$	N/A	N/A	140	30	N/A	N/A	N/A	N/A
Combined Noise Levels		45		58		43		44
City Noise Standards (Day/Night)		50/45		50/45		50/45		50/45
Exceeds City Standards (Day/Night)?		No/No		Yes/Yes		No/No		No/No

Notes:
1 The rooftop equipment noise level was based on a noise measurement 10 feet from an operational rooftop HVAC unit that measured 66.6 dBA Leq (see pages $\mathrm{C}-72$ and $\mathrm{C}-73$ of Appendix C).
2 The parking lot noise level was based on a noise measurement 5 feet from a commercial parking lot that produced a noise level of 63.1 dBA Leq (see pages C-74 and C-75 of Appendix C).
3 The truck delivery noise level was based on a noise measurement 30 feet from a truck unloading that produced a noise level of 54.8 dBA Leq (see pages C-76 and C-77 of Appendix C).
4 The swim pool facility noise level was based on a noise measurement 30 feet from the existing LAC pool hosting a swim meet that produced a noise level of 71.8 dBA Leq (see pages $\mathrm{C}-78$ and $\mathrm{C}-79$ of Appendix C).
5 The soccer fields noise level was based on a noise measurement 5 feet from both JV and Varsity soccer games occurring at Bellflower High School that produced a noise level of 58.9 dBA Leq (see pages C-82 to C-85 of Appendix C).
Source: Noise calculation methodology from Caltrans, 2013.
Table 3-30 shows that the combined noise levels at the homes located on the north side of Carson Street across from the proposed recreational swimming pool facilities would be $58 \mathrm{dBA} \mathrm{L}_{\text {eq }}$, which would exceed both the City's daytime and nighttime noise standards of $50 \mathrm{dBA} \mathrm{L}_{\text {eq }}$ and 45 dBA Leq, respectively. This $^{\text {en }}$
would result in a significant impact. Table 3-30 also shows that the combined levels at all other nearby homes would be within the City's daytime and nighttime noise standards.

As shown above in Table 3-30, the noise source that creates the highest noise levels is the proposed swim pool facility. Mitigation Measure $\mathrm{N}-1$ is provided which requires the construction of a 16 -foot-high wall along the northern edge of the swimming pool area that runs adjacent to Carson Street. Mitigation Measure N-2 is also provided which prohibits swim or water polo competitions from occurring between the hours of 10:00 p.m. and 7:00 a.m.

The operational noise levels at the nearby residential receptors have been recalculated based on the implementation of Mitigation Measure $\mathrm{N}-1$ and the results are shown below. Table 3-31 shows that with implementation of Mitigation Measure $\mathrm{N}-1$, the combined noise level at the homes on the north side of Carson Street would be reduced to 49 dBA , which would be within the City's daytime standard of 50 dBA . Additionally, with implementation of Mitigation Measure $\mathrm{N}-2$, which prohibits swim and water polo events at the proposed recreational swimming pool between the hours of 10:00 p.m. and 7:00 a.m., the combined noise level at the homes on the north side of Carson Street would be reduced to within the City's nighttime standard of 45 dBA . Therefore, with implementation of Mitigation Measures $\mathrm{N}-1$ and $\mathrm{N}-2$, the Proposed Project would not expose persons to or generate noise levels in excess of standards in the Noise Ordinance from onsite sources. Impacts would be less than significant.

Table 3-31: Mitigated Operational Noise Levels at the Nearest Receptors

Table 3-31: Mitigated Operational Noise Levels at the Nearest Receptors

${ }^{4}$ The mitigated swim pool facility noise level was based on a noise measurement 40 feet from the existing LAC pool and 10 feet outside 16 -foot-high wall for pool hosting a swim meet that produced a noise level of 58.4 dBA Leq (see pages C80 and C-81 of Appendix C).
5 The soccer fields noise level was based on a noise measurement 5 feet from both a JV and a Varsity soccer games occurring at Bellflower High School that produced a noise level of 58.9 dBA Leq (see pages C-82 to C-85 of Appendix C).
6 Mitigation Measure 2 is provided that would restrict competitions from occurring at the Swim Pool Facility between 10 p.m. and 7 a.m., which would reduce the nighttime noise level to within the City noise standard of 45 dBA .

Source: Noise calculation methodology from Caltrans, 2013.

Mitigation Measures

Mitigation Measure N-1

The site plan and project design for the Swim Pool Facility shall include construction of a minimum 16 -foothigh wall along the northern edge of the Swim Pool Facility that is adjacent to Carson Street. There shall be no cut outs or openings in the noise barrier.

Mitigation Measure N -2

The LBCCD shall restrict any swimming or water polo competitions from occurring in the Swim Pool Facility between the hours of 10:00 p.m. and 7:00 a.m. This restriction shall not apply to swim and water polo practices and other non-intensive uses of the Swim Pool Facility.

Residual Impacts

Impacts would be less than significant with implementation of Mitigation Measures $\mathrm{N}-1$ and $\mathrm{N}-2$.
Impact 3.7-2: Generation of excessive groundborne vibration or groundborne noise levels.
The Proposed Project would not expose persons to or generate excessive groundborne vibration or groundborne noise levels. The following section analyzes the potential vibration impacts associated with the construction and operations of the Proposed Project.

Construction-Related Vibration Impacts

Construction activities for the Proposed 2041 Facilities Master Plan are anticipated to include demolition of 109,156 -square feet of existing structures, grading up to 21 acres of the LAC, building construction of 264,018 feet of new building space and renovating 387,341 -square feet of building space, paving the onsite roads and parking areas, and applying architectural coatings. Vibration impacts from construction activities associated with the Proposed Project would typically be created from the operation of heavy off-road equipment, such as bulldozers, excavators, scrapers, vibrator rollers, etc. The nearest sensitive receptors to the project site are single-family homes located as near as 130 feet from the areas where construction may occur.

Section 8.80 .200 (G) of the City's Municipal Code limits vibration impacts to the nearby single-family homes to 0.001 g 's in the frequency range of 0 to 30 hertz and 0.003 g 's in the frequency range of 30 to 100 hertz. The acceleration of gravity (g), which is 32.2 feet per second can be converted into peak particle
velocity by multiplying 0.001 g's by 32.2 and then converting to inch per second, which results in a threshold of 0.386 inch per second PPV.

Table 3-32: Typical Vibration from Construction Equipment and Vibration Levels at Nearest Homes

Equipment		Peak Particle Velocity (inches/second)	
		Reference Level at $\mathbf{2 5}$ feet	At Nearest Homes (130 Feet)
	Upper Range	1.518	0.2476
Pile Driver (Sonic)	Typical	0.644	0.1050
	Upper Range	0.734	0.1197
	Typical	0.170	0.0277
Vibratory Roller		0.202	0.0329
Hoe Ram		0.210	0.0342
Large Bulldozer		0.089	0.0145
Caisson Drill		0.089	0.0145
Loaded Trucks		0.089	0.0145
Jackhammer		0.076	0.0124
Small Bulldozer	0.035	0.0057	

Source: Federal Transit Administration, 2006.
Table 3-32 shows that the highest vibration level at the single-family homes located as near as 130 feet from proposed construction activities would occur if an impact pile driver were to be utilized during construction that would create a vibration level as high as 0.2476 inch per second PPV. Table 3-32 also shows that, based on typical propagation rates, all construction equipment vibration levels at the nearby single-family homes would be within the City's 0.3864 in per second PPV vibration standard. Impacts would be less than significant.

Operational-Related Vibration Impacts

The Proposed Project would consist of the development of institutional junior college uses. The only anticipated source of vibration would be from the operation of delivery trucks on the LAC. The nearest sensitive receptors are single-family homes located as near as 125 feet from where delivery trucks are anticipated to operate on the LAC site.

Section $8.80 .200(\mathrm{G})$ of the City's Municipal Code limits vibration impacts to the nearby single-family homes to 0.001 g 's in the frequency range of 0 to 30 hertz and 0.003 g 's in the frequency range of 30 to 100 hertz. The acceleration of gravity (g), which is 32.2 feet per second, can be converted into peak particle velocity by multiplying 0.001 g's by 32.2 and then converting to inch per second, which results in a threshold of 0.386 inch per second PPV.

Caltrans has done extensive research on vibration levels created along freeways and State Routes, and their vibration measurements of roads have never exceeded 0.08 inch per second PPV at 15 feet from the center of the nearest lane with the worst combinations of heavy trucks. Truck loading activities would occur onsite as near as 125 feet from the nearest home. Based on typical propagation rates, the vibration level at the nearest home would by 0.01 inch per second PPV. This would be within the City's vibration
standard of 0.386 inch per second PPV. Therefore, vibration created from operation of the Proposed Project would be below the threshold of perception at the nearest offsite resident. Impacts would be less than significant.

Mitigation Measures

No mitigation measures are necessary.

Residual Impacts

Impacts would be less than significant.

Figure 3-1: Long Beach Airport Noise Contours

\wedge^{N} VISTA ENVIRONMENTAL
Figure 5A
Long Beach Airport Noise Contours

3.8 TRANSPORTATION

3.8.1 Introduction

This transportation section summarizes the results of a Traffic Study conducted for the proposed LBCCD 2041 Facilities Master Plan LAC Improvements, located in the City of Long Beach. This section focuses on evaluating the operating conditions at key study intersections within the Project vicinity, including estimating trip-generating potential of the Proposed Project and forecasting future operating conditions without and with the Proposed Project. The methodology, findings, and conclusions of the Traffic Impact Analysis (see Appendix D for the complete analysis) are presented herein. A total of 21 roadway intersections, or study intersections, in the vicinity of the Proposed Project were analyzed to assess the effects of the trips that would be generated by the Proposed Project. The City of Long Beach was consulted to obtain consensus on the traffic scope, methodology, and assumptions. The traffic impact analysis also incorporated both cumulative traffic growth from specific development projects in the surrounding area and overall ambient growth in background traffic.

As noted in the IS (see Appendix A), potential impacts related to consistency with CEQA Guidelines Section 15064.3, increase in hazards, and emergency access were found to have less-than-significant impacts. Therefore, these issues are not discussed in the SEIR. Refer to Appendix A, Initial Study, for details on these environmental assessments.

3.8.2 Existing Environmental Setting

Project Study Area

For the Project traffic impact analysis, 21 study intersections were defined for the overall study area. Table 3-25 lists the study intersections.

Table 3-33: Project Study Intersections

\author{

1. Lakewood Boulevard at Del Amo Boulevard
 2. Clark Avenue at Del Amo Boulevard
 3. Lakewood Boulevard at Harvey Way
 4. Clark Avenue at Harvey Way
 5. Cherry Avenue at Carson Street
 6. Paramount Boulevard at Carson Street
 7. Lakewood Boulevard at Carson Street
 8. Faculty Avenue at Carson Street
 9. Clark Avenue at Carson Street
 10. Bellflower Boulevard at Carson Street
 11. Woodruff Avenue at Carson Street
}
2. Clark Avenue at Lew Davis Street
3. Lakewood Boulevard at Conant Street
4. Faculty Avenue at Conant Street
5. Clark Avenue at Conant Street
6. Lakewood Boulevard at Wardlow Road
7. Clark Avenue at Wardlow Road
8. Bellflower Boulevard at Wardlow Road
9. Lakewood Boulevard at Spring Street
10. Clark Avenue at Spring Street
11. Bellflower Boulevard at Spring Street

The locations of the study intersections in relation to the Project Site are illustrated on Figure 3-2.

Figure 3-2: Locations of Study Intersections

Existing Traffic Volumes

The Volume-to-Capacity (V/C) and Level of Service (LOS) investigations at these key locations were used to evaluate the potential traffic-related impacts associated with area growth, cumulative projects, and the Proposed Project.

Twenty-one key study intersections have been identified as the locations at which to evaluate existing and future traffic operating conditions. Some portion of potential project-related traffic will pass through each of these intersections, and their analysis will reveal the expected relative impacts of the Project. Existing daily, AM peak-hour and PM peak-hour traffic volumes for the locations evaluated in this report were obtained from daily machine and manual peak-hour turning movement counts conducted by Transportation Studies Inc. in November 2017.

Figures 3-3 and 3-4 illustrate the existing AM and PM peak-hour traffic volumes at the key study intersections evaluated in this report, respectively. Appendix D contains the detailed peak-hour count sheets for the key intersections evaluated in this report.

Table 3-26 summarizes the existing peak-hour service level calculations for the 21 key study intersections based on existing traffic volumes and current street geometrics. Review of Table 3-26 indicates that three of the 21 key study intersections currently operate at an unacceptable LOS during the AM and/or PM peak hours. The remaining 18 key study intersections currently operate at acceptable LOS D or better during the AM and/or PM peak hours.

Table 3-34: Existing Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	Jurisdiction	Existing Traffic Conditions	
			ICU/HCM	LOS
1. Lakewood Boulevard at Del Amo Boulevard	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Lakewood	$\begin{aligned} & 0.905 \\ & 0.958 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$
2. Clark Avenue at Del Amo Boulevard	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Lakewood	$\begin{aligned} & 0.729 \\ & 0.896 \end{aligned}$	$\begin{aligned} & \hline \text { C } \\ & \text { D } \end{aligned}$
3. Lakewood Boulevard at Harvey Way	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Lakewood/ Long Beach	$\begin{aligned} & 0.728 \\ & 0.803 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$
4. Clark Avenue at Harvey Way	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Long Beach	$\begin{aligned} & 0.749 \\ & 0.819 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$
5. Cherry Avenue at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Long Beach	$\begin{aligned} & 0.643 \\ & 0.791 \end{aligned}$	B
6. Paramount Boulevard at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Lakewood	$\begin{aligned} & 0.600 \\ & 0.839 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline B \\ & D \\ & \hline \end{aligned}$
7. Lakewood Boulevard at Carson Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Long Beach/ Lakewood	$\begin{aligned} & 0.623 \\ & 0.762 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$
8. Faculty Avenue at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Long Beach	$\begin{aligned} & \hline 47.7 \mathrm{~s} / \mathrm{v} \\ & 40.0 \mathrm{~s} / \mathrm{v} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline E \\ & E \end{aligned}$
9. Clark Avenue at Carson Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Long Beach	$\begin{aligned} & 0.665 \\ & 0.865 \end{aligned}$	B
10. Bellflower Boulevard at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Long Beach/ Lakewood	$\begin{aligned} & 0.762 \\ & 0.936 \end{aligned}$	C

Table 3-34: Existing Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	Jurisdiction	Existing Traffic Conditions	
			ICU/HCM	LOS
11. Woodruff Avenue at Carson Street	$\begin{aligned} & \hline \hline \text { AM } \\ & \text { PM } \end{aligned}$	Long Beach/ Lakewood	$\begin{aligned} & \hline 0.705 \\ & 0.853 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$
12. Clark Avenue at Lew Davis Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Long Beach	$\begin{aligned} & 0.503 \\ & 0.576 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
13. Lakewood Boulevard at Conant Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	Long Beach	$\begin{aligned} & 0.611 \\ & 0.685 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$
14. Faculty Avenue at Conant Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Long Beach	$\begin{aligned} & 0.419 \\ & 0.373 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
15. Clark Avenue at Conant Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Long Beach	$\begin{aligned} & 0.598 \\ & 0.545 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
16. Lakewood Boulevard at Wardlow Road	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Long Beach	$\begin{aligned} & 0.608 \\ & 0.633 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$
17. Clark Avenue at Wardlow Road	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Long Beach	$\begin{aligned} & 0.599 \\ & 0.607 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$
18. Bellflower Boulevard at Wardlow Road	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	Long Beach	$\begin{aligned} & 0.790 \\ & 0.863 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { C } \\ & \text { D } \end{aligned}$
19. Lakewood Boulevard at Spring Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Long Beach	$\begin{aligned} & 0.805 \\ & 0.813 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$
20. Clark Avenue at Spring Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Long Beach	$\begin{aligned} & 0.659 \\ & 0.622 \\ & \hline \end{aligned}$	B
21. Bellflower Boulevard at Spring Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	Long Beach	$\begin{aligned} & 0.842 \\ & 0.765 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$

Notes:

$\mathrm{s} / \mathrm{v}=$ seconds per vehicle
Bold ICU/LOS or HCM/LOS values indicate adverse service levels

Under the existing scenario, the data within Table 3-26 indicates that three of the 21 study intersections currently operate at poor LOS values of E or F during weekday peak hours.

- Lakewood Boulevard and Del Amo Boulevard - operates at LOS E in both the AM and PM peak hours.
- Faculty Avenue and Carson Street - operates at LOS E in both the AM and PM peak hours.
- Bellflower Boulevard and Carson Street - operates at LOS E in the PM peak hour.

The existing (Year 2017) peak-hour traffic volumes at the study intersections are provided on Figure 3-3 (AM peak) and Figure 3-4 (PM peak).

Figure 3-3: Existing AM Peak-Hour Traffic Volumes

Figure 3-4: Existing PM Peak-Hour Traffic Volumes

Existing Alternative Transit Conditions

Long Beach Transit (LBT) provides public transit services in the vicinity of the Proposed Project. Figure 35 graphically illustrates the LBT routes within the project study area, respectively. Figure 3-6 identifies the location of the existing bus stops in proximity to the Project Site.

The City of Long Beach promotes bicycling as a means of mobility and a way in which to improve the quality of life within its community. The Bicycle Master Plan recognizes the needs of bicycle users and aims to create a complete and safe bicycle network throughout the City. The City of Long Beach Bicycle Facilities in the vicinity of the Project Site (existing and proposed) are shown on Figure 3-7.

Figure 3-5: Existing Long Beach Transit Routes

Figure 3-6: Transit Stop Locations

Figure 3-7: Long Beach Bikeway Facilities

FIGURE 3-7

21037

3.8.3 Impacts and Mitigation

Methodology

In order to estimate the traffic impact characteristics of the Proposed Project, a multi-step process has been utilized. The first step is traffic generation, which estimates the total arriving and departing traffic on a peak-hour and daily basis. The second step of the forecasting process is traffic distribution, which identifies the origins and destinations of inbound and outbound project traffic. The third step is traffic assignment, which involves the allocation of project traffic to study area streets and intersections.

With the forecasting process complete and project traffic assignments developed, the impact of the proposed project is isolated by comparing operational (LOS) conditions at selected key intersections using expected future traffic volumes with and without forecast project traffic. The need for site-specific and/or cumulative local area traffic improvements can then be evaluated and the significance of the project's impacts identified.

Existing Intersection Conditions

Existing AM and PM peak-hour operating conditions for the key signalized study intersections were evaluated using the Intersection Capacity Utilization (ICU) methodology. All unsignalized intersections were evaluated using the Highway Capacity Manual (HCM) Operations methodology.

Intersection Capacity Utilization (ICU) Method of Analysis (Signalized Intersections)

In conformance with City of Long Beach, City of Lakewood and Los Angeles County Congestion Management Program (CMP) requirements, existing weekday peak-hour operating conditions for the key signalized study intersections were evaluated using the Intersection Capacity Utilization (ICU) method. The ICU technique is intended for signalized intersection analysis and estimates the V/C relationship for an intersection based on the individual V/C ratios for key conflicting traffic movements. The ICU numerical value represents the percent signal (green) time and, thus, capacity required by existing and/or future traffic. It should be noted that the ICU methodology assumes uniform traffic distribution per intersection approach lane and optimal signal timing.

Per City of Long Beach and City of Lakewood requirements, the ICU calculations use a lane capacity of 1,600 vehicles per hour (vph) for left-turn, through, and right-turn lanes and dual left turn capacity of $2,880 \mathrm{vph}$. A clearance adjustment factor of 0.10 was added to each LOS calculation.

The ICU value translates to a LOS estimate, which is a relative measure of the intersection performance. The ICU value is the sum of the critical volume to capacity ratios at an intersection; it is not intended to be indicative of the LOS of each of the individual turning movements.

Highway Capacity Manual (HCM) Method of Analysis (Unsignalized Intersections)

The HCM unsignalized methodology for stop-controlled intersections was utilized for the analysis of the unsignalized intersections. This methodology estimates the average control delay for each of the subject movements and determines the LOS for each movement. For all-way stop-controlled intersections, the overall average control delay measured in seconds per vehicle, and LOS, is calculated for the entire intersection. For one-way and two-way stop-controlled (minor street stop-controlled) intersections, this
methodology estimates the worst side street delay, measured in seconds per vehicle, and determines the level of service for that approach. The HCM control delay value translates to a LOS estimate, which is a relative measure of the intersection performance.

Level of Service Criteria

According to the City of Long Beach, LOS D is the minimum acceptable condition that should be maintained during the peak commute hours, or the current LOS if the existing LOS is worse than LOS D (i.e., LOS E or F). For the study intersections in the City of Lakewood, LOS D is the minimum acceptable condition that should be maintained during the peak commute hours.

Project Traffic Distribution

Project traffic volumes both entering and exiting the Project Site have been distributed and assigned to the adjacent street system based on the following considerations:

- the site's proximity to major traffic carriers (i.e., Carson Street, Lakewood Boulevard, etc.)
- expected localized traffic flow patterns based on adjacent street channelization and presence of traffic signals
- location of existing parking spaces
- ingress/egress availability at the Project Site

The traffic generation forecast is presented in Table 3-27.
Table 3-35: Project Trip Generation

ITE Land Use Code / Project Description	Weekday						
	Daily 2-way	AM Peak Hour			PM Peak Hour		
		Enter	Exit	Total	Enter	Exit	Total
Generation Factors							
540: Junior/Community College (TE/Student)	1.15	81\%	19\%	0.11	56\%	44\%	0.11
Generation Forecasts							
LBCCD - Liberals Arts Campus (Net Increase 7,458 Students)	8,577	664	156	820	459	361	820

Notes: ITE = Institute of Transportation Engineers; TE = Trip ends per student

Figure 3-8: AM Peak-Hour Project Traffic Volumes

$\xrightarrow[\text { engineers }]{ }$

$$
\begin{aligned}
& \text { KEY } \\
& \hline \#=\text { STUEY INTERSECTION } \\
& \# \#=\text { PROUECT SITE }
\end{aligned}
$$

SCALE

Figure 3-9: PM Peak-Hour Project Traffic Volumes

$\xrightarrow[\text { engineers }]{ }$

$$
\begin{aligned}
& \text { KEY } \\
& \hline \#=\text { STUDY INTERSECTION } \\
& W=W=\text { PROJECT SITE }
\end{aligned}
$$

Existing Plus Project Traffic Conditions

The existing plus project traffic conditions have been generated based upon existing conditions and the estimated project traffic. These forecast traffic conditions have been prepared pursuant to the CEQA Guidelines, which require that the potential impacts of a project be evaluated upon the circulation system as it currently exists. This traffic volume scenario and the related intersection capacity analyses will identify the roadway improvements necessary to mitigate the direct traffic impacts of the Project, if any.

Figures 3-8 and 3-9 present projected AM and PM peak-hour traffic volumes at the 21 key study locations with the addition of the trips generated by the Proposed Project to existing traffic volumes, respectively. Figures 3-10 and 3-11 present existing plus project AM and PM peak-hour traffic volumes at the 21 key study locations.

Future Traffic Conditions

Ambient Traffic Growth

Horizon year, background traffic growth estimates have been calculated using an ambient traffic growth factor. The ambient traffic growth factor is intended to include unknown and future cumulative projects in the study area, as well as account for regular growth in traffic volumes due to the development of projects outside the study area. The future growth in traffic volumes has been calculated at 0.708 percent per year. Applied to the Year 2017 existing traffic volumes, this factor results in a 16.992 percent growth in existing volumes to the planning horizon Year 2041. Please note that the recommended ambient growth factor is consistent with the background traffic growth estimates contained in the most current Congestion Management Program for Los Angeles County (1992).

Cumulative Traffic Characteristics

In order to make a realistic estimate of future on-street conditions prior to implementation of the Proposed Project, the status of other known development projects (cumulative projects) has been researched at the Cities of Long Beach and Lakewood. With this information, the potential impact of the Proposed Project can be evaluated within the context of the cumulative impact of all ongoing development. Based on research conducted for the Traffic Impact Analysis, four cumulative projects are located in the City of Long Beach and 22 cumulative projects are located in the City of Lakewood that have either been built but are not yet fully occupied, or are being processed for approval. These 26 cumulative projects have been included as part of the cumulative background setting.

Year 2041 Cumulative Traffic Volumes

Figures 3-12 and 3-13 present the Year 2041 AM and PM peak-hour cumulative traffic volumes at the key study intersections, respectively. Please note that the cumulative traffic volumes represent the accumulation of existing traffic, ambient growth traffic, and cumulative projects traffic.

Figures 3-14 and 3-15 illustrate the Year 2041 forecast AM and PM peak-hour traffic volumes, with the inclusion of the trips generated by the Proposed Project, respectively.

Figure 3-10: Existing Plus Project AM Peak-Hour Traffic Volumes

Figure 3-11: Existing Plus Project PM Peak-Hour Traffic Volumes

Figure 3-12: Year 2041 Buildout AM Peak-Hour Traffic Volumes

Figure 3-13: Year 2041 Buildout PM Peak-Hour Traffic Volumes

Figure 3-14: Year 2041 Buildout Plus Project AM Peak-Hour Traffic Volumes

Figure 3-15: Year 2041 Buildout Plus Project PM Peak-Hour Traffic Volumes

Traffic Impact Analysis Methodology

The relative impacts of the Proposed Project during the AM peak hour and PM peak hour were evaluated based on analysis of future operating conditions at the 21 key study intersections, without, then with, the Proposed Project. The previously discussed capacity analysis procedures were utilized to investigate the future V / C relationships and service level characteristics at each study intersection. The significance of the potential impacts of the Project at each key intersection was then evaluated using the following traffic impact criteria.

Impact Criteria and Thresholds

Impacts to City of Long Beach intersections are considered significant if:

- An unacceptable peak-hour LOS (i.e., LOS E or F) at any of the key intersections is projected. The City of Long Beach considers LOS D (ICU $=0.801-0.900$) to be the minimum acceptable LOS for all intersections. For the City of Long Beach, the current LOS, if worse than LOS D (i.e., LOS E or F), should also be maintained; and
- The project increases traffic demand at the study intersection by 2 percent of capacity (ICU increase ≥ 0.020), causing or worsening LOS E or F (ICU >0.901).
- At unsignalized intersections, an impact is considered to be significant if the project causes an intersection operating at LOS D or better to degrade to LOS E or F, and the traffic signal warrant analysis determines that a traffic signal is justified.

Impacts to City of Lakewood intersections are considered significant if:

- An unacceptable peak-hour LOS (i.e., LOS E or F) at any of the key intersections is projected. The City of Lakewood considers LOS D (ICU $=0.801-0.900)$ to be the minimum acceptable LOS for all intersections; and
- The project increases traffic demand at the study intersection by 2 percent of capacity (ICU increase ≥ 0.020), causing or worsening LOS E or F (ICU >0.901).
- At unsignalized intersections, an impact is considered to be significant if the project causes an intersection operating at LOS D or better to degrade to LOS E or F, and the traffic signal warrant analysis determines that a traffic signal is justified.

Traffic Impact Analysis Scenarios

The following scenarios are those for which volume/capacity calculations have been performed at the 21 key study intersections for existing plus project and Year 2041 traffic conditions:
A. Existing Traffic Conditions
B. Existing Plus Project Traffic Conditions
C. Scenario (B) with Improvements, if necessary
D. Year 2041 Cumulative Traffic Conditions
E. Year 2041 Cumulative Plus Project Traffic Conditions
F. Scenario (E) with Improvements, if necessary

Project Impacts

Impact 3.8-1: Conflict with a plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle lanes, and pedestrian paths.

Overview of Senate Bill 743

On September 27, 2013, Governor Brown signed Senate Bill (SB) 743 (Steinberg, 2013). Among other things, SB 743 creates a process to change the methodology to analyze transportation impacts under CEQA (Public Resources Code section 21000 and following), which could include analysis based on project vehicle miles traveled (VMT) rather than impacts to intersection Level of Service. On December 30, 2013, the State of California Governor's Office of Planning and Research (OPR) released a preliminary evaluation of alternative methods of transportation analysis. The intent of the original guidance documentation was geared first towards projects located within areas that are designated as transit priority areas, to be followed by other areas of the State. OPR issued other draft discussion documents in March 2015 and January 2016, suggesting some new revisions to the state CEQA Guidelines. In November 2017, OPR submitted the proposed amendments to the CEQA Guidelines to the State's Natural Resources Agency (that include a proposed new Guidelines section 15064.3 which governs how VMT-based analyses of potential traffic impacts should be conducted). On January 26, 2018, the Natural Resource Agency published a Notice of Rulemaking, commencing the formal rulemaking process for the amendments to the CEQA Guidelines. Over the coming months, the Natural Resources Agency will conduct a formal administrative rulemaking process on the CEQA Guidelines. That rulemaking process will entail additional public review and may lead to further revisions. OPR then will update a technical advisory that accompanies the revised CEQA Guidelines. OPR has therefore not issued any final revisions to the state CEQA Guidelines to implement the CEQA traffic analysis component of SB 743 ; thus, the analysis in this study utilizes existing, long-established protocols in accordance with CEQA, the existing state CEQA Guidelines, and the City's CEQA Thresholds Guide. (See Public Resources Code section 21099(b).) However, to address the intent of the legislation and the guidance received from the State, the following analysis was conducted using the best available methodologies.

Because the Project is considered a "land use project", its consistency with CEQA Guidelines section 15064.3, subdivision (b)(1) should be evaluated. Section 15064.3 is a new section of the CEQA Guidelines proposed by OPR and the Natural Resource Agency within the draft updates. At the time of publication, this represents the best available guidelines and has been analyzed as such. Section 15064.3, subdivision (b)(1) reads as follows:
(b) Criteria for Analyzing Transportation Impacts.
(1) Land Use Projects. Vehicle miles traveled exceeding an applicable threshold of significance may indicate a significant impact. Generally, projects within one-half mile of either an existing major transit stop or a stop along an existing high quality transit corridor should be presumed to cause a less than significant transportation impact. Projects that decrease vehicle miles traveled in the project area
compared to existing conditions should be considered to have a less than significant transportation impact.

Not only is the Project located along an existing transit corridor and served by several transit stops, but the implementation of the 2041 Facilities Master Plan for this campus will accommodate forecasted growth in school enrollment, allowing local students attendance at this campus and reducing the need to travel further to attend community college. This will decrease vehicle miles traveled as compared to existing conditions and therefore the project is considered to have a less than significant impact to this aspect of transportation, under the proposed CEQA Guidelines updates.

Existing Plus Project Analysis and Traffic Conditions

Table 3-28 summarizes the peak-hour Level of Service results at the 21 key study intersections for existing plus project traffic conditions. The first column of ICU/LOS values and HCM/LOS values in Table 3-28 presents a summary of existing AM and PM peak-hour traffic conditions (which were also presented in Table 3-26). The second column lists existing plus project traffic conditions. The third column shows the increase in ICU value and/or HCM value due to the added peak-hour project trips and indicates whether the traffic associated with the Project will have a significant impact based on the LOS standards and significant impact criteria defined in this report. The fourth column indicates the anticipated level of service with recommended improvements, discussed later in this report.

Review of columns 2 and 3 of Table 3-28 indicates that traffic associated with the Proposed Project, when added to only existing traffic volumes, will significantly impact three of the 21 key study intersections when compared to the LOS standards and significant impact criteria specified in this report. Although the intersections of Lakewood Boulevard/Del Amo Boulevard and Bellflower Boulevard/Carson Street are forecast to operate at unacceptable LOS E during the AM and/or PM peak hours with the addition of project traffic, the Proposed Project is expected to add less than 0.020 to the ICU value, which results in a less than significant impact. The remaining 16 key study intersections currently operate and are forecast to continue to operate at an acceptable service level during the AM and PM peak hours with the addition of project-generated traffic to existing traffic.

As shown in column 4, the implementation of improvements (discussed later in this report) at the impacted key study intersection of Faculty Avenue/Carson Street completely offsets the impact of project traffic, and the key study intersection is forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining two impacted key study intersections of Clark Avenue/Del Amo Boulevard and Clark Avenue/Carson Street, additional capacity-enhancing improvements at these two key study intersections do not appear feasible due to physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these two locations will remain significant.

Table 3-36: Existing Plus Project Peak-Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	(1) Existing Traffic Conditions		(2) Existing Plus Project Traffic Conditions		(3) Significant Impact		(4) Existing Plus Project Traffic Conditions with Improvements	
		ICU/HCM	LOS	ICU/HCM	LOS	Increase	Yes/No	ICU/HCM	LOS
1. Lakewood Boulevard at Del Amo Boulevard	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.905 \\ & 0.958 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 0.924 \\ & 0.974 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 0.019 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \hline \end{aligned}$		--
2. Clark Avenue at Del Amo Boulevard	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.729 \\ & 0.896 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.747 \\ & 0.911 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.015 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { No } \\ & \text { Yes } \end{aligned}$	N.F.	
3. Lakewood Boulevard at Harvey Way	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.728 \\ & 0.803 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.753 \\ & 0.826 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.025 \\ & 0.023 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \hline \end{aligned}$	--	
4. Clark Avenue at Harvey Way	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.749 \\ & 0.819 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.783 \\ & 0.839 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 0.034 \\ & 0.020 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	
5. Cherry Avenue at Carson Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.643 \\ & 0.791 \end{aligned}$	$\begin{aligned} & \hline B \\ & C \end{aligned}$	$\begin{aligned} & 0.652 \\ & 0.810 \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.019 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	
6. Paramount Boulevard at Carson Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.600 \\ & 0.839 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 0.628 \\ & 0.868 \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \hline 0.028 \\ & 0.029 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	
7. Lakewood Boulevard at Carson Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.623 \\ & 0.762 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 0.651 \\ & 0.793 \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & C \end{aligned}$	$\begin{aligned} & \hline 0.028 \\ & 0.031 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$		
8. Faculty Avenue at Carson Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 47.7 \mathrm{~s} / \mathrm{v} \\ & 40.0 \mathrm{~s} / \mathrm{v} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 77.0 \mathrm{~s} / \mathrm{v} \\ & 78.7 \mathrm{~s} / \mathrm{v} \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & 29.3 \mathrm{~s} / \mathrm{v} \\ & 38.7 \mathrm{~s} / \mathrm{v} \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 18.5 \mathrm{~s} / \mathrm{v} \\ & 15.3 \mathrm{~s} / \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$
9. Clark Avenue at Carson Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.665 \\ & 0.865 \end{aligned}$	$\begin{aligned} & \hline B \\ & D \end{aligned}$	$\begin{aligned} & 0.726 \\ & 0.902 \end{aligned}$	\bar{c}	$\begin{aligned} & \hline 0.061 \\ & 0.037 \end{aligned}$	$\begin{aligned} & \hline \text { No } \\ & \text { Yes } \end{aligned}$	N.F.	N.F.
10. Bellflower Boulevard at Carson Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.762 \\ & 0.936 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.794 \\ & 0.945 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { E } \end{aligned}$	$\begin{aligned} & 0.032 \\ & 0.009 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { No } \\ & \text { No } \end{aligned}$		--
11. Woodruff Avenue at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.705 \\ & 0.853 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.720 \\ & 0.871 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.015 \\ & 0.018 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { No } \\ & \text { No } \\ & \hline \end{aligned}$		--
12. Clark Avenue at Lew Davis Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.503 \\ & 0.576 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.577 \\ & 0.649 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.074 \\ & 0.073 \end{aligned}$	$\begin{aligned} & \hline \text { No } \\ & \text { No } \end{aligned}$	--	--
13. Lakewood Boulevard at Conant Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.611 \\ & 0.685 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.613 \\ & 0.743 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.058 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$		--
14. Faculty Avenue at Conant Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.419 \\ & 0.373 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0.537 \\ & 0.494 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.118 \\ & 0.121 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
15. Clark Avenue at Conant Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.598 \\ & 0.545 \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0.673 \\ & 0.573 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.075 \\ & 0.028 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
16. Lakewood Boulevard at Wardlow Road	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.608 \\ & 0.633 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.623 \\ & 0.644 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 0.015 \\ & 0.011 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
17. Clark Avenue at Wardlow Road	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.599 \\ & 0.607 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.634 \\ & 0.632 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0.035 \\ & 0.025 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { No } \\ & \text { No } \end{aligned}$		--
18. Bellflower Boulevard at Wardlow Road	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.790 \\ & 0.853 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \\ & \hline \end{aligned}$	$\begin{aligned} & 0.807 \\ & 0.860 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline D \\ & D \end{aligned}$	$\begin{aligned} & 0.017 \\ & 0.007 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
19. Lakewood Boulevard at Spring Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.805 \\ & 0.813 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.820 \\ & 0.820 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 0.015 \\ & 0.007 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { No } \\ & \text { No } \end{aligned}$	--	--
20. Clark Avenue at Spring Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.659 \\ & 0.622 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.661 \\ & 0.636 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.014 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { No } \\ & \text { No } \\ & \hline \end{aligned}$	--	--
21. Bellflower Boulevard at Spring Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.842 \\ & 0.765 \end{aligned}$	$\begin{aligned} & \hline D \\ & C \end{aligned}$	$\begin{aligned} & 0.861 \\ & 0.772 \end{aligned}$	$\begin{aligned} & \hline D \\ & C \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.007 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--

Notes:
$\mathrm{s} / \mathrm{v}=$ seconds per vehicle
Bold ICU/LOS or HCM/LOS values indicate adverse service levels

Year 2041 Traffic Conditions

Table 3-28 summarizes the peak-hour Level of Service results at the 21 key study intersections for the Year 2041 horizon year. The first column of ICU/LOS and HCM/LOS values in Table 3-28 presents a summary of existing AM and PM peak-hour traffic conditions (which were also presented in Table 3-26). The second column lists projected Year 2041 traffic conditions (existing plus ambient plus cumulative projects traffic) based on existing intersection geometry but without any traffic generated from the Proposed Project. The third column presents forecast Year 2041 traffic conditions with the addition of project traffic. The fourth column shows the increase in ICU value and/or HCM value due to the added peak-hour project trips and indicates whether the traffic associated with the Project will have a significant impact based on the LOS standards and significant impact criteria defined in this report. The fifth column indicates the anticipated level of service with recommended improvements, discussed later in this report.

Year 2041 Buildout Traffic Conditions (without Project)

An analysis of future (Year 2041) cumulative traffic conditions indicates that the addition of ambient traffic growth and cumulative projects traffic will adversely impact 13 of the 21 key study intersections. The remaining eight key study intersections are forecast to continue to operate at acceptable LOS during the AM and PM peak hours with the addition of ambient traffic growth and cumulative projects traffic.

Year 2041 Buildout Plus Project Conditions
Review of Columns 3 and 4 of Table 3-28 indicates that the added traffic associated with the Proposed Project will significantly impact seven of the 21 key study intersections when compared to the LOS standards and significant impact criteria specified in this report. Although the intersections of Lakewood Boulevard/Del Amo Boulevard, Clark Avenue/Del Amo Boulevard, Cherry Avenue/Carson Street, Woodruff Avenue/Carson Street, Bellflower Boulevard/Wardlow Road, Lakewood Boulevard/Spring Street, and Bellflower Boulevard/Spring Street are forecast to operate at unacceptable LOS E and/or F during the AM and/or PM peak hours with the addition of project traffic, the Proposed Project is expected to add less than 0.020 to the ICU value, which results in a less than significant impact. The remaining seven key study intersections are forecast to continue to operate at an acceptable LOS with the addition of project-generated traffic in the Year 2041.

As shown in column 5, the implementation of improvements (discussed later in this report) at the impacted key study intersection of Lakewood Boulevard/Harvey Way offsets the impact of project traffic; however, this location is still forecast to operate at unacceptable LOS E during the PM peak hour. The implementation of improvements at the impacted key study intersections of Clark Avenue/Harvey Way and Faculty Avenue/Carson Street completely offsets the impact of project traffic, and the key study intersections are forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining four impacted key study intersections of Paramount Boulevard/Carson Street, Lakewood Boulevard/Carson Street, Clark Avenue/Carson Street, and Bellflower Boulevard/Carson Street, additional capacity-enhancing improvements at these four key study intersections do not appear feasible due to physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these four locations will remain significant.

Table 3-37: Year 2041 Plus Project Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	(1) Existing Traffic Conditions		(2) Year 2041 Buildout Traffic Conditions		(3) Year 2041 Buildout Plus Project Traffic Conditions		(4) Significant Impact		(5) Year 2041 Buildout Plus Project Traffic Conditions with Improvements	
		ICU/HCM	LOS	ICU/HCM	LOS	ICU/HCM	LOS	Increase	Yes/No	ICU/HCM	LOS
1. Lakewood Boulevard at Del Amo Boulevard	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.905 \\ & 0.958 \end{aligned}$	$\begin{aligned} & E \\ & E \end{aligned}$	$\begin{aligned} & 1.070 \\ & 1.136 \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & \hline 1.089 \\ & 1.152 \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & \hline 0.019 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
2. Clark Avenue at Del Amo Boulevard	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.729 \\ & 0.896 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.841 \\ & 1.041 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.859 \\ & 1.057 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
3. Lakewood Boulevard at Harvey Way	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.728 \\ & 0.803 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.839 \\ & 0.930 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.864 \\ & 0.953 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.023 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0.864 \\ & 0.906 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \\ & \hline \end{aligned}$
4. Clark Avenue at Harvey Way	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.749 \\ & 0.819 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.864 \\ & 0.944 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.898 \\ & 0.965 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.034 \\ & 0.021 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0.843 \\ & 0.877 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$
5. Cherry Avenue at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.643 \\ & 0.791 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.793 \\ & 0.913 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.749 \\ & 0.932 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.019 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
6. Paramount Boulevard at Carson Street	AM PM	$\begin{aligned} & 0.600 \\ & 0.839 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.687 \\ & 0.966 \end{aligned}$	$\begin{aligned} & B \\ & E \end{aligned}$	$\begin{aligned} & 0.714 \\ & 0.995 \end{aligned}$	$\begin{aligned} & C \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.029 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	N.F.	N.F.
7. Lakewood Boulevard at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.623 \\ & 0.762 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.718 \\ & 0.887 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.745 \\ & \mathbf{0 . 9 1 9} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.032 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	N.F.	N.F.
8. Faculty Avenue at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 47.7 \mathrm{~s} / \mathrm{v} \\ & 40.0 \mathrm{~s} / \mathrm{v} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 192.3 \mathrm{~s} / \mathrm{v} \\ & 254.9 \mathrm{~s} / \mathrm{v} \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & 346.4 \mathrm{~s} / \mathrm{v} \\ & 538.3 \mathrm{~s} / \mathrm{v} \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & 154.1 \mathrm{~s} / \mathrm{v} \\ & 283.4 \mathrm{~s} / \mathrm{v} \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 24.2 \mathrm{~s} / \mathrm{v} \\ & 19.6 \mathrm{~s} / \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$
9. Clark Avenue at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.665 \\ & 0.865 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.768 \\ & 1.000 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.820 \\ & 1.038 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.052 \\ & 0.038 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	N.F.	N.F.
10. Bellflower Boulevard at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.762 \\ & 0.936 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.880 \\ & 1.083 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.912 \\ & 1.091 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.032 \\ & 0.008 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$
11. Woodruff Avenue at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.705 \\ & 0.853 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.822 \\ & 0.992 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.837 \\ & 1.009 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.017 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
12. Clark Avenue at Lew Davis Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.503 \\ & 0.576 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.571 \\ & 0.658 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0.645 \\ & 0.728 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.074 \\ & 0.070 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
13. Lakewood Boulevard at Conant Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.611 \\ & 0.685 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0.702 \\ & 0.790 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.702 \\ & 0.848 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.058 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \hline \end{aligned}$	--	--
14. Faculty Avenue at Conant Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.419 \\ & 0.373 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.473 \\ & 0.420 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.591 \\ & 0.541 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.118 \\ & 0.121 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
15. Clark Avenue at Conant Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.598 \\ & 0.545 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.683 \\ & 0.620 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0.757 \\ & 0.649 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0.074 \\ & 0.029 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
16. Lakewood Boulevard at Wardlow Road	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.608 \\ & 0.633 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0.696 \\ & 0.728 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.712 \\ & 0.739 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.016 \\ & 0.011 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--

Table 3-37: Year 2041 Plus Project Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	(1) Existing Traffic Conditions		(2) Year 2041 Buildout Traffic Conditions		(3) Year 2041 Buildout Plus Project Traffic Conditions		(4) Significant Impact		(5) Year 2041 Buildout Plus Project Traffic Conditions with Improvements	
		ICU/HCM	LOS	ICU/HCM	LOS	ICU/HCM	LOS	Increase	Yes/No	ICU/HCM	LOS
17. Clark Avenue at Wardlow Road	$\begin{aligned} & \hline \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.599 \\ & 0.607 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \hline 0.686 \\ & 0.694 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \hline 0.721 \\ & 0.720 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 0.035 \\ & 0.026 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline \text { No } \\ & \text { No } \end{aligned}$		--
18. Bellflower Boulevard at Wardlow Road	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.790 \\ & 0.853 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.909 \\ & 0.982 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.926 \\ & 0.989 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.017 \\ & 0.007 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$		--
19. Lakewood Boulevard at Spring Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.805 \\ & 0.813 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.930 \\ & 0.948 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.945 \\ & 0.955 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
20. Clark Avenue at Spring Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.659 \\ & 0.622 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0.756 \\ & 0.714 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.758 \\ & 0.728 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.014 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--
21. Bellflower Boulevard at Spring Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.842 \\ & 0.765 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 0.970 \\ & 0.881 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.989 \\ & 0.888 \end{aligned}$					
Notes: $s / v=$ seconds per vehicle Bold ICU/LOS or HCM/LOS values ind	e adve	service lev									

Mitigation Measures

MM TRA-1: Lakewood Boulevard at Harvey Way: Restripe Harvey Way to provide an exclusive westbound right-turn lane. Given that this key study intersection is located jointly in the Cities of Long Beach and Lakewood, the installation of this improvement is subject to the approval of the City of Long Beach and the City of Lakewood. It should be noted that these improvements cannot be guaranteed by the Proposed Project or the City of Long Beach, as the improvements would also require approval from the City of Lakewood. As such, the impact at this location is considered significant and unavoidable, and a statement of overriding considerations will be required for this location.

MM TRA-2: Clark Avenue at Harvey Way: Restripe Harvey Way to provide an exclusive eastbound rightturn lane. The installation of this improvement is subject to the approval of the City of Long Beach.

MM TRA-3: Faculty Avenue at Carson Street: Install signage to restrict southbound left-turn movements during the AM peak period (7:00 AM - 9:00 AM) and during the PM peak period (4:00 PM - 6:00 PM). The installation of this improvement is subject to the approval of the City of Long Beach.

For the following intersections which would experience significant impacts, no physical mitigation measures are feasible:

- Clark Avenue at Del Amo Boulevard
- Clark Avenue at Carson Street
- Lakewood Boulevard at Harvey Way
- Paramount Boulevard at Carson Street
- Lakewood Boulevard at Carson Street
- Clark Avenue at Carson Street
- Bellflower Boulevard at Carson Street

Residual Impacts

For the Existing Plus Project Analysis, the implementation of improvements at the impacted key study intersection of Faculty Avenue/Carson Street completely offsets the impact of project traffic and the key study intersection is forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining two impacted key study intersections of Clark Avenue/Del Amo Boulevard and Clark Avenue/Carson Street, additional capacity-enhancing improvements at these two key study intersections do not appear feasible due to physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these two locations will remain significant.

For the Year 2041 Buildout Plus Project Analysis, the implementation of improvements at the impacted key study intersection of Lakewood Boulevard/Harvey Way offsets the impact of project traffic; however, this location is still forecast to operate at unacceptable LOS E during the PM peak hour. The implementation of improvements at the impacted key study intersections of Clark Avenue/Harvey Way and Faculty Avenue/Carson Street completely offsets the impact of project traffic, and the key study intersections are forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining four impacted key study intersections of Paramount Boulevard/Carson Street, Lakewood Boulevard/Carson Street, Clark Avenue/Carson Street, and Bellflower Boulevard/Carson Street, additional capacity-enhancing improvements at these four key study intersections do not appear feasible due to
physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these four locations will remain significant.

3.8.4 Cumulative Impacts

Impact 3C-3: Result in cumulatively considerable impact with respect to traffic.
Cumulative impacts are considered in the Project impact analysis above, as the transportation analysis includes cumulative project traffic in the area as well as future growth at LBCCD LAC. Future traffic volumes are identified in Figures 3-14 and 3-15, and impacts regarding Year 2041 Buildout Plus Project conditions are portrayed in Table 3-28.

Based on this analysis (see Impact 3.8-1 above), traffic generated as a result of cumulative growth projects is included in the analysis for the Proposed Project, which resulted in a significant and unavoidable impact.

Mitigation Measures

See Mitigation Measures TRA-1, TRA-2, and TRA-3, above.

Residual Impacts

For the Existing Plus Project Analysis, the implementation of improvements at the impacted key study intersection of Faculty Avenue/Carson Street completely offsets the impact of project traffic and the key study intersection is forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining two impacted key study intersections of Clark Avenue/Del Amo Boulevard and Clark Avenue/Carson Street, additional capacity-enhancing improvements at these two key study intersections do not appear feasible due to physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these two locations will remain significant.

For the Year 2041 Buildout Plus Project Analysis, the implementation of improvements at the impacted key study intersection of Lakewood Boulevard/Harvey Way offsets the impact of project traffic; however, this location is still forecast to operate at unacceptable LOS E during the PM peak hour. The implementation of improvements at the impacted key study intersections of Clark Avenue/Harvey Way and Faculty Avenue/Carson Street completely offsets the impact of project traffic, and the key study intersections are forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining four impacted key study intersections of Paramount Boulevard/Carson Street, Lakewood Boulevard/Carson Street, Clark Avenue/Carson Street, and Bellflower Boulevard/Carson Street, additional capacity-enhancing improvements at these four key study intersections do not appear feasible due to physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these four locations will remain significant.

CHAPTER 4.0 - ALTERNATIVES ANALYSIS

4.1 INTRODUCTION AND OVERVIEW

The California Environmental Quality Act (CEQA) requires that an Environmental Impact Report (EIR) describe a range of reasonable alternatives to the project, or to the location of the project, which could feasibly avoid or lessen any significant environmental impacts while substantially attaining the basic objectives of the project. An EIR should also evaluate the comparative merits of the alternatives. This chapter describes potential alternatives to the Proposed Project that were considered, identifies alternatives that were eliminated from further consideration and reasons for dismissal, and analyzes available alternatives in comparison to the potential environmental impacts associated with the Proposed Project.

Key provisions of the CEQA Guidelines pertaining to the alternatives analysis are summarized below:

- The discussion of alternatives shall focus on alternatives to the Proposed Project or its location that are capable of avoiding or substantially lessening any significant effects of the Proposed Project, even if these alternatives would impede to some degree the attainment of the Proposed Project objectives, or would be more costly.
- The No Project Alternative shall be evaluated along with its impact. The No Project analysis shall discuss the existing conditions at the time the Notice of Preparation is published. Additionally, the analysis shall discuss what would be reasonably expected to occur in the foreseeable future if the Proposed Project were not approved, based on current plans and consistent with available infrastructure and community services.
- The range of alternatives required in an EIR is governed by a "rule of reason"; therefore, the EIR must evaluate only those alternatives necessary to permit a reasoned choice. Alternatives shall be limited to ones that would avoid or substantially lessen any of the significant effects of the Proposed Project.
- For alternative locations, only locations that would avoid or substantially lessen any of the significant effects of the Proposed Project need to be considered for inclusion in the EIR.
- An EIR need not consider an alternative whose effects cannot be reasonably ascertained and whose implementation is remote and speculative.

The range of feasible alternatives is selected and discussed in a manner to foster meaningful public participation and informed decision making. Among the factors that may be taken into account when addressing the feasibility of alternatives are environmental impacts; site suitability; economic viability; availability of infrastructure; general plan contingency; regulatory limitation; jurisdictional boundaries; and whether the proponent could reasonably acquire, control, or otherwise have access to the alternative site. An EIR need not consider an alternative whose effects cannot be reasonably identified, whose implementation is remote or speculative, and that would not achieve the basic project objectives.

$4.2 \quad$ PROJECT OBJECTIVES

As discussed in Chapter 2, Project Description and Environmental Setting, the Proposed Project is intended to implement the 2041 Facilities Master Plan to provide for a portion of the educational needs of students at LBCC's Liberal Arts Campus.

The District's goal as part of the California Community College system is to offer academic and vocational education to students at the lower college division level. In addition, the District's goal is to advance California's economic growth and global competitiveness through education, training, and services that contribute to continuous workforce improvement.

The objective of the 2041 Facilities Master Plan is to provide plans to implement proposed necessary construction, renovation, and general capital improvements at the campus in order to meet the District's goals. The improvements are intended to update and improve existing technological and program services in order to meet the increasing needs of students and faculty. Specific objectives that have been identified by the LBCCD include the following:

- Provide equitable student learning and achievement, academic excellence, and workforce development by delivering high quality education programs and support services to diverse communities
- Provide clear pathways to students to achieve their career and educational goals through providing adequate facilities to support the ability for students to earn an associate degree or certificate solely within each campus, without having to take classes at both campuses
- Provide upgraded athletic facilities that support physical activity on campus and provide opportunities for organized recreational use for the community
- Provide renovated classrooms and educational facilities in order to properly serve current and future students on campus
- Ensure a sustainable and state-of-the-art facilities infrastructure

4.3 ALTERNATIVES TO THE PROPOSED PROJECT

The alternatives identified below, with the exception of the mandatory No Project Alternative, were selected due to their potential to attain the basic project objectives discussed above and to lessen or avoid significant environmental effects resulting from implementation of the Proposed Project. Alternatives considered in this EIR include:

- No Project Alternative
- Reduced Project Alternative

In summary, the purpose of this section is to discuss feasible alternatives and to evaluate the ability of each alternative to reduce or avoid significant adverse environmental impacts while achieving the basic project objective. The reader is referred to the individual sections of the EIR (Chapter 3) and to the

Executive Summary for a detailed discussion of environmental impacts, by each issue area, that would result from implementation of the Proposed Project.

4.3.1 \quad No Project Alternative

Section 15126.6(e) of the CEQA Guidelines requires analysis of a No Project alternative that (1) discusses existing site conditions at the time the Notice of Preparation (NOP) is prepared or the SEIR is commenced, and (2) analyzes what is reasonably to be expected to occur in the foreseeable future based on current plans if the Proposed Project were not approved.

Under this alternative, the Proposed Project would not be implemented. The Proposed Project would not be implemented, but the campus would be developed with improvements that have been approved under the 2041 Facilities Master Plan LAC Improvements.

Potential effects for the No Project Alternative were compared to the areas of potentially significant effects prior to mitigation that could be a result of the Proposed Project.

Aesthetics

Aesthetic and lighting impacts would be less under the No Project Alternative than for the Proposed Project, since no new lights would be installed at the Kinesiology Lab fields as well as the Aquatic Center. Existing lights would remain on campus, however, and existing fields would continue to be used during nighttime hours, with some portable lights being brought in for certain events. The No Project Alternative would have reduced impacts in comparison to the Proposed Project. This alternative is considered environmentally superior to the Proposed Project with respect to lighting and glare impacts.

Air Quality

Construction air quality impacts would be less under the No Project Alternative than for the Proposed Project, since less construction would result in lower construction emissions. During the operational phase, this alternative would result in a lower number of vehicle trips compared to the Proposed Project, thereby resulting in lower vehicle emissions. The No Project Alternative would have reduced air quality impacts in comparison to the Proposed Project. This alternative is considered environmentally superior to the Proposed Project with respect to air quality impacts.

Greenhouse Gas Emissions

Construction greenhouse gas emissions impacts would be less under the No Project Alternative than for the Proposed Project, since less construction would result in lower construction emissions. During the operational phase, this alternative would result in a lower number of vehicle trips compared to the Proposed Project, thereby resulting in lower vehicle emissions. The No Project Alternative would have reduced greenhouse gas emissions impacts in comparison to the Proposed Project. This alternative is considered environmentally superior to the Proposed Project with respect to greenhouse gas emissions impacts.

Noise

Under the No Project Alternative, while length of construction activities could be shorter, daily noise associated with construction would be the same as for the Proposed Project. In addition, this alternative would involve the introduction of new traffic to the site as a result of the increase in instructional building square footage associated with the buildout of the 2020 Unified Master Plan for the LAC. However, the project traffic would be reduced due to reduction in instructional building square footage and associated college population. Therefore, the No Project Alternative would have reduced noise impacts in comparison to the Proposed Project. This alternative is considered environmentally superior to the Proposed Project with respect to noise impacts.

Transportation

The No Project Alternative will not limit the traffic increase that LBCC LAC will experience due to regional growth. However, short-term traffic impacts caused by construction will be reduced. Also, due to the reduced size of this alternative, the increase in traffic volume would be lower. Therefore, the No Project Alternative would reduce transportation and traffic impacts in comparison to the Proposed Project. This alternative is considered environmentally superior to the Proposed Project with respect to transportation and traffic impacts.

Conclusion and Relationship to Project Objectives

The No Project Alternative would result in the development of the LBCC LAC as described in the 2020 Unified Master Plan, as described in Chapter 2.1, Project Background. Compared to the Proposed Project, the No Project Alternative is environmentally superior in the areas of aesthetics, air quality, greenhouse gas emissions, noise, and transportation and traffic. While the overall impacts associated with the No Project Alternative are considered to be environmentally superior to the Proposed Project, under the No Project Alternative project objectives provided in Section 4.2, above, would be achieved at a lower level.

4.3.2 Reduced Project Alternative

The Reduced Project Alternative assumes that the campus would be developed consistent with planned improvements outlined in the LBCCD 2041 Facilities Master Plan LAC Improvements, but the Aquatic Center and Kinesiology Lab would not be implemented. These two elements have the greatest potential to cause an increase in traffic within and around the campus due to events at these facilities.

After the reduction of the eliminated Facilities Master Plan improvements, the Reduced Project Alternative would result in an estimated decrease from the Proposed Project of 64,796 square feet of new construction in addition to the new pool and fields associated with the Kinesiology Labs. Table 4-1 presents the improvements that would take place under the Reduced Project Alternative. Table 4-2 presents the improvements that would be eliminated under the Reduced Project Alternative.

Table 4-1: Reduced Project Master Plan LAC Improvements

Project	Scope/Usage	Square Feet (GSF)/ Features
Building B Classroom	Renovate Building with electrical upgrades, data and communication, larger lecture halls, better lighting, and additional lab functions	Renovation - 44,357
Building D Science Building	Renovate Science Building for improved classroom learning environments, new fiber data backbone, and enhanced signage	Renovation - 16,000
Building E College Center	Campus-wide Student Support	New Construction - 50,276
Building F Family/Consumer Education	Outdated building that will be replaced with new landscape and hardscape	Demolition - 15,968
Building G Performing Arts	New Performing Arts Building replaces the existing and outmoded Music Building.	New Construction - 42,857
Building J Auditorium	Complete renovation of Auditorium building with expansion of the building as well as general refurbishment and updates	$\begin{aligned} & \text { Renovation - 37,878 } \\ & \text { Expansion }-14,119 \end{aligned}$
Building K Art Building	Fine Arts building needs complete renovation and modernization	Retrofit/Renovation - 29,479
Building M Liberal Arts	Replace Buildings M\&N with new building for classrooms, laboratory facilities, and technology center	New Construction - 81,970
Building O1 IITS/Warehouse	Structural enhancements to obtain certification by Division of State Architect	Renovation - 26,560
Building O2 Economic \& Workforce Development/Foundation	Structural enhancements to obtain certification by Division of State Architect	Renovation - 51,302
Building P Language Arts	Upgrade building's functional systems with upgraded power systems, HVAC, plumbing, storm drainage, fire alarm, and telecommunication systems	Renovation - 16,016
Building Q Secondary Gymnasium	Renovation and upgrading to address issues related to instructional space, training needs, seismic upgrades, ADA compliance, and other upgrades	Renovation - 30,270
Building R Primary Gymnasium	Comprehensive structural and seismic renovation, ADA access, HVAC upgrades	Renovation - 78,024 New Construction - 10,000
Building S Stadium	Renovation including ADA access, structural upgrades	Renovation - 57,455
Walkways and Wayfinding	New and revised walkways, installation of uniform signage program	New construction/renovation

Table 4-2: Eliminated 2041 Facilities Master Plan LAC Improvements

Project	Function/Support	Scope (GSF)
Building W	lonstruction of a new 50-meter by 25-yard pool, with a new support building	New Construction - 50,881 and pool area
Outdoor Kinesiology Labs	New construction of physical education outdoor playing fields to include softball relocation, two soccer fields, six tennis courts, five sand volleyball courts, and supporting facilities, restrooms, field house, storage.	New Construction Supporting Facilities - 13,915

ADA: Americans with Disabilities Act; HVAC: heating, ventilation, and air conditioning

Aesthetics

Aesthetic and lighting impacts would be less under the Reduced Project Alternative than for the Proposed Project, since no new lights would be installed at the Kinesiology Lab fields as well as the Aquatic Center. Existing lights would remain on campus, however, and existing fields would continue to be used during nighttime hours, with some portable lights being brought in for certain events. The Reduced Project Alternative would have reduced impacts in comparison to the Proposed Project. This alternative is considered environmentally superior to the Proposed Project with respect to lighting and glare impacts.

Air Quality

Construction air quality impacts would be less under the Reduced Project Alternative than for the Proposed Project, since less construction would result in lower construction emissions. During the operational phase, this alternative would result in a lower number of vehicle trips compared to the Proposed Project, thereby resulting in lower vehicle emissions. The Reduced Project Alternative would have reduced air quality impacts in comparison to the Proposed Project. This alternative is considered environmentally superior to the Proposed Project with respect to air quality impacts.

Greenhouse Gas Emissions

Construction greenhouse gas emissions impacts would be less under the Reduced Project Alternative than for the Proposed Project, since less construction would result in lower greenhouse gas construction emissions. During the operational phase, this alternative would result in a lower number of vehicle trips compared to the Proposed Project, thereby resulting in lower greenhouse gas vehicle emissions. The Reduced Project Alternative would have reduced greenhouse gas emissions impacts in comparison to the Proposed Project. This alternative is considered environmentally superior to the Proposed Project with respect to greenhouse gas emissions impacts.

Noise

Under the Reduced Project Alternative, while length of construction activities could be shorter, daily noise associated with construction would be the same as for the Proposed Project. Compared to the Proposed Project, the Reduced Project Alternative traffic would be less due to reduction in instructional building square footage and associated college population. In addition, the Reduced Project Alternative would not
involve increased noise levels at the Aquatic Center, as no increase in frequency of events would occur. Since the Olympic-sized pool would not be built, community use of the facility would also be less. In addition, the field relocation and new Kinesiology Labs would not be constructed; and, therefore, noise at the fields on campus would remain consistent with current levels. Therefore, the Reduced Project Alternative would have reduced noise impacts in comparison to the Proposed Project. This alternative is considered environmentally superior to the Proposed Project with respect to noise impacts.

Transportation and Traffic

The Reduced Project Alternative would generate new traffic on the surrounding roadway network both during construction and operation. However, due to the reduced size of this alternative, and the removal of updates to the Aquatic Center and fields associated with the Kinesiology Lab, the increase in traffic volume would be lower. Fewer sports events and community events at these facilities would occur under the Reduced Project Alternative. Therefore, the Reduced Project Alternative would reduce transportation and traffic impacts in comparison to the Proposed Project. However, due to student enrollment projections and estimations of future traffic, the significant unavoidable impacts associated with transportation and traffic would likely remain. This alternative is considered environmentally superior to the Proposed Project with respect to transportation and traffic impacts.

Conclusion and Relationship to Project Objectives

Compared to the Proposed Project, the Reduced Project Alternative is environmentally superior in the areas of aesthetics, air quality, noise, and transportation and traffic. While the overall impacts associated with the Reduced Project Alternative are considered to be environmentally superior to the Proposed Project, under the Reduced Project Alternative, many of the project objectives provided in Section 4.2, above, would not be achieved. For example, the Reduced Project Alternative would not provide upgraded athletic facilities that would support physical activity on campus or recreational facilities for community use.

Table 4-3: Comparison of Alternatives

Environmental Issue Area	Proposed Project	No Project Alternative	Reduced Project Alternative
Aesthetics/Lighting	Less than Significant	Reduced Less than Significant	Reduced Less than Significant
Air Quality	Less than Significant	Reduced Less than Significant	Reduced Less than Significant
Greenhouse Gas Emissions	Less than Significant	Reduced Less than Significant	Reduced Less than Significant
Noise	Less than Significant with Mitigation	Reduced Less than Significant	Reduced Less than Significant
Transportation	Significant and		
Unavoidable	Reduced Less than Significant	Significant and Unavoidable	

4.4 ENVIRONMENTALLY SUPERIOR ALTERNATIVE

Of the alternatives analyzed in the SEIR, the No Project Alternative is considered the environmentally superior alternative as it would avoid or reduce most of the potential impacts associated with construction and operation of the Proposed Project (see Table 4-3). However, the No Project Alternative would not meet the objectives of the Proposed Project, as it would not provide essential educational facilities at the LBCC LAC.

CEQA Guidelines requires that if the No Project Alternative is determined to be the environmentally superior alternative, an environmentally superior alternative must also be identified among the remaining alternatives. As such, the Reduced Project Alternative would result in the fewest environmental impacts as compared to the Proposed Project, while still achieving some of the objectives of the Proposed Project.

CHAPTER 5.0 - OTHER CEQA CONSIDERATIONS

This chapter presents the evaluation of other types of environmental impacts required by CEQA that are not covered within the other chapters of this SEIR. The other CEQA considerations include environmental effects that were found not to be significant, growth-inducing impacts, and significant and unavoidable adverse impacts.

5.1 ENVIRONMENTAL EFFECTS FOUND NOT TO BE SIGNIFICANT

The Initial Study (IS) for the Proposed Project, completed in February 2018, which is included in the EIR as Appendix A, determined that the Proposed Project would result in no impact or a less than significant impact to 14 of 19 environmental issue areas. The IS for the Proposed Project discusses why the Project would have no impact or less than significant impacts for these issue areas, which are subsequently not discussed in detail in this SEIR. The issue areas determined to have no impact or a less than significant impact in the IS analysis include the following:

- Agricultural Resources
- Biological Resources
- Cultural Resources
- Energy
- Geology and Soils
- Hazards and Hazardous Materials
- Hydrology and Water Quality
- Land Use and Planning
- Mineral Resources
- Population and Housing
- Public Services
- Recreation and Parks
- Utilities and Service Systems
- Wildfire

After a more detailed evaluation of the environmental issues associated with the Proposed Project, the SEIR determined that impacts would be less than significant with incorporation of project design features and mitigation measures for the following environmental issue areas:

- Aesthetics (light and glare)
- Air Quality
- Greenhouse Gas Emissions
- Noise
- Transportation and Traffic

5.2 IRREVERSIBLE ENVIRONMENTAL CHANGES

According to the CEQA Guidelines, "[u]ses of nonrenewable resources during the initial and continued phases of the project may be irreversible since a large commitment of such resources makes removal or nonuse thereafter unlikely. Primary impacts and, particularly, secondary impacts (such as highway improvement which provides access to a previously inaccessible area) generally commit future generations to similar uses. Also, irreversible damage can result from environmental accidents associated
with the project. Irretrievable commitments of resources should be evaluated to assure that such current consumption is justified." Therefore, the purpose of this analysis is to identify any significant irreversible environmental effects of project implementation that cannot be avoided.

Both construction and operation of the Proposed Project would lead to the consumption of limited, slowly renewable and nonrenewable resources, committing such resources to uses that future generations would be unable to reverse. The new development would require the commitment of resources that include: (1) building materials, (2) fuel and operational materials/resources, and (3) the transportation of goods and people to and from the Proposed Project Site.

Construction of the Proposed Project would consume certain types of lumber and other forest products, the raw materials in steel, metals such as copper and lead, aggregate materials used in concrete and asphalt such as sand and stone, water, petrochemical construction materials such as plastic, petroleumbased construction materials, and other similar slowly renewable or nonrenewable resources. Additionally, fossil fuels for construction vehicles and equipment would also be consumed. In terms of project operations, the following slowly renewable or nonrenewable resources would be required: natural gas and electricity, petroleum-based fuels, fossil fuels, and water. Title 24 of the California Administrative Code regulates the amount of energy consumed by new development for heating, cooling, ventilation, and lighting purposes. Nevertheless, the consumption of such resources would represent a long-term commitment of those resources.

The commitment of resources required for the construction and operation of the Proposed Project would limit the availability of such resources for future generations or for other uses during the life of the Project. However, continued use of such resources is consistent with the anticipated growth and planned changes on the Proposed Project Site and within the general vicinity. Furthermore, impacts to the energy supply would be less than significant given the existing levels of development within the City of Long Beach and the County of Los Angeles.

Future generations will likely continue to use LBCC LAC for educational and community purposes. The Proposed Project will not preclude use of the site for other purposes in the future to any degree greater than the No Project Alternative. Additionally, these same resources will be required for the development of the Proposed Project in an available alternative location. In the long term, compared to initial implementation of the Proposed Project, the level of resource commitment for continued operation and maintenance of the LBCC LAC will be minimal.

5.3 GROWTH-INDUCING IMPACTS

Pursuant to the CEQA Guidelines: an EIR must address whether a project will directly or indirectly foster growth as follows:

An EIR shall discuss the ways in which the Proposed Project could foster economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment. Included in this are projects which would remove obstacles to population growth (a major expansion of wastewater treatment plant, might, for example, allow for more construction in service areas). Increases in the population may further tax existing community service facilities so consideration must be given to this impact. Also, discuss the characteristic of some projects, which may encourage and facilitate other activities that could significantly affect the environment, either individually or cumulatively. It must not be
assumed that growth in any area is necessarily beneficial, detrimental, or of little significance to the environment.

As discussed below, this analysis evaluates whether the Proposed Project would directly, or indirectly, induce economic, population, or housing growth in the surrounding environment.

5.3.1 Direct Growth-Inducing Impacts in the Surrounding Environment

Direct growth-inducing impacts occur when the development of a project induces population growth or the construction of additional developments in the same area of a proposed project and produces related growth-associated impacts. Growth-inducing projects, such as the construction of a new road into an undeveloped area, a wastewater treatment plant expansion, and projects that allow new development in the service area, remove physical obstacles to population growth. Constructions of such infrastructure projects are considered in relation to the potential development and the potential environmental impacts.

Implementation of the LBCCD 2041 Facilities Master Plan will affect the construction of new buildings, renovation and modernization of and additions to existing facilities, demolition of existing buildings, and landscaping and open space on campus designed to accommodate projected growth in student population by the LBCCD and regional planning agencies. However, the Proposed Project does not include residential development and does not directly induce population growth. Additionally, a low potential exists that the Proposed Project will directly induce construction of similar college-level facilities in the Project Area and cause growth-related impacts. The Proposed Project will not remove obstacles to regional growth and related development.

5.3.2 Indirect Growth-Inducing Impacts in the Surrounding Environment

Although the Proposed Project will result in additional employment in response to projected enrollment growth, increase in employment has been accounted for by local and regional planning agencies (i.e., City of Long Beach Planning Department and the SCAG), prior to design of the Proposed Project. The purpose of the Proposed Project is to respond to anticipated growth in student enrollment and the need to upgrade the quality of campus educational facilities. The Proposed Project does not contain components likely to indirectly induce employment or an employment-related increase in population.

5.4 SIGNIFICANT UNAVOIDABLE ENVIRONMENTAL IMPACT

The potentially adverse effects of the Proposed Project are discussed in Chapter 3.0 of this SEIR. Project design features and mitigation measures have been recommended that would reduce impacts to air quality, greenhouse gas, and noise impacts to less than significant based on each set of significance criteria.

However, a significant and unavoidable transportation and traffic impact associated with cumulative increase in traffic levels would occur. These impacts are discussed further in Section 3.8.

CHAPTER 6.0 - FINAL SEIR INTRODUCTION

This Final Environmental Impact Report (Final EIR) has been prepared pursuant to requirements of the California Environmental Quality Act (CEQA) and the CEQA Guidelines for the LBCCD 2041 Facilities Master Plan LAC Improvements, State Clearinghouse Number 2004051060. The Final EIR includes: a description of the Community Outreach and Public Review Process for preparing and receiving comments on the Draft EIR (Chapter 7); Response to Comments, which includes LBCCD's responses to all written comments received by agencies, private organizations, and the public for the Draft EIR (Chapter 8); the Draft EIR with changes shown in strikethrough for deletions and underline for additions (Chapter 9); and the Mitigation Monitoring and Reporting Plan (Chapter 10), which lists all the mitigation measures required for implementation of the project, the phase in which the measures will be implemented, and the enforcement agency responsible for compliance.

Environmental Review Process

In accordance with the requirements of CEQA Guidelines Section 15162 and based on the findings of the IS, LBCCD determined that a Draft SEIR should be prepared to analyze the potential impacts associated with the proposed the LBCCD 2041 Facilities Master Plan LAC Improvements.

On February 8, 2018, LBCCD distributed the IS and a Notice of Preparation (NOP) describing the Proposed Project and potential environmental affects, and determined that LBCCD would prepare a Draft SEIR. As listed in Appendix A, the IS/NOP was distributed to the State Clearinghouse and various other local agencies and organizations. In accordance with the requirements of CEQA, LBCCD provided a 30-day scoping/comment period between February 8, 2018 and March 9, 2018; and requested stakeholders to identify specific topics of environmental concern that should be studied in the Draft EIR.

The Draft SEIR was prepared and circulated for a 45 -day public review period as required by CEQA, beginning September 19, 2018 and ending November 2, 2018. The Notice of Completion (NOC) and the Draft SEIR was distributed to the State Clearinghouse and various other local agencies and organizations. The CEQA Guidelines require that the Lead Agency responsible for the preparation of the SEIR evaluate comments on environmental issues received from parties who reviewed the Draft SEIR and prepare a written response addressing each of the comments, as described in Chapter 8 of this Final SEIR.

This Final SEIR assembles in one document, all of the environmental information and analysis prepared for the Proposed Project, including comments on the information and analysis contained in the Draft SEIR, and responses by LBCCD to those comments. The intent of the Final ESIR is to provide a forum to address comments pertaining to the information and analysis contained within the Draft SEIR and to provide an opportunity for clarifications, corrections, or minor revisions to the Draft SEIR, as needed.

CHAPTER 7.0 - PUBLIC REVIEW PROCESS

Information about the environmental document and public review periods were distributed to the surrounding community using three methods: the NOP and NOC were mailed, and each notice was published in newspaper legal section. The NOP and NOA included information on where to view the Initial Study (IS) and Draft SEIR, and how to comment on the IS and Draft SEIR. The public review period for the NOP/IS (see Appendix A) was from February 8, 2018 to March 9, 2018, and the public review period for the Draft SEIR was from September 19, 2018 to November 2, 2018.

Notice of Preparation

Per CEQA Guidelines Section 15082, a NOP was prepared. Public outreach for the IS/NOP included distribution of the NOP using the following methods:

Newspaper Publication

- Published legal announcement of the NOP in the Long Beach Press-Telegram

Notices Delivered at Key Community Places

- LBCCD Bond Management Team office, Building 0-1, 4901 E . Carson Street, Long Beach, California 90808
- LAC Library, Building L, LBCC LAC, 4901 E. Carson Street, Long Beach, California, 90808
- Ruth Bach Library located at 4055 North Belfflower Boulevard, Long Beach, California 90808

In addition, the NOP was available online at the LBCCD website (https://www.lbcc.edu/pod/facilities-master-plans).

Notice of Completion and Draft Environmental Impact Report

Upon completion of the Draft EIR, and in accordance with CEQA Guidelines Section 15087(a), the NOC was prepared. Public outreach for the Draft EIR included distribution of the NOC using the following methods.

Newspaper Publications

- Published legal announcement of the NOP in the Long Beach Press-Telegram

Draft SEIR

The Draft SEIR was sent to the Office of Planning and Research, State Clearinghouse for distribution to State agencies. During the public review period, the Draft SEIR was made available for review at the following locations:

- LBCCD Bond Management Team office, Building 0-1, 4901 E. Carson Street, Long Beach, California 90808
- LAC Library, Building L, LBCC LAC, 4901 East Carson Street, Long Beach, California 90808
- Ruth Bach Library located at 4055 North Bellflower Boulevard, Long Beach, California 90808

In addition, the SEIR was available online at the LBCCD website (https://www.lbcc.edu/pod/facilities-master-plans/).

CHAPTER 8.0 - RESPONSE TO COMMENTS

This chapter includes written comments received on the Draft SEIR and LBCCD's response to each comment. Comment letters and specific comments are given numbers for reference purposes. Table 8-1, below, provides a list of agencies and persons that submitted comments on the Draft SEIR during the public review period.

Table 8-1: List of Agencies and Persons Submitting Comments

Comment Reference	Commenting Agency/Person	Date of Comment	Page	Type of Comment
Comment Letter \#1	South Coast Air Quality Management District	November 2, 2018	Pg. 143	Letter
Comment Letter \#2	State Clearinghouse	November 2, 2018	Pg. 148	Letter

South Coast Air Quality Management District
21865 Copley Drive, Diamond Bar, CA 91765-4178
(909) 396-2000 • www.aqmd.gov

SENT VIA E-MAIL AND USPS:
November 2, 2018
CEQA@lbcc.edu
Farzam Fathi
Bond Management Team
Long Beach Community College District
4901 East Carson Street - G21
Long Beach, CA 90808

Draft Supplemental Environmental Impact Report (DSEIR) for the Proposed $\mathbf{2 0 4 1}$ Facilities Master Plan Liberal Arts Campus Improvements Project

The South Coast Air Quality Management District (SCAQMD) staff appreciates the opportunity to comment on the above-mentioned document. The following comments are meant as guidance for the lead agency and should be incorporated into the final CEQA document.

Comment

SCAQMD Staff's Summary of Project Description

The lead agency proposes to update the Long Beach Community College District Facilities Master Plan. Updates to the plan will result in an estimated 109,156 square feet of demolition, 387,341 square feet of renovations and 264,018 square feet of new construction on 29.84 acres (proposed project). The project is located at 4901 East Carson Street on the northwest corner of East Carson Street and Clark Avenue in the City of Long Beach.

SCAQMD Staff's Summary of Air Quality Analysis
The lead agency determined the proposed project would have less than significant impacts to regional and localized air quality during construction and operation. ${ }^{1}$ However, the lead agency did not adequately analyze the proposed project's air quality impacts from construction and operation. Please see SCAQMD staff's detailed comments below.

SCAQMD Staff's Comments

Overlapping Construction and Operation

The proposed project is expected to be built-out over the next 20 years according to Table ES-2: 2041 Facilities Master Plan Construction by Planned Construction Years. ${ }^{2}$ Since the implementation of the proposed project is expected to take place over an extended period of time, an overlapping construction and operation scenario is reasonably foreseeable. However, the lead agency did not analyze a scenario where construction activities overlap with operational activities. Therefore, to analyze the worst-case impact scenario, SCAQMD staff recommends that the lead agency identify the overlapping years, combine construction emissions (including emissions from demolition) with operational emissions, and compare the combined emissions to SCAQMD's air quality CEQA operational thresholds of significance to determine the level of significance in the final CEQA document.

Interim Milestone Years - Operation

The lead agency used the full build-out year of 2041 for their operational analysis; however, the proposed project will be operational prior to year 2041. Although year 2041 assumes that the project is at its peak operational capacity, utilizing a single future operational year for emissions analysis improperly credits

[^1]
Comment Letter \#1 - SCAQMD

Farzam Fathi
November 2, 2018
the project's operational emissions with reductions that are expected to occur independent of the proposed project. Specifically, the overall emission rates of vehicles, trucks, and equipment are generally higher in

Comment 1-4
continued earlier years as more stringent emissions standards and cleaner technologies have not been fully implemented and fleets have not been fully turned over. Therefore, SCAQMD staff recommends that the lead agency incorporate interim milestone years (i.e., year 2020, 2025, 2030, 2035, and 2040) into the air quality analysis to properly disclose the proposed project's peak daily operational emissions during the entirety of operation.

Mitigation Measures

In the event that, after revising the air quality analysis, the lead agency determines that the proposed project will have significant impacts to air quality, mitigation measures will be required. The following mitigation measures are meant as guidance for the lead agency and should be considered for incorporation into the final CEQA document:

Construction Mitigation Measures

- Require all off-road diesel-powered construction equipment meet or exceed Tier 4 offroad emissions standards. A copy of the fleet's tier compliance documentation, and CARB or SCAQMD operating permit shall be provided to the Lead Agency at the time of mobilization of each applicable unit of equipment. In the event that all construction equipment cannot meet the Tier 4 engine certification, the Lead Agency must demonstrate through future study with written findings supported by substantial evidence before using other technologies/strategies. Alternative strategies may include, but would not be limited to, reduction in the number and/or horsepower rating of construction equipment, limiting the number of daily construction haul truck trips to and from the Proposed Project, and/or limiting the number of individual construction project phases occurring simultaneously. Include this requirement as a bid or contract specification with contractors. Require periodic reporting and provision of written documents by contractors to prove and ensure compliance.
- Require all diesel-fueled trucks including, but not limited to, construction hauling trucks and/or material delivery trucks, accessing the proposed project meet the U.S. Environmental Protection Agency (EPA)/California Air Resource Board (CARB) truck engine standard for Model Year 2010 or better. Additionally, consider other measures such as incentives, phase-in schedules for clean trucks, etc.
- Implement performance standards-based technology review during the development phase of the proposed project. Since the proposed project will be built over a 20 -year period, and as technology continues to advance, the lead agency should take this opportunity to develop a pathway to deploy lowest emission technologies possible in the development life of the proposed project. To facilitate this requirement, SCAQMD staff recommends that the lead agency develop a plan to assess equipment availability, equipment fleet mixtures, and best available emissions control devices periodically after the proposed project is approved, and specify performance standards for the technology assessment. A performance standards-based technology review is generally feasible at a programmatic level for an area-wide and long-range plan such as the proposed project.

Operational Mitigation Measures
 Transportation and Parking

- Provide incentives for employees in order to encourage the use of public transportation or carpooling, such as discounted transit passes or carpool rebates.
- Implement a rideshare program for employees and set a goal to achieve a certain participation rate over a period of time.

Comment Letter \#1 - SCAQMD

- Provide a parking system that allows for quick entry and exit in order to reduce vehicle idling time. A system should also be installed that provides sufficient signage or communication for available parking. A real time information system on parking

Comment
1-6
continued

Comment
1-7 availability in the parking lot can minimize the amount of time it takes to find available parking.

Other Mitigation Measures

- Require the use of electric landscaping equipment, such as lawn mowers and leaf blowers.
- Require the use of electric or alternatively fueled sweepers with HEPA filters.
- Maximize the planting of tress in landscaping and parking lots.
- Use of water-based or low VOC cleaning products.

Response to Comments

Pursuant to California Public Resources Code Section 21092.5(a) and CEQA Guidelines Section 15088(b), SCAQMD staff requests that the lead agency provide SCAQMD staff with written responses to all comments contained herein prior to the certification of the final supplemental EIR. In addition, issues raised in the comments should be addressed in detail giving reasons why specific comments and suggestions are not accepted. There should be good faith, reasoned analysis in response. Conclusory statements unsupported by factual information will not suffice (CEQA Guidelines Section 15088(c)). Conclusory statements do not facilitate the purpose and goal of CEQA on public disclosure and are not meaningful or useful to decision makers and to the public who are interested in the proposed project. Further, when the lead agency makes the finding that the recommended mitigation measures are not feasible, the lead agency should describe the specific reasons for rejecting them in the final supplemental EIR (CEQA Guidelines Section 15091).

SCAQMD staff is available to work with the lead agency to address any air quality questions that may arise from this comment letter. Please contact Alina Mullins, Assistant Air Quality Specialist, at amullins@aqmd.gov or (909) 396-2402, should you have any questions.

Sincerely,
Daniel Garcia
Daniel Garcia
Program Supervisor
Planning, Rule Development \& Area Sources

DG/AM
LAC180918-03
Control Number

Response to Comment Letter \#1 (SCAQMD)

Response to Comment 1-1:

The comments by the South Coast Air Quality Management District's (SCAQMD) have been noted as guidance for Long Beach Community College District, as the Lead Agency. The District notes the details regarding the Proposed Project including the square footage of demolition, renovation, and new building construction.

Response to Comment 1-2:

The District notes SCAQMD's comment that the analysis did not analyze the overlap of construction and operation. The District has revised the air quality and greenhouse gas analysis to respond the SCAQMD's comments. More detailed responses are included below.

Response to Comment 1-3:

Since implementation of the Proposed Project is expected to occur over an extended period of time the air quality analysis has been revised to account for an overlapping construction and operation scenario. Construction activities were modeled in five-year increments and interim operational activities were determined for the interim years of 2020, 2025, 2030, and 2035 and Master Plan buildout year 2041, that was analyzed as year 2040 due to CalEEMod model limitations. The revised analysis analyzed the overlapping years, combined construction emissions with operational emissions, and compared the combined emissions to SCAQMD's air quality CEQA operational thresholds of significance to determine level of significance. The revised analysis found that the 5-year increments provided a more-realistic timeframe of construction activities and lowered the amount of construction that would occur at any one time. The analysis for overlapping construction and operational emissions for the five-year increments showed that the emissions were below SCAQMD's air quality CEQA operational thresholds of significance.

The air emissions calculations were primarily based on the CalEEMod model default parameters; however, the following changes to the default parameters were utilized in the emissions calculations. Since the CalEEMod model utilizes the OFFROAD2011 model for off-road equipment emissions rates and the OFFROAD2011 model only provides emissions rates out to the year 2023, the OFFROAD2017 model was utilized for the years 2030, 2035, and 2040. For operational emissions, mitigation of "Increase Transit Accessibility with a 0.1 mile distance to the nearest transit station" was selected since the majority of the LAC is located within 0.1 mile of the existing bus stops on Clark Avenue and Carson Street. In addition, the mitigation of "Improve Pedestrian Network on the project site and connecting offsite" was selected to account for the existing onsite sidewalks that connect to the offsite sidewalks along the nearby public roads. Since both of these CalEEMod mitigation measures represent existing conditions, they are not required to be listed as mitigation measures for the Proposed Project. As such, the revisions to the air emissions modeling would not require the Proposed Project to implement any additional mitigation measures.

Response to Comment 1-4:

Since portions of the Proposed Project will be operational prior to the buildout year of 2041, the air quality analysis has been revised to incorporate interim milestone years of 2020, 2025, 2030, and 2035, (buildout year 2041 was analyzed as year 2040, due to CalEEMod model limitations) to properly disclose the Proposed Project's peak daily operational emissions during the entirety of operation. As discussed in Response to Comment 1-3, above, the overlapping construction and operational emissions were found to be below SCAQMD's air quality CEQA operational thresholds of significance.

Response to Comment 1-5:

Since the revised air quality analysis found that combined construction and operational emissions for the interim years were below SCAQMD's air quality CEQA operational thresholds of significance, no air quality mitigation measures were determined necessary. In addition, as noted in Response to Comment 1-1, above the OFFROAD 2017 model was used to more accurately account for industry adoption of Tier 4 engines. According to 2017 Off-Road Diesel Emission Factor Update for NOx and PM, prepared by CARB, the California off-road equipment fleet average emissions rates are anticipated to meet or exceed the Tier 4 emissions by 2030 as shown in the below graph. As such, none of the construction mitigation measures noted in the comment are necessary to reduce impacts, as construction air quality impacts are less than significant.

Response to Comment 1-6:

Since the revised air quality analysis found that combined construction and operational emissions for the interim years were below SCAQMD's air quality CEQA operational thresholds of significance, no air quality mitigation measures were determined necessary. In addition, the District participates in the SCAQMD Rule 2202 On-Road Vehicle Mitigation Program, in which the District determines the number of staff members at the campus and then purchases credits to offset emissions and meet SCAQMD requirements. None of the operational mitigation measures noted in the comment are necessary to reduce impacts, as construction air quality impacts are less than significant.

Response to Comment 1-7:

Written responses will be provided to SCAQMD after completion of the Response to Comments document. These will be provided before the Final EIR is adopted, as the Response to Comments document will be finished as part of the Final Environmental Impact Report (EIR) process. The District notes that Alina Mullins is the contact person regarding this comment letter.

Comment Letter \#2: State Clearinghouse
*
Comment Letter \#2

state of californla
Governor's Office of Planning And Research

EDMUNDG.BROWN.JR. COVERUR

November 2, 2018

Farzam Fathi
Long Beach Communty College District
4901 E. Carson Street - G? 1
Long Beach, CA 90808
Subject: 2041 Facilities Master Plan LAC Improvements
SCH\#: 2004051060

Dear Farzam Fathi:

The State Clearinghouse submitted the above named Supplemental EIR to selfeted state agencies for review. The review period closed on November 1,2018 , and no state agencies submilted comments by that date. This letter acknowledges that you have complied with the State Clearinghouse review requirements for draft environmental documents, pursuant to the Califonia Environmental Quality Act.

Please call the State Clearinghouse at (916) 445-0613 if you have any questions regarding the environmental review process. If you have a question about the abowe-named project, please refer to the ten-digit State Clearinghouse number when contating this ofice.

Sinterely,

140010 th Street P. 0. Box 3044 Sacramente, Califormia 95812-3044 1-916-322-2318 FAX 1-916-558-3184 www.opt.ca.gov

Comment Letter \#2 - State Clearinghouse

Document Details Report
 State Clearinghouse Data Base

Response to Comment Letter \#2 (State Clearinghouse)

Response to Comment 2-1:

This comment from the Governor's Office of Planning and Research confirms the dissemination of the Subsequent EIR to selected state agencies by the State Clearinghouse. The comment also acknowledges that the District has complied with State Clearinghouse review requirements for draft environmental documents. No further response is required.

Response to Comment 2-2:

This comment provides contact information for the State Clearinghouse. No further response is required.

CHAPTER 9.0 - CHANGES TO DRAFT SEIR

This errata section identifies changes made to the Draft SEIR to correct or clarify the information contained in the document. Changes made to the Draft SEIR are identified here, in strikeout text to indicate deletions and bold italics to signify additions.

The changes to the Draft SEIR are listed by section and page number.

Executive Summary, page ES-3 to ES-5

Table ES-1: Updated 2041 Facilities Master Plan Improvements

Project	Scope/Usage	Gross Square Feet (GSF)/ Features
Building B Classroom	Renovate Building with electrical upgrades, data and communication, larger lecture halls, better lighting, and additional lab functions	Renovation - 44,357
Building D Science Building	Renovate Science Building for improved classroom learning environments, new fiber data backbone, and enhanced signage	Renovation - 16,000
Building E College Center	Campus-wide Student Support	Demolition - 50,276 New Construction - 50,276
Building F Family/Consumer Education	Outdated building that will be replaced with new landscape and hardscape	Demolition - 15,968
Building G Performing Arts	New Performing Arts Building replaces the existing and outmoded Music Building.	Demolition - 27,792 New Construction - 42,857
Building J Auditorium	Complete renovation of Auditorium building with expansion of the building as well as general refurbishment and updates	$\begin{aligned} & \hline \text { Renovation - 37,878 } \\ & \text { Expansion - 14,119 } \end{aligned}$
Building K Art Building	Fine Arts building needs complete renovation and modernization	Retrofit/Renovation - 29,479
Building M Liberal Arts	Replace Buildings M and N with new building for classrooms, laboratory facilities, and technology center	Demolition - 48,768 New Construction - 81,970
Building O1 IITS/Warehouse	Structural enhancements to obtain certification by Division of State Architect	Renovation - 26,560
Building O2 Economic \& Workforce Development/Foundation	Structural enhancements to obtain certification by Division of State Architect	Renovation - 51,302

Table ES-1: Updated 2041 Facilities Master Plan Improvements

Project	Scope/Usage	Gross Square Feet (GSF)/ Features
Building P	Upgrade building's functional systems with upgraded power systems, HVAC, plumbing, storm drainage, fire alarm, and telecommunication systems	Renovation - 16,016
Building Q	Renovation and upgrading to address issues related to instructional space, training needs, seismic upgrades, AHA compliance, and other upgrades	Renovation - 30,270
Building R	Comprehensive structural and seismic renovation, ADA access, HVAC upgrades	Renovation - 78,024
Primary Gymnasium Construction - 10,000		
Building S	Renovation including ADA access, structural upgrades	Renovation - 57,455
Stadium	Construction of a new 50-meter by 25-yard pool, with a new support building	New Construction - 50,881 and Building W
Aquatic Center	New construction of physical education outdoor playing fields to include softball relocation, two soccer fields, six tennis pool area Courts, five sand volleyball courts, and supporting facilities, restrooms, field house, storage.	New Construction Supporting Facilities - 13,915-15,014

ADA: Americans with Disabilities Act; HVAC: heating, ventilation, and air conditioning

The LBCCD 2041 Facilities Master Plan LAC improvements would result in an estimated increase over the 2020 Unified Master Plan of 15,877 square feet of renovation, 69,564 square feet removed, and an estimated increase of $30,035 \mathbf{3 4 , 9 1 3}{ }^{2}$ square feet of new construction.

The following descriptions identify specific improvements recommended for the 2041 Facilities Master Plan LAC Improvements that were not part of the 2020 Unified Master Plan or the original 2004 LAC Master Plan Program EIR.

- Building D, Science Building, renovation will be expanded from 9,326 square feet to 16,000 square feet

[^2]- Building E, the Existing College Center, will be demolished (50,276 gross square feet [GSF]) and a new building will be constructed with approximately the same GSF of 50,276 . The new construction will be in lieu of major renovation of Building E that was previously shown on the 2020 Master Plan.
- Building F will be demolished and replaced with new landscape and hardscape.
- The Performing Arts Building (Building G, previously shown as Building 3 on 2020 Master Plan) will replace the existing Buildings G and H , consisting of approximately 42,857 square feet instead of 46,671 square feet, which was shown on the 2020 Master Plan.
- Building M, Liberal Art, (Previously shown as building 2 \& 6 on 2020 Master Plan) will replace the existing buildings M \& N, consisting of approximately 81,970 GSF instead of 77,693 GSF, which was shown on the 2020 Master Plan.
- Building 01 will undergo structural enhancements to the 26,560 -square-foot building to obtain Division of State Architect certification.
- Building O 2 will undergo structural enhancements to the 51,302 -square-foot building to obtain Division of State Architect certification.
- Building R, Primary Gymnasium, is anticipated to have an expansion with new construction to the south of 10,000 GSF to accommodate program needs.
- In order to meet programmatic needs, a new 10,000 GSF structure may be built between Buildings Q and R to accommodate swing space and Title IX needs while the buildings are being renovated.
- Building W, Aquatics Center, will be 31,692 GSF and approximately 20,000 21,871 GSF of building structure will be allocated to the pool facility including restrooms, locker rooms, team rooms, classroom and offices and will have a capacity of approximately 800 spectator seats. (An Olympicsized swimming pool with grandstands to accommodate a 3,000 -spectator-seat capacity was shown in the 2020 Master Plan.)
- Outdoor Kinesiology Labs, renovation and new construction of physical education outdoor playing fields to include softball relocation, two soccer fields, six tennis courts, and five sand volleyball courts and supporting facilities, such as restrooms, field house, and storage facilities. Approximately 9,821 square feet of Building W will be allocated to The Outdoor Kinesiology Labs as supporting facilities. Also, the existing field house for Softball Field will be removed and replaced with approximately $4,098 \mathbf{5 , 1 9 3}$ square feet of new supporting facilities. (Outdoor Physical Education Labs, including softball field relocation, were previously shown in the 2020 Master Plan.)
- In order for the District to meet the state requirements and Executive Order B-18-12 for Zero-NetEnergy, the LAC campus will be studied for possible Solar Photovoltaic systems at various locations. Parking Lot M as well as other parking lots may have two-thirds of the lot covered with photovoltaic carport structures to meet the statewide requirements for energy production and achieve a Zero Net Energy District.

Section 2.3.1, Page 20-22

Table 2-1: Updated 2041 Facilities Master Plan Improvements

Project	Scope/Usage	Square Feet (GSF)/ Features
Building B Classroom	Renovate Building with electrical upgrades, data and communication, larger lecture halls, better lighting, and additional lab functions	Renovation - 44,357
Building D Science Building	Renovate Science Building for improved classroom learning environments, new fiber data backbone, and enhanced signage	Renovation - 16,000
Building E College Center	Campus-wide Student Support	Demolition - 50,276 New Construction - $50,276$
Building F Family/Consumer Education	Outdated building that will be replaced with new landscape and hardscape	Demolition - 15,968
Building G Performing Arts	New Performing Arts Building replaces the existing and outmoded Music Building.	Demolition - 27,792 New Construction 42,857
Building J Auditorium	Complete renovation of Auditorium building with expansion of the building as well as general refurbishment and updates	$\begin{aligned} & \text { Renovation }-37,878 \\ & \text { Expansion }-14,119 \end{aligned}$
Building K Art Building	Fine Arts building needs complete renovation and modernization	$\begin{aligned} & \text { Retrofit/Renovation - } \\ & 29,479 \end{aligned}$
Building M Liberal Arts	Replace Buildings M and N with new building for classrooms, laboratory facilities, and technology center	Demolition - 48,768 New Construction 81,970
Building O1 IITS/Warehouse	Structural enhancements to obtain certification by Division of State Architect	Renovation - 26,560
Building O2 Economic \& Workforce Development/Foundation	Structural enhancements to obtain certification by Division of State Architect	Renovation - 51,302
Building P Language Arts	Upgrade building's functional systems with upgraded power systems, HVAC, plumbing, storm drainage, fire alarm, and telecommunication systems	Renovation - 16,016
Building Q Secondary Gymnasium	Renovation and upgrading to address issues related to instructional space, training needs, seismic upgrades, AHA compliance, and other upgrades	Renovation - 30,270
Building R Primary Gymnasium	Comprehensive structural and seismic renovation, ADA access, HVAC upgrades	Renovation - 78,024 New Construction 10,000
Building S Stadium	Renovation including ADA access, structural upgrades	Renovation - 57,455
Building W Aquatic Center	Construction of a new 50 meter by 25-yard pool, with a new support building	New Construction 50,881 and 54,660 including pool area

Table 2-1: Updated 2041 Facilities Master Plan Improvements

Project	Scope/Usage	Square Feet (GSF)/ Features
Outdoor Kinesiology Labs	New construction of physical education outdoor playing fields to include softball relocation, two soccer fields, six tennis courts, five sand volleyball courts, and supporting facilities, restrooms, field house, storage.	New Construction Supporting Facilities - $13,915-15,014$
Walkways and	New and revised walkways, installation of uniform signage program	New construction/renovation

ADA: Americans with Disabilities Act; HVAC: heating, ventilation, and air conditioning
The LBCCD 2041 Facilities Master Plan LAC improvements would result in an estimated increase over the 2020 Unified Master Plan of 15,877 square feet of renovation, 69,564 square feet removed, and an estimated increase of $30,035 \mathbf{3 4 , 9 1 3}$ square feet of new construction.

The following descriptions identify specific improvements recommended for the 2041 Facilities Master Plan LAC Improvements that were not part of the 2020 Unified Master Plan or the original 2004 LAC Master Plan Program EIR.

- Building D, Science Building, renovation will be expanded from 9,326 square feet to 16,000 square feet
- Building E, the Existing College Center, will be demolished (50,276 gross square feet); and a new building will be constructed with approximately the same gross square footage of 50,276 . The new construction will be in lieu of major renovation of Building E that was previously shown on the 2020 Master Plan.
- Building F will be demolished and replaced with new landscape and hardscape.
- The Performing Arts Building (Building G, previously shown as Building 3 on 2020 Master Plan) will replace the existing Buildings G and H, consisting of approximately 42,857 square feet instead of 46,671 square feet, which was shown on the 2020 Master Plan.
- Building 01 will undergo structural enhancements to the 26,560 -square-foot building to obtain Division of State Architect certification.
- Building 02 will undergo structural enhancements to the 51,302 -square-foot building to obtain Division of State Architect certification.
- Building R, Primary Gymnasium, is anticipated to have an expansion with new construction to the south of 10,000 gross square feet to accommodate program needs.
- In order to meet programmatic needs a new 10,000-gross-square-foot structure may be built between Buildings Q and R to accommodate swing space and Title IX needs while the buildings are being renovated.
- Building W, Aquatics Center, will be 31,692 GSF approximately 20,000 21,871 gross square footage of building structure will be allocated for to the pool facility including restrooms, locker rooms, team rooms, classrooms, and offices and will have a capacity of approximately 800 spectator seats. (An Olympic-sized swimming pool with grandstands to accommodate a 3,000-spectator-seat capacity was shown in the 2020 Master Plan.)
- Outdoor Kinesiology Labs, Renovation and New construction of physical education outdoor playing fields to include softball relocation, two soccer fields, six tennis courts, and five sand volleyball courts, and supporting facilities, such as restrooms, field house, and storage facilities. Approximately 9,821 square feet of Building W will be allocated to The Outdoor Kinesiology Labs as supporting facilities. Also, the existing field house for Softball Field will be removed and replaced with approximately $4,098 \mathbf{5 , 1 9 3}$ square feet of new supporting facilities. (Outdoor Physical Education Labs, including softball field relocation, were previously shown in the 2020 Master Plan.)

In order for the District to meet the state requirements and Executive Order B-18-12 for Zero-Net-Energy, the LAC campus will be studied for possible solar photovoltaic systems at various locations. Parking Lot M , as well as other parking lots, may have two-thirds of the lot covered with photovoltaic carport structures to meet the statewide requirements for energy production and achieve a Zero Net Energy District.

Section 3.5.3, Page 38

Rule 2202 - On-Road Motor Vehicle Mitigation Options

Rule 2202 requires employers who employ 250 or more employees on a full or part-time basis at a worksite, to reduce vehicle emissions generated from employee commutes. Rule 2202 was developed by SCAQMD in order to comply with federal and state Clean Air Act requirements from Health \& Safety Code Section 40458 and Section 182(d)(1)(B) of the federal Clean Air Act. LAC has been required to pay an annual fee of $\$ 30,000$ for the last several years to SCAQMD per Rule 2202 requirements in order to offset emissions created by LAC employee commutes.

Section 3.5.4, Page 45

The worst-case summer or winter daily construction-related criteria pollutant emissions from the Proposed Project for each phase of construction activities are shown below in Table 3-6 for years 20192021, Table 3-7 for years 2021-2025, Table 3-8 for years 2026-2030, Table 3-9 for years 2031-2035, and Table 3-10 for years 2036-2041.

Section 3.5.4, Page 45 and 46

Table 3-6: Projected Years 2019-2021 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOx	CO	SOx	PM $_{10}$	PM2.5
Demolition 1	3.723 .51	38.3235 .78	22.3022 .06	0.04	2.642 .73	1.911 .81
On site 2	0.200 .22	3.514 .20	1.561 .64	0.01	0.370 .42	0.110 .13
Off site 3						

Table 3-6: Projected Years 2019-2021 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOx	CO	SOx	PM ${ }_{10}$	PM ${ }_{2.5}$
Total	3.923 .73	41.8339 .98	23.8623 .70	0.05	3.013 .15	2.021 .94
Grading ${ }^{1}$						
On site	5.092 .58	59.5228 .35	35.0916 .29	0.060.03	6.023 .95	3.832 .60
Off site	0.150 .11	0.830 .76	1.280 .91	0.00	0.270 .21	0.080 .06
Total	5.242 .69	60.3529 .11	36.3717 .20	0.060.03	6.294 .16	3.912 .66
Building Construction \& Architectural Coating ${ }^{4}$						
On site	13.1712 .02	22.9122 .92	19.0119 .00	0.03	1.42	1.34
Off site	4.040 .96	24.275.77	33.877 .99	0.120 .03	7.911 .87	2.260 .53
Total	17.2113 .00	47.1828 .69	52.8726 .99	0.150 .06	9.333.29	3.601 .87
Paving						
On site	1.261 .36	12.9214 .07	14.65	0.02	0.680 .75	0.620 .69
Off site	0.070 .08	0.05	0.600 .66	0.00	0.17	0.05
Total	1.331 .44	12.9714 .12	15.2515 .31	0.02	0.850 .92	0.670 .74
Maximum Daily Emissions	13.00	39.98	26.99	0.06	4.16	2.66
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{lbs}=$ pounds; $\mathrm{NO}_{x}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently. Source: CalEEMod Version 2016.3.2 (see Appendix B).

Section 3.5.4, Page 46 and 47
Table 3-7: Projected Years 2021-2025 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOX	CO	SOX	PM ${ }_{10}$	PM ${ }^{\text {. } 5}$
Demolition ${ }^{1}$						
On site ${ }^{2}$	3.17	31.44	21.57	0.04	2.52	1.59
Off site ${ }^{3}$	0.19	3.74	1.48	0.01	0.42	0.12
Total	3.36	35.18	23.05	0.05	2.94	1.71
Grading ${ }^{1}$						
On site	2.29	24.74	15.86	0.03	3.72	2.38
Off site	0.09	0.63	0.76	0.00	0.21	0.06
Total	2.38	25.37	16.62	0.03	3.93	2.44
Building Construction \& Architectural Coating ${ }^{4}$						
On site	6.32	18.96	18.40	0.03	1.05	0.99

Table 3-7: Projected Years 2021-2025 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOX	CO	SOX	PM ${ }_{10}$	PM ${ }_{2}{ }^{5}$
Off site	0.57	3.32	4.69	0.02	1.30	0.36
Total	6.89	22.28	23.09	0.05	2.35	1.35
Paving						
On site	0.98	9.52	12.19	0.02	0.49	0.45
Off site	0.09	0.06	0.74	0.00	0.23	0.06
Total	1.07	9.59	12.93	0.02	0.72	0.51
Maximum Daily Emissions	6.89	35.18	23.09	0.05	3.93	2.44
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{lbs}=$ pounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently.
Source: CalEEMod Version 2016.3.2 (see Appendix B).

Section 3.5.4, Page 47

Table 3-8: Projected Years 2026-2030 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOX	CO	SOx	PM 1_{10}	PM ${ }^{2} .5$
Demolition ${ }^{1}$						
On site ${ }^{2}$	1.34	9.46	13.33	0.02	1.08	0.59
Off site ${ }^{3}$	0.09	1.44	0.85	0.01	0.30	0.08
Total	1.43	10.90	14.18	0.03	1.38	0.67
Grading ${ }^{1}$						
On site	1.19	9.10	8.49	0.02	3.05	1.77
Off site	0.05	0.43	0.40	0.00	0.15	0.04
Total	1.24	9.53	8.89	0.02	3.20	1.81
Building Construction \& Architectural Coating ${ }^{4}$						
On site	4.82	9.65	15.82	0.03	0.52	0.50
Off site	0.35	2.01	2.82	0.01	1.10	0.30
Total	5.17	11.66	18.64	0.04	1.62	0.80
Paving						
On site	0.79	7.44	11.67	0.02	0.35	0.32
Off site	0.05	0.03	0.39	0.00	0.17	0.05
Total	0.84	7.47	12.06	0.02	0.52	0.37
Maximum Daily	5.17	11.66	18.64	0.04	3.20	1.81

Table 3-8: Projected Years 2026-2030 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOX	CO	SOX	PM 10	PM 2.5
Emissions						
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{lbs}=$ pounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently.
Source: CalEEMod Version 2016.3.2 (see Appendix B).

Section 3.5.4, Page 48

Table 3-9: Projected Years 2031-2035 Construction Emissions Without CEQA Mitigation(lbs/day)

Source	VOC	NOX	CO	SOX	PM ${ }_{10}$	PM $\mathbf{2 . 5}^{\text {5 }}$
Grading ${ }^{1}$						
On site	1.62	4.54	14.45	0.04	2.79	1.55
Off site	0.05	0.41	0.42	0.00	0.21	0.06
Total	1.67	4.95	14.87	0.04	3.00	1.61
Building Construction \& Architectural Coating ${ }^{4}$						
On site	8.11	5.15	17.96	0.03	0.17	0.17
Off site	0.43	2.87	3.34	0.02	1.70	0.46
Total	8.54	8.02	21.30	0.05	1.87	0.63
Paving						
On site	1.15	6.23	13.09	0.02	0.25	0.25
Off site	0.05	0.02	0.38	0.00	0.22	0.06
Total	1.20	6.25	13.47	0.02	0.47	0.31
Maximum Daily Emissions	8.54	8.02	21.30	0.05	3.00	1.61
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{Ibs}=$ pounds; $\mathrm{NO}_{x}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO} \mathrm{x}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently.
Source: CalEEMod Version 2016.3.2 (see Appendix B).

Section 3.5.4, Page 48 and 49
Table 3-10: Projected Years 2036-2041 Construction Emissions Without CEQA Mitigation(Ibs/day)

Source	VOC	NOX	CO	SOX	PM ${ }_{10}$	PM ${ }_{2}{ }^{5}$
Demolition ${ }^{1}$						
On site ${ }^{2}$	1.83	3.36	18.71	0.05	0.53	0.27
Off site ${ }^{3}$	0.06	0.93	0.56	0.01	0.27	0.07
Total	1.89	4.29	19.27	0.06	0.80	0.34
Grading ${ }^{1}$						
On site	1.46	2.91	14.33	0.04	2.71	1.47
Off site	0.04	0.40	0.35	0.00	0.21	0.06
Total	1.50	3.31	14.68	0.04	2.92	1.53
Building Construction \& Architectural Coating ${ }^{4}$						
On site	4.83	3.85	17.91	0.03	0.10	0.10
Off site	0.24	1.95	1.88	0.01	1.18	0.32
Total	5.07	5.80	19.79	0.04	1.28	0.42
Paving						
On site	0.99	4.74	13.07	0.02	0.15	0.15
Off site	0.04	0.02	0.32	0.00	0.22	0.06
Total	1.03	4.76	13.39	0.02	0.37	0.21
Maximum Daily Emissions	5.07	5.80	19.79	0.06	2.92	1.53
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{lbs}=$ pounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Demolition and Grading based on adherence to the SCAQMD Rule 403 fugitive dust suppression requirements.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
${ }^{4}$ This analysis assumed that Building Construction and application of architectural coatings would occur concurrently. Source: CalEEMod Version 2016.3.2 (see Appendix B).

Section 3.5.4, Page 49

As shown in Table 3-6, Table 3 7, Table 3 8, Table 3 9, and Table 3 10, the emissions from construction activities associated with implementation of the 2041 Facilities Master Plan would be below the significance thresholds for all phases of construction. A less than significant impact would occur.

Section 3.5.4, Page 50
Fable 3-8 presents the estimated operational emissions at LAC. The estimated operational and construction emissions at LAC are shown in Table 312 for interim year 2020, Table 313 for interim year 2025, Table 314 for interim year 2030, Table 315 for interim year 2035, and Table 316 for buildout year 2041.

Section 3.5.4, Page 50 and 51

Table 3-12: Summary of Total Estimated Buildout Year 2020 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	NO O_{x}	CO	SO	PM	PM
Area Sources 1	5.20	0.00	0.08	0.00	0.00	0.00
Energy Usage 2	0.14	1.31	1.10	0.01	0.10	0.10
Mobile Sources 3	1.94	9.14	25.25	0.08	6.30	1.74
Construction 4	13.00	39.98	26.99	0.06	4.16	2.66
Total	20.28	50.43	53.42	0.15	10.56	4.50
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2020 from Error! Reference source not found.
Source: CalEEMod Version 2016.3.2.

Section 3.5.4, Page 51

Table 3-13: Summary of Total Estimated Buildout Year 2025 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	NO	CO	SO	PM	
Area Sources 1	7.53	0.00	0.31	0.00	0.00	0.00
Energy Usage 2	0.22	2.05	1.72	0.01	0.16	0.16
Mobile Sources 3	3.58	15.71	45.97	0.19	16.46	4.50
Construction 4	6.89	35.18	23.09	0.05	3.93	2.44
Total	18.22	52.94	71.09	0.25	20.55	7.10
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2025 from Table 3-7.
Source: CalEEMod Version 2016.3.2.

Section 3.5.4, Page 51

Table 3-14: Summary of Total Estimated Buildout Year 2030 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	NO O_{x}	CO	SO	PM	PM
Area Sources 1	9.22	0.01	0.69	0.00	0.00	0.00
Energy Usage 2	0.28	2.58	2.16	0.02	0.20	0.20
Mobile Sources 3	5.98	22.11	50.21	0.22	21.47	5.87
Construction 4	5.17	11.66	18.64	0.04	3.20	6.07
Total	20.65	36.35	71.69	0.28	24.87	7.88
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2030 from Table 3-8.
Source: CalEEMod Version 2016.3.2.

Section 3.5.4, Page 52

Table 3-15: Summary of Total Estimated Buildout Year 2035 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	N_{X}	CO	SO $_{x}$	$P M_{10}$	PM 2.5
Area Sources 1	12.94	0.01	1.23	0.00	0.00	0.00
Energy Usage 2	0.41	3.76	3.15	0.03	0.29	0.29
Mobile Sources 3	5.82	32.91	75.66	0.39	39.88	10.86
Construction 4	8.54	8.02	21.30	0.05	3.00	1.61
Total	27.71	44.71	101.34	0.47	43.17	12.76
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	$N o$	$N o$	$N o$	$N o$	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2035 from Table 3-9.
Source: CalEEMod Version 2016.3.2.

Section 3.5.4, Page 52

Table 3-16: Summary of Total Estimated Buildout Year 2041 Operational and Construction Emissions.

Source	Maximum Daily Emissions (pounds/day)					
	VOC	NOx	CO	SOx	PM 10	PM 2.5
Area Sources 1	17.09	0.01	0.76	0.00	0.00	0.00
Energy Usage 2	0.56	5.11	4.29	0.03	0.39	0.39
Mobile Sources 3	7.216 .36	46.4342 .34	92.7474 .56	0.520 .41	55.3242 .71	14.9511 .54
Construction 4	5.07	5.80	19.79	0.06	$\mathbf{2 . 9 2}$	1.53
Total	$\mathbf{2 4 . 8 6 2 9 . 0 8}$	51.5553 .26	97.7999 .40	0.550 .50	55.7146 .02	15.3413 .46
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes: $\mathrm{CO}=$ carbon monoxide; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{PM}=$ particulate matter; $\mathrm{SO}_{\mathrm{x}}=$ sulfur oxides; $\mathrm{VOC}=$ volatile organic compounds.
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2041 from Table 3-10.
Source: CalEEMod Version 2016.3.2.

Section 3.5.4, Page 52

As shown in Fable 3-8-Table 3 12, Table 3 13, Table 3 14, Table 3 15, and Table 3 16, the emissions associated with the 2041 Facilities Master Plan for the LAC Improvements would be less than the daily significance thresholds, and no significant impacts are anticipated.

Section 3.6.4, Page 72
Table 3-19: Project Related Greenhouse Gas Annual Emissions

Sector	Greenhouse Gas Emissions (Metric Tons per Year)			
	CO_{2}	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	$\mathrm{CO}_{2} \mathrm{e}$
Area Sources ${ }^{1}$	0.19	0.00	0.00	0.20
Energy Uses ${ }^{2}$	3,256.76	0.11	0.04	3,270.81
Mobile Sources ${ }^{3}$	6,627.71	0.25	0.00	6,634.06
Solid Waste ${ }^{4}$	278.02	16.43	0.00	688.79
Water and Wastewater ${ }^{5}$	160.32	0.53	0.01	177.63
Construction Year 2020^{6}	12.20	0.00	0.00	12.24
Construction Year 2025^{6}	10.65	0.00	0.00	10.70
Construction Year 2030^{6}	8.53	0.00	0.00	8.56
Construction Year	11.63	0.00	0.00	11.64

Table 3-19: Project Related Greenhouse Gas Annual Emissions

Sector	Greenhouse Gas Emissions (Metric Tons per Year)			
	CO_{2}	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	$\mathrm{CO}_{2} \mathrm{e}$
$2035{ }^{6}$				
Construction Year 2041^{6}	57.6910 .40	0.010 .00	0.00	57.8010 .41
Total 2040 Emissions	10,380.6910,376.41	17.33	0.05	10,829.29,10,825.04
Service Population ${ }^{7}$				7,458
Metric Tons $\mathrm{CO}_{2} \mathrm{e}$ per Service Population				1.45
SCAQMD Modified Draft Threshold of Significance ${ }^{8}$ (Metric Tons $\mathrm{CO}_{2} \mathrm{e}$ per Service Population)				3.96

Notes:
${ }^{1}$ Area sources consist of GHG emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consists of GHG emissions from electricity and natural gas usage. It should be noted the energy usage rates are based on a worst-case analysis as LBCCD is committed to achieving net zero energy usage for LAC by 2041.
${ }^{3}$ Mobile sources consist of GHG emissions from vehicles.
${ }^{4}$ Waste includes the CO_{2} and CH_{4} emissions created from the solid waste placed in landfills.
${ }^{5}$ Water includes GHG emissions from electricity used for transport of water and processing of wastewater.
${ }^{6}$ Construction emissions amortized over 30 years as recommended in the SCAQMD GHG Working Group on November 19, 2009.
${ }^{7}$ Service population based on the anticipated increase of students to the LAC campus.
${ }^{8}$ SCAQMD's Year 2020 threshold of $6.6 \mathrm{MTCO}_{2}$ e per year was reduced by 40 percent to account for AB 197 and SB 32.
Source: CalEEMod Version 2016.3.2 (see Appendix B)

Section 3.6.4, Page 71

Fable 3-11 Table 3-19 shows that implementation of the proposed 2041 Facilities Master Plan would create $10,829.29 \mathbf{1 0 , 8 2 5 . 0 4} \mathrm{MTCO}_{2} \mathrm{e}$ per year, which is equivalent to $1.45 \mathrm{MTCO}_{2} \mathrm{e}$ per year per SP , which would be within SCAQMD's modified draft threshold of $3.96 \mathrm{MTCO}_{2} \mathrm{e}$ per year per SP that has been modified to account for the more stringent GHG emissions reduction required by AB 197 and SB 32.

CHAPTER 10.0 - MITIGATION MONITORING AND REPORTING PLAN

Project Location and Description

The LBCC LAC is located at 4901 East Carson Street in the City of Long Beach (City), California. The City of Long Beach is in the southwestern portion of Los Angeles County, adjacent to the northern border of Orange County. The LAC is bounded by Harvey Way on the north, Clark Avenue on the east, Skylinks Golf Course on the south, and Faculty Avenue on the west. Figure 2-1 illustrates the City in its regional and local contexts. Figure 2-2 depicts the site on the United States (U.S.) Geological Survey (USGS) Long Beach 7.5-minute quadrangle topographic map.

The Proposed Project Site is approximately 3.0 miles west of the Interstate 605 San Gabriel River Freeway, 3.0 miles east of Interstate 710 (Long Beach Freeway), 1.5 miles north of Interstate 405 (San Diego Freeway), and less than 0.5 mile east of Lakewood Boulevard, State Highway 19. In addition, the Proposed Project Site is located approximately one-third mile northeast of the Long Beach Municipal Airport.

Since the 2020 Unified Master Plan, the District prepared the LBCCD 2041 Facilities Master Plan to provide an understanding of the projects envisioned to be constructed in the near future. This Facilities Master Plan breaks down the type and size of each project for both campuses, as well as estimating the probable cost of each project. The 2041 Facilities Master Plan allowed the District to re-evaluate available funds and expanded details of priority projects that the District is working to complete. Enrollment and the production of weekly student contact hours (WSCH) were used as the basis for quantifying growth as well as for determining the space needs of the future. Physical capacity was defined in the 2041 Facilities Master Plan as achieving student enrollment of 28,100 and 349,844 WSCH at LAC. At this point in time, the campus will have effectively reached its physical limit for available land area, for parking, and the ability to effectively serve students.

Looking to the year of 2041, LAC's priorities will lie with addressing the key areas for academic growth. These include the Life Sciences (Biology), Mathematics, Language Arts, Performing Arts, and Construction Trade facilities. From the Student Services side of the equation, an economic and workforce development center is a high priority. LAC will also need to address its Physical Education facilities including a new Aquatic Center, renovation of the stadium and gymnasiums, and outdoor kinesiology labs. Lastly, the provision of parking that is close and usable to the primary academic areas will also be a high priority at LAC.

The LBCCD 2041 Facilities Master Plan LAC improvements would result in an estimated increase over the 2020 Unified Master Plan of 15,877 square feet of renovation, 69,564 square feet removed, and an estimated increase of 30,035 square feet of new construction.

Mitigation Monitoring and Reporting Plan Description

The purpose of this Mitigation Monitoring and Reporting Plan (MMRP) is to ensure the effective implementation of the mitigation measures imposed by the LBCCD for the Proposed Project. In addition, this MMRP provides a means of identifying corrective actions, if necessary, before irreversible environmental damage occurs. This plan includes the following:

- A brief description of each impact expected to occur from the proposed project
- Mitigation measure/s associated with each impact
- Responsible monitoring party
- Responsible implementing party
- Implementation phase (i.e., pre-construction, construction, prior to occupancy, post-occupancy)
- Completion date / initials of reviewing party

As the Lead Agency for the Proposed Project, the LBCCD will be required to comply with all applicable plans, permits, and conditions of approval for the Proposed Project, in addition to implementation of this MMRP. The mitigation measures presented in Table 10-1, below, will be implemented as indicated to avoid or minimize environmental impacts of the Proposed Project.

Table 10-1: LBCCD 2041 Facilities Master Plan PCC Improvements Mitigation Monitoring and Reporting Plan

Impact	Mitigation Measure	Responsible Monitoring Party	Responsible Implementing Party	Implementation Phase	Completion Date/Initials
Noise					
Impact 3.7-1: Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local General Plan or noise ordinance, or applicable standards of other agencies.	MM N-1: The site plan and project design for the Swim Pool Facility shall include construction of a minimum 16 foot-high wall along the northern edge of the Swim Pool Facility that is adjacent to Carson Street. There shall be no cut outs or openings in the noise barrier.	LBCCD	LBCCD	Prior to construction	
	MM N-2: The LBCCD shall restrict any swimming or water polo competitions from occurring in the Swim Pool Facility between the hours of 10:00 p.m. and 7:00 a.m. This restriction shall not apply to swim and water polo practices and other non-intensive uses of the Swim Pool Facility.	LBCCD	LBCCD	Prior to construction	
Transportation					
Impact 3.8-1: Conflict with a plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle lanes, and pedestrian paths.	MM TRA-1: Lakewood Boulevard at Harvey Way: Restripe Harvey Way to provide an exclusive westbound right-turn lane. Given that this key study intersection is located jointly in the cities of Long Beach and Lakewood, the installation of this improvement is subject to the approval of the City of Long Beach and the City of Lakewood. It should be noted that these improvements cannot be guaranteed by the Proposed Project or the City of Long Beach as the improvements would also require approval from the City of Lakewood. As such, the impact at this location is considered significant and unavoidable; and a statement of overriding considerations will be required for this location.	LBCCD	LBCCD	Prior to operation	

	MM TRA-2: Clark Avenue at Harvey Way: Restripe Harvey Way to provide an exclusive eastbound right-turn lane. The installation of this improvement is subject to the approval of the City of Long Beach.	LBCCD	LBCCD	Prior to operation
	MM TRA-3: Faculty Avenue at Carson Street: Install signage to restrict southbound left-turn movements during the AM peak period (7:00 AM -9:00 AM) and during the PM peak period (4:00 PM - 6:00 PM). The installation of this improvement is subject to the approval of the City of Long Beach.	LBCCD	LBCCD	Prior to operation
Impact 3.C-3: Result in cumulatively considerable impact with respect to traffic.	See MM TRA-1, MM TRA-2, and MM TRA-3, above	LBCCD	LBCCD	Prior to operation

CHAPTER 11.0 - ACRONYMS AND ABBREVIATIONS

AAQS	Ambient Air Quality Standards
$A B$	Assembly Bill
ADA	Americans with Disabilities Act
Air Basin	South Coast Air Basin
AQMP	Air Quality Management Plan
ASF	Assignable Square Footage
BMP	Best Management Practice
Board	Long Beach Community College Board of Trustees
${ }^{\circ} \mathrm{C}$	Degrees Celsius
$\mathrm{C}_{6} \mathrm{~F}_{6}$	hexafluoroethane
CAA	Federal Clean Air Act
CAAQS	California Ambient Air Quality Standards
CAFE	Corporate Average Fuel Economy
CalEEMod	California Emissions Estimator Model
Cal EPA	California Environmental Protection Agency
CALGreen Code	California Green Building Standards Code
Cal/OSHA	California Occupational Safety and Health Administration
Caltrans	California Department of Transportation
CARB	California Air Resources Board
CCAA	California Clean Air Act
CCR	California Code of Regulations
CDFW	California Department of Fish and Wildlife
CEQA	California Environmental Quality Act
CFR	Code of Federal Regulations
CH_{4}	methane
CMP	Congestion Management Program
CNEL	Community Noise Equivalent Level
CNRA	California Natural Resources Agency
CO	carbon monoxide
CO_{2}	carbon dioxide
$\mathrm{CO}_{2} \mathrm{e}$	carbon dioxide equivalent
dB/dBA	Decibel(s)
District	Long Beach Community College District
DOT	Department of Transportation
DPM	diesel particulate matter
Draft SEIR	Draft Supplemental Environmental Impact Report
EIR	Environmental Impact Report
EO	Executive Order
EV	electric vehicle
${ }^{\circ} \mathrm{F}$	degrees Fahrenheit

FAA	Federal Aviation Administration
FHWA	Federal Highway Administration
FTA	Federal Transit Administration
FTIP	Federal Transportation Improvement Program
GHG	greenhouse gas
GP	General Plan
GSF	Gross Square Footage
GWP	global warming potential
HAP	hazardous air pollutant
HCM	Highway Capacity Manual
HFC	hydrofluorocarbon
HI	hazard index
HVAC	heating, ventilation, and air conditioning
ICU	Intersection Capacity Manual
IPCC	Intergovernmental Panel On Climate Change
IS	Initial Study
LAC	Liberal Arts Campus
LACMTA	Los Angeles County Metropolitan Transportation Authority
LBCC	Long Beach Community College
LBCCD	Long Beach Community College District
LBJC	Long Beach Junior College
LBMA	Long Beach Municipal Airport
LBT	Long Beach Transit
Ldn	Day-Night Sound Level
LEED	Leadership in Energy and Environmental Design
LOS	Level of Service
LST	Localized Significance Threshold
MATES	Multiple Air Toxics Exposure Study
MND	Mitigated Negative Declaration
mpg	miles per gallon
mph	miles per hour
MPO	Metropolitan Planning Organization
$\mathrm{MTCO}^{2} \mathrm{e}$	million tons of carbon dioxide equivalent
Mwh	megawatt hours
$\mu \mathrm{g} / \mathrm{m}^{3}$	micrograms per meters cubed
NAAQS	National Ambient Air Quality Standards
ND	Negative Declaration
NHTSA	National Highway Traffic Safety Administration
NOx	nitrogen oxides
NO_{2}	nitrogen dioxide
$\mathrm{N}_{2} \mathrm{O}$	nitrous oxide
NOP	Notice of Preparation

O_{3}	Ozone
ONC	Office of Noise Control
ONAC	Office of Noise Abatement and Control
OEHHA	California Office of Health Hazard Assessment
OSHA	Occupational Safety and Health Administration
Pb	lead
PCC	Pacific Coast Campus
PCH	Pacific Coast Highway
PEIR	Program Environmental Impact Report
PFC	perfluorocarbon
PM 2.5	Particulate Matter Less than 2.5 Microns in Diameter
PM ${ }_{10}$	Particulate Matter Less than 10 Microns in Diameter
ppb	parts per billion
ppm	parts per million
ppt	parts per trillion
REL	reference exposure level
RCNM	Roadway Construction Noise Model
RWQCB	Regional Water Quality Control Board
RTP	Regional Transportation Plan
SB	Senate Bill
SCAG	Southern California Association of Governments
SCAQMD	South Coast Air Quality Management District
SCS	Sustainable Communities Strategy
SEIR	Supplemental Environmental Impact Report
SF6	sulfur hexafluoride
SIP	California State Implementation Plan
SO_{2}	sulfur dioxide
SO_{4}	sulfates
SOC	Statement of Overriding Considerations
SOx	sulfur oxides
SP	service population
SRA	Source Receptor Area
SWPPP	Stormwater Pollution Prevention Program
TAC	toxic air contaminant
TIA	Transportation Impact Assessment
UMTA	Urban Mass Transit Administration
UNFCCC	United Nations' Framework Convention on Climate Change
URBEMIS	Urban Emissions Model
U.S.	United States
U.S.C.	U.S. Code
USDOT	U. S. Department of Transportation
USEPA	U. S. Environmental Protection Agency

USGS	U.S. Geological Survey
VdB	Velocity Levels in Decibels
V/C	Volume-to-Capacity
VMT	Vehicle miles traveled
VOC	Volatile Organic Compound
vph	vehicles per hour
WSCH	Weekly Student Contact Hours

CHAPTER 12.0 - REFERENCES

California Air Resources Board (CARB)
2008a Recommended Approaches for Setting Interim Significance Thresholds for Greenhouse Gases under the California Environmental Quality Act, on October 24, 2008. Accessed 2018 at https://www.arb.ca.gov/cc/localgov/ceqa/meetings/102708/prelimdraftproposal10240 8.pdf

2008b Addendum to January 2 Technical Assessment. Comparison of Greenhouse Gas Reductions for All Fifty United States. Accessed 2018 at https://www.arb.ca.gov/cc/ccms/pavley-addendum.doc

2012 Proposed Amendments to New Passenger Motor Vehicle Greenhouse Gas Emission Standards for Model Year 2017-2025 to Permit Compliance Based on Federal Greenhouse Gas Emissions Standards and Additional Minor Revisions to the LEV III and ZEV Regulations, September 14, $2012 . \quad$ Accessed 2018 at https://www.arb.ca.gov/regact/2012/leviiidtc12/dtcisor.pdf

2014 First Update to the Climate Change Scoping Plan, May 2014. Accessed 2018 at https://www.arb.ca.gov/cc/scopingplan/2013_update/first_update_climate_change_sc oping_plan.pdf

2017 Final Staff Report Proposed Update to the SB 375 Greenhouse Gas Emission Reduction Targets, October 2017. Accessed 2018 at https://www.arb.ca.gov/cc/sb375/final staff proposal sb375 target update o ctober 2017.pdf

2017 California's 2017 Climate Change Scoping Plan, November 2017. Accessed 2018 at https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf

California Climate Action Registry
2009 General Reporting Protocol, Version 3.1. January. Accessed 2018 at https://sfenvironment.org/sites/default/files/fliers/files/ccar_grp_3-1_january2009_sfeweb.pdf

California Department of Transportation (Caltrans)
2013 Technical Noise Supplement to the Traffic Noise Analysis Protocol. September 2013. Accessed 2018 at http://www.dot.ca.gov/hq/env/noise/pub/TeNS_Sept_2013B.pdf

2013 Transportation and Construction Vibration Guidance Manual. September 2013. Accessed 2018 at http://www.dot.ca.gov/hq/env/noise/pub/TCVGM_Sep13_FINAL.pdf

California Energy Commission (CEC)
2016 Building Energy Efficiency Standards for Residential and Nonresidential Buildings. Accessed 2018 at http://www.energy.ca.gov/2015publications/CEC-400-2015-037/CEC-400-2015-037-CMF.pdf

Dziegielewski, B.
2000 Commercial and Institutional End Uses of Water. Accessed 2018 at http://www.waterrf.org/PublicReportLibrary/RFR90806_2000_241B.pdf

Facilities Utilization Space Inventory Option Net (FUSION)
2017 FUSION database inventory of square footage of buildings on campus
Intergovernmental Panel on Climate Change (IPCC)
2007 Climate Change 2007. Impacts, Adaptation, and Vulnerability. https://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4_wg2_full_report.pdf

KOA Corporation
2009 Traffic Study for Long Beach Community College District 2020 Master Plan EIR Update Liberal Arts Campus, October 30, 2009

Long Beach Community College District (LBCCD)
20042004 Master Plan
20172041 Facilities Master Plan.
Linscott, Law \& Greenspan
2018 Traffic Impact Analysis Report LBCCD 2041 Master Plan Liberal Arts Campus Long Beach, California. January 19, 2018.

National Aeronautics and Space Administration (NASA)
2017 "NASA, NOAA Data Show 2016 Warmest Year on Record Globally." January 18, 2017. Accessed 2018 at https://www.nasa.gov/press-release/nasa-noaa-data-show-2016-warmest-year-on-record-globally

National Oceanic and Atmospheric Administration (NOAA)
2018 Earth Systems Research Laboratory. Global Greenhouse Gas Reference Network. Accessed 2018 at http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html

Office of Environmental Health Hazard Assessment (OEHHA)
2015 Air Toxics Hot Spots Program Risk Assessment Guidelines Guidance Manual for Preparation of Health Risk Assessments. February 2015.

Rimpo \& Associates
2007 URBEMIS Model, Version 9.2.4.
South Coast Air Quality Management District (SCAQMD)
1993 CEQA Air Quality Handbook. April.
2008 Final Localized Significance Threshold Methodology, Revised July 2008. Accessed 2018 at http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/final-Ist-methodology-document.pdf?sfvrsn=2

2009 SCAQMD Mass Rate Look-Up Tables. Accessed 2018 at http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/appendix-c-mass-rate-Ist-look-up-tables.pdf?sfvrsn=2

2015 SCAQMD Air Quality Significance Thresholds, March 2015. Accessed 2018 at http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2

2017 Final 2016 Air Quality Management Plan. March 2017. Accessed 2018 at http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality-management-plan/final-2016aqmp/final2016aqmp.pdf?sfvrsn=15
U.S. Environmental Protection Agency (USEPA)

201040 CFR Part 80 Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards; Final Rule. December 9, 2010.

2018 The U.S. Inventory of Greenhouse Gas Emissions and Sinks: Fast Facts. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-fast-facts
U.S. Department of Transportation Federal Highway Administration (FHWA)

2006 FHWA Roadway Construction Noise Model User's Guide Final Report. January 2006. Accessed 2018
at http://www.fhwa.dot.gov/environment/noise/construction_noise/rcnm/rcnm.pdf

USEPA and National Highway Traffic Safety Administration (USEPA and NHTSA)
201249 CFR Parts 523, 531, 533. et al. and 6002017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards; Final Rule. October 15, 2012.

Western Regional Climate Center (WRCC)
2016 NCDC 1971-2008 Monthly Climate Summary. Long Beach, California. Accessed 2018 at https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca5085

Wilkinson, R., and Wolfe, G.
2005 Energy Flow In The Water Cycle: A New Spaghetti Chart. Presentation Before The California Energy Commission, Integrated Energy Policy Report. Water- Energy Relationship Workshop. January 24.

CHAPTER 13.0 - REPORT PREPARATION

Name	Project Role/EIR Chapter
Lead Agency/Reviewers	Vice President of Business Services
Marlene Dunn	Interim Deputy Director of Planning \& Construction
Brendan Hayes	Deputy Director of Facilities \& Maintenance
Medhanie Ephrem	Business Support Services, Director
Bob Rapoza	Bond Management Team, Construction Manager
Farzam Fathi	Bond Management Team, Program Director
Terrance DeGray	
CEQA Consultant: Chambers Group, Inc	Project Manager, Project Environmental Planner
Meghan Gibson	Managing Environmental Planner
Corinne Lytle Bonine	Assistant Environmental Planner
Eunice Bagwan	Environmental Planner
Thomas Strand	
Chambers Group Inc. Subconsultant	
Greg Tonkovich (Vista Environmental)	Air Quality, Greenhouse Gas, Noise Analysis
Dan Kloos (Linscott, Law, and Greenspan)	Traffic Impact Analysis

APPENDIX A - NOTICE OF PREPARATION, INITIAL STUDY, AND COMMENTS

LONG BEACH COMMUNITY COLLEGE DISTRICT NOTICE OF PREPARATION/ INITIAL STUDY
 FOR THE 2041 FACILITIES MASTER PLAN LIBERAL ARTS CAMPUS IMPROVEMENTS

Prepared for:
LONG BEACH COMMUNITY COLLEGE DISTRICT
4901 East Carson Street
Long Beach, California 90808

Prepared by:

CHAMBERS GROUP, INC.
5 Hutton Centre Drive, Suite 750
Santa Ana, California 92707

February 2018

TABLE OF CONTENTS

Page
SECTION 1.0 - INTRODUCTION 1
1.1. PURPOSE OF THE NOTICE OF PREPARATION AND INITIAL STUDY 1
1.2. USE OF MASTER PLAN PROGRAM EIR 2
1.3. AVAILABILITY OF THE NOP/IS 2
SECTION 2.0 - PROJECT DESCRIPTION AND ENVIRONMENTAL SETTING 3
2.1 PROJECT BACKGROUND AND OBJECTIVES 3
2.1.1 LBCC and LAC History 8
2.1.2 2004 Master Plan Elements 8
2.1.3 2020 Unified Master Plan Elements 11
2.2 PROJECT DESCRIPTION 16
2.2.1 2041 Facilities Master Plan LAC Improvements 16
2.3 PROJECT DESIGN FEATURES 16
2.4 REQUIRED PERMITS AND APPROVALS 22
2.4.1 Lead Agency Approval 22
2.4.2 Required Permits and Approvals 22
2.4.3 Reviewing Agencies 23
2.5 CUMULATIVE SCENARIO 23
SECTION 3.0 - ENVIRONMENTAL DETERMINATION 26
3.1. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED: 26
3.2. DETERMINATION 26
SECTION 4.0 - ENVIRONMENTAL IMPACTS 27
4.1. ORGANIZATION OF ENVIRONMENTAL ANALYSIS 27
4.2. TERMINOLOGY USED IN THIS ANALYSIS 27
4.3. EVALUATION OF ENVIRONMENTAL IMPACTS 27
4.4. AESTHETICS 29
4.5. AGRICULTURE AND FORESTRY RESOURCES 37
4.6. AIR QUALITY 38
4.7. BIOLOGICAL RESOURCES 40
4.8. CULTURAL RESOURCES 42
4.9. ENERGY 44
4.10. GEOLOGY AND SOILS 45
4.11. GREENHOUSE GAS EMISSIONS 49
4.12. HAZARDS AND HAZARDOUS MATERIALS 50
4.13. HYDROLOGY AND WATER QUALITY 53
4.14. LAND USE AND PLANNING 56
4.15. MINERAL RESOURCES 56
4.16. NOISE 57
4.17. POPULATION AND HOUSING 58
4.18. PUBLIC SERVICES 59
4.19. RECREATION 61
4.20. TRANSPORTATION 62
4.21. TRIBAL CULTURAL RESOURCES 63
4.21.1 Evaluation 63
4.22. UTILITIES AND SERVICE SYSTEMS 65
4.23. WILDFIRE 68
4.24. MANDATORY FINDINGS OF SIGNIFICANCE 69
SECTION 5.0 - REFERENCES 71
SECTION 6.0 - REPORT AUTHORS AND CONSULTANTS 73

APPENDICES

APPENDIX A Cultural Resources Memo Report

LIST OF TABLES

Page

Table 2-1 LAC Existing Building Inventory 7
Table 2-2 2004 LAC Master Plan Improvements 9
Table 2-3 Eliminated Master Plan Improvements 11
Table 2-4 2020 LAC Master Plan Improvements 12
Table 2-5 Updated 2041 Facilities Master Plan Improvements 18
Table 2-6 2041 Facilities Master Plan Construction by Planned Construction Years 21

LIST OF FIGURES

Page
Figure 2-1 Regional and Local Settings 4
Figure 2-2 USGS Topographic Map 5
Figure 2-3 Existing Campus and Adjacent Land. 6
Figure 4-1: Site Photograph Locations 30
Figure 4.4-2a View of LAC looking north across E. Conant Street 31
Figure 4.4-2b View of LAC from corner looking south across E. Conant Street 31
Figure 4.4-2c View of LAC from corner of Clark Ave and E. Conant Street 32
Figure 4.4-3a View of LAC from Faculty Avenue looking east 32
Figure 4.4-3b View of New Parking Structure on LAC. 33
Figure 4.4-3c View of LAC across Carson Street 33
Figure 4.4-4a View of LAC from corner of Clark Avenue and Carson Street looking north 34
Figure 4.4-5a View of LAC from corner of Clark Avenue and E. Harvey Way looking south 34

SECTION 1.0 - INTRODUCTION

1.1. PURPOSE OF THE NOTICE OF PREPARATION AND INITIAL STUDY

The Long Beach Community College District (LBCCD or District) proposes to update the 2020 Unified Master Plan Liberal Arts Campus (LAC) Master Plan as described in the 2041 Facilities Master Plan, Liberal Arts Campus Improvements.

All "projects" within the State of California are required to undergo environmental review to determine the environmental impacts associated with implementation of the project in accordance with the California Environmental Quality Act (CEQA). CEQA was enacted in 1970 by the California Legislature to disclose to decision makers and the public the significant environmental effects of a Proposed Project and identify possible ways to avoid or minimize significant environmental effects of a project by requiring implementation of mitigation measures or recommending feasible alternatives. CEQA applies to all California governmental agencies at all levels, including local, regional and state, as well as boards, commissions, and special districts (such as LBCCD). As such, LBCCD is required to conduct an environmental review to analyze the potential environmental effects associated with the Proposed Project.

The findings in this Initial Study have determined that a Supplemental Environmental Impact Report (SEIR) is the appropriate level of environmental documentation. The Proposed Project could result in potential impacts in aesthetics, air quality, greenhouse gas emissions, noise, and transportation issue areas. These issues areas shall be further addressed in the SEIR.

LBCCD will be the Lead Agency for the CEQA process related to this Proposed Project and for the SEIR that is recommended in this Notice of Preparation (NOP) / Initial Study (IS). The attached IS analyzes the potential for environmental impacts resulting from updates to the 2020 Unified Master Plan, LAC Improvements as described in the 2041 Facilities Master Plan, LAC Improvements.

LBCCD needs to know the views of your agency regarding the scope and content of the environmental information that should be included in the SEIR. The document will be prepared by LBCCD and will include any information necessary for your agency to meet any statutory responsibilities related to the Proposed Project. Your agency will need to use the SEIR when considering any permit or other approvals necessary to implement the project. A preliminary list of the environmental topics identified for study in this SEIR is provided in the IS checklist (Section 4). If the topics of concern to your agency have already been identified for analysis in the IS, your agency need not provide a response to this notice.

The project description, location, and the environmental issues to be addressed in the SEIR are contained in the attached materials.

Due to the time limits mandated by state law, your comments must be sent to LBCCD at the earliest possible date but not later than $\mathbf{3 0}$ days after receipt of this notice. Please send your response to:

Farzam Fathi
Long Beach Community College District - Bond Management Team
4901 E. Carson Street - G21
Long Beach, CA 90808

Your comments may also be sent via facsimile to (562) 938-5065 or by email to CEQA@lbcc.edu and include "2041 Facilities Master Plan LAC Improvements" in the subject line. Agency responses to the NOP should include the name of a contact person within the commenting agency.

1.2. USE OF MASTER PLAN PROGRAM EIR

LBCCD prepared a Program Environmental Impact Report (PEIR) which provided environmental review for the Long Beach City College (LBCC) LAC Master Plan in accordance with the requirements of CEQA. The objective of the Master Plan is to meet increasing enrollment needs, evolving demands for postsecondary educational institutions, and the needs of the Long Beach community. LBCCD Board of Trustees certified the Program EIR on January 25, 2005. The PEIR provides general analysis and guidance on the Master Plan; project specific analysis is provided in later CEQA documents through a process known as "tiering." LBCCD has utilized the PEIR in the preparation of this IS to determine the appropriate CEQA document needed to evaluate the environmental effects of the project. The PEIR is available for review at the LBCCD Bond Management Team office, Building 01 - First Floor, and LAC Library, Building L, both at the LBCC LAC, located at 4901 E. Carson Street, Long Beach, California 90808.

1.3. AVAILABILITY OF THE NOP/IS

The NOP/IS for the 2041 Facilities Master Plan LAC Improvements project is being distributed through the State Clearinghouse and directly to numerous agencies, organizations, and interested groups and persons for comment during the scoping period. The NOP/IS is also available for review at the following locations:

- LBCCD Bond Management Team office, Building 01 - First Floor, LBCC LAC, 4901 E. Carson Street, Long Beach, California 90808
- LAC Library, Building L, LBCC LAC, 4901 E. Carson Street, Long Beach, California 90808
- Ruth Bach Library located at 4055 N. Bellflower Boulevard, Long Beach, California 90808.

In addition, the NOP/IS is available online at the LBCCD website (https://www.lbcc.edu/pod/facilities-master-plans).

SECTION 2.0 - PROJECT DESCRIPTION AND ENVIRONMENTAL SETTING

2.1 PROJECT BACKGROUND AND OBJECTIVES

The LBCCD, founded in 1927, is one of the largest of the 114 California community college districts. The District is comprised of two campuses: the Pacific Coast Campus (PCC) located at 1305 East Pacific Coast Highway, and the Liberal Arts Campus (LAC), the subject of this Supplemental EIR. Together, the campuses currently serve a student population of more than 24,000.

The District's goal as part of the California Community College system is to offer academic and vocational education to students at the lower college division level. In addition, the District's goal is to advance California's economic growth and global competitiveness through education, training, and services that contribute to continuous workforce improvement. Long Beach City College is committed to providing equitable student learning and achievement, academic excellence, and workforce development by delivering high quality educational programs and support services to their diverse communities.

The objective of the 2041 Facilities Master Plan is to provide plans to implement proposed necessary construction, renovation, and general capital improvements at the campus in order to meet the District's goals and to support the District's Strategic Plan. The improvements are intended to create and improve building space to support the LBCCD Strategic Plan and Student Learning Outcomes in all areas.

Location

The LBCC LAC is located at 4901 East Carson Street in the City of Long Beach (City), California. The City of Long Beach is in the southwestern portion of the Los Angeles County, adjacent to the northern border of Orange County. The LAC is bounded by Harvey Way on the north; Clark Avenue on the east; Skylinks Golf Course on the south; and Faculty Avenue on the west. Figure 2-1 illustrates the City in its regional and local contexts. Figure 2-2 depicts the site on the USGS Long Beach Quadrangle topographic map.

The Proposed Project Site is approximately 3.0 miles west of the Interstate 605 San Gabriel River Freeway, 3.0 miles east of the Interstate 710 Long Beach Freeway, 1.5 miles north of the Interstate 405 San Diego Freeway, and less than one-half mile east of Lakewood Boulevard, State Highway 19. In addition, the Proposed Project Site is located approximately one-third mile northeast of the Long Beach Municipal Airport.

Adjacent Land Uses

The Proposed Project Site is located along Carson Street between Bellflower and Lakewood Boulevards in the City of Long Beach, California. The campus is within the City of Long Beach General Plan Land Use District No. 10 - Institutions/Schools, and is zoned Institutional (I).

As shown in Figure 2-3, existing land uses surrounding the LAC are single-family residences to the north, single-family residences and parkland to the east; parkland, Long Beach Fire Department Station No. 19, and the Skylinks Golf Course to the south; and large aerospace industrial, automotive and storage facilities to the west.

Figure 2-1 Regional and Local Settings

Figure 2-2 USGS Topographic Map

Legend
Project Location

Figure 2-2
USGS Topographic Map

Scale $=1: 24,000$

Figure 2-3 Existing Campus and Adjacent Land

LAC Land Uses

The approximately 112-acre LAC site is improved with 33 buildings constructed between 1935 and 2017 that contain approximately $1,285,337$ square feet of gross area. The LAC is transected by Carson Street, and is organized into three general areas: the North Campus, which contains administrative and classroom buildings; the Central Campus, which contains administrative buildings, classroom buildings, and physical education facilities, and the South Campus, which includes the Veterans Memorial Stadium complex, facilities buildings and information technology/bond management team offices. The LAC also includes ancillary structures such as athletic fields, landscaped areas, parking lots, and pedestrian walkways. Table 2-1 provides a building inventory including age of construction, use, and square footage.

Table 2-1 LAC Existing Building Inventory

Building Letter	Building Name	Gross Square Footage	Year Built	Last Addition
A	ADMINISTRATION	33,967	1940	2013
B	TECHNICAL	44,357	1971	
C	NURSING HEALTH-TECHNOLOGY	23,250	1969	2016
D	SCIENCE BUILDING	81,132	1973	2000
E	COLLEGE CENTER	50,276	1968	1991
F	FAMILY- CONSUMER STUDIES	15,387	1952	1974
G	MUSIC	20,530	1952	1993
H	THEATER ARTS BLDG	7,262	1980	
1	CAMPUS BOOKSTORE	8,544	1992	2012
J	AUDITORIUM	37,878	1956	
K	ART	29,479	1952	1995
L	LIBRARY LEARNING CENTER	79,053	1958	2009
M	BUSINESS-SOCIAL SCIENCE-FOREIGN LANGUAGE	36,476	1935	1975
N	ENGLISH-JOURNALISM-LANGUAGE ARTS	12,292	1935	1975
O1	INSTRUCTIONAL \& INFORMATIONAL TECHNOLOGY SERVICES	26,560	2001	2009
O 2	COLLEGE ADVANCEMENT AND ECONOMIC DEVELOPMENT	51,302	2001	2009
P	LANGUAGE ARTS	16,016	1935	1984
PS	PARKING STRUCTURE	295,485	2011	
Q	GYMNASIUM WOMEN	30,270	1952	
R	GYMNASIUM MEN	78,024	1952	1963
S	VETERANS' STADIUM	57,694	1950	1991
	STADIUM PRESS BOX	1,920	1949	

Building Letter	Building Name	Gross Square Footage	Year Built	Last Addition
T	ACADEMIC SERVICES	108,312	2009	
TS	TENNIS STORAGE	200	1960	
	FACILITIES STORAGE	988	1980	
RR	ATHLETIC FIELD HOUSE	1,656	1960	
TW	TW MODULAR	960	2007	
U	GROUNDS SHOP	4,800	1975	
V	MATH-TECHNOLOGY-CULINARY ARTS	73,650	2015	
X	CAMPUS SAFETY/CENTRAL PLANT	9,000	2009	
XT	PHYSICAL EDUCATION OFFICE	2,160	1989	
Y	MAINTENANCE SHOP	7,000	1989	
Z	MAINTENANCE/WAREHOUSE	39,457	2005	

Source: FUSION database 2017

2.1.1 LBCC and LAC History

Long Beach City College, formerly known as Long Beach Junior College (LBJC), celebrated its $90^{\text {th }}$ Anniversary in 2017. LBJC opened at Woodrow Wilson High School in September 1927. LBJC was the second two-year college established in the metropolitan area of Los Angeles. LBJC served students not only from Long Beach, but also as far away as Redondo Beach to the north and Laguna Beach to the south. LBJC was offered 25 acres on Carson Street for a new campus in 1933 from the Montana Land Company. The area was then known as "Lakewood Village." The Montana Land Company donated additional land parcels in 1934. The new campus with a total of 29.844 acres, now referred to as the Liberal Arts Campus, opened in 1935 with Mission architecture with tile roofs, white exterior walls, and patios. Bean, alfalfa, and carrot fields surrounded the new campus on Carson. The first mailing address of the Carson campus was Route No. 1, Clark and Carson Streets. The enrollment in 1935-36 was 1,603 students with 51 full-time faculty members. By 1942-43, the middle of the war years (1941-45), enrollment had climbed to 2,966 students with 56 full-time faculty members. In the postwar expansion period from 1945-52, the College acquired an additional 38.379 acres south of Carson Street.

In response to the postwar increase in enrollment, LBJC also acquired the former Hamilton Junior High School site at Pacific Coast Highway and Alamitos Avenue in 1949 for the newly formed Business and Technology Division of Long Beach City College. This site is now the Pacific Coast Campus of LBCC.

2.1.2 2004 Master Plan Elements

A general obligation bond election (Measure "E"/Proposition 39) was approved in March 2002 for both general and specific improvements at the LBCC at both the PCC and the LAC. The District is undertaking an extensive improvement and building program at the two campuses to meet increasing enrollment needs, evolving demands for post-secondary educational institutions, and the needs of the Long Beach community. Additionally, the District will be using capital improvement funds from the State of California for renovation and new construction projects.

In 2004, the District prepared the LBCC LAC Master Plan to reflect LBCC's projected instructional and programmatic needs for the Liberal Arts Campus. The 2004 LBCC LAC Master Plan outlined capital improvements through 2015 and proposed construction of new buildings, renovation, modernization and additions to existing facilities, demolition of existing buildings, and landscaping enhancements. Improvements are intended to update existing technological and program services to meet increasing needs of students and faculty.

The District prepared a Program Environmental Impact Report (PEIR) to address implementation of the 2004 LBCC LAC Master Plan. The Board of Trustees of the LBCCD certified the Final PEIR for the 2004 LBCC LAC Master Plan, State Clearinghouse No. 2004051060, on January 25, 2005. Since the adoption of the PEIR, two Addendums to the PEIR were completed to address updates to the original project description. The September 2008 Addendum addressed a revision to the location of the parking structure proposed in the PEIR to one of three alternative locations on the LAC campus. This Addendum was approved by the Board of Trustees of the LBCCD on September 23, 2008. The May 2009 Addendum addressed a revision to the renovation/retrofit of Buildings $\mathrm{M} \& N$ proposed in the PEIR to their replacement with an approximately 49,000 gross square foot building. This Addendum was approved by the Board of Trustees of the LBCCD on May 19, 2009. In addition, an Initial Study/Negative Declaration (IS/ND) was prepared for the acquisition of the property and buildings at 4900 \& 4910 E. Conant Street for use by LBCCD as classroom and administrative space. This IS/ND was approved by the Board of Trustees of the LBCCD on November 11, 2008. Table 2-2 presents LAC Master Plan Improvements previously approved under the PEIR, its Addendums, and/or the Final IS/MND for the Conant Street Project.

Table 2-2 2004 LAC Master Plan Improvements

Project	Function/Support	Scope (GSF)
Building A Administration/ Student Services	Reuse for Student Services	Retrofit/Renovation - 37,058
Building B Tech Studies	Technical Education Program	Retrofit/Renovation - 44,536
Building C Nursing/Health Technology	Nursing/Health Technology	Retrofit/Renovation - 22,260
Building E College Center	Campus-wide Student Support	Retrofit/Renovation - 50,276
Building F	Replace existing Building F with new Multi-Disciplinary building	New Construction - 15,968
Building G Music Building	Music	Retrofit/Renovation - 27,591
Building H Theater Arts	Drama, Dance	Retrofit/Renovation - 7,262
Building J Auditorium	Performing Arts	Retrofit/Renovation - 28,214
Library/ Learning Resource Center (LRC)	Library/ LRC Functions	$\begin{aligned} & \text { Renovation - 73,521 } \\ & \text { Expansion - 13,384 } \end{aligned}$
Liberal Arts Building	Replace existing Buildings M \& N with building. Language Arts, Speech	New Construction - 67,948

Project	Function/Support	Scope (GSF)
	Communication, CIS, Construction Education	
Trailers O	Speech relocated to SQC	Demolition/Removal - 5,760
Building O1	ACIT, Bond Management Team, Warehouse	Retrofit/Renovation - 40,892
Building O2	LBCCD Foundation Organization, Economic Resource Development	Retrofit/Renovation - 70,972
Building P Language Arts	Language Arts	Retrofit/Renovation-16,016
Building Q Secondary Gymnasium	Physical Education	Retrofit/Renovation - 30,270
Building R Primary Gymnasium	Physical Education	Retrofit/Renovation - 77,916
Trailers T	Relocate uses to Liberal Arts Building	Remove -6,240
Building U	Relocate Grounds Shop to Building Z	Remove - 4,800
Building V	Relocate Human Resources/Purchasing to SQC	Remove - 8,160
Trailers W	Relocate uses to SQC	Remove - 23,167
Building X Campus Police Facility	Campus Safety/ Central Plant/ Physical Education	New Construction - 18,859
Building Y	Relocate Maintenance Shop to Building Z	Remove - 7,000
Building Z Maintenance/ Warehouse	Maintenance Operations/ Warehousing	New Construction - 36,606
South Quad Complex (SQC)	Business, Social Sciences, Child Development, Administration	New Construction - 121,722
Child Development Center	Child Development	New Construction - 15,102
Outdoor Performance Area	Outdoor performance area and seating in Building 3 courtyard	New Construction - 31,250
Pedestrian Promenade	Renovate, widen, and extend Pedestrian Promenade	Retrofit/Renovation 5,970 linear ft.
Entry Plazas	Pedestrian entry plazas between parking lots and buildings	New Construction - 90,000
Swim Pool Facility	Infrastructure Support	Retrofit/Upgrades - 12,080
Sculpture Garden	Sculpture Garden between Buildings J and K	New Construction $13,727$
Landscape Improvements	Campus-wide	Retrofit/Renovation
Circulation Improvements	Campus-wide including closure of Faculty Drive at Carson Street	Retrofit/Renovation
Infrastructure Improvements	Campus-wide	Retrofit/Renovation
Office/ Classroom Buildings (3 Buildings)	Office/ Classroom/ Lab	New Construction - 271,791
Parking Structure	Replace Surface Parking N with 4-story Parking Structure	New Construction - 175,000

(Note: These square footage numbers have been changed from assignable square footage (ASF) to gross square footage (GSF) for purposes of analysis within this Supplemental EIR. Only conversions from ASF to GSF or clarifications in numbers were made here.)

2.1.3 2020 Unified Master Plan Elements

The Measure E Bond Program approved in March 2002 provided a jump start to the District's capital facilities program; however, it was never intended to address all building/facilities needs for the campus. The age of the existing facilities coupled with the need to meet both current and future growth of the academic program of instruction required improvements that go beyond Measure E .

The District addressed this need in 2006 when it requisitioned the Long Beach Community College Resource and Facilities Plan. The Resource and Facilities Plan identified the growth rates vis-à-vis the academic programs of instruction at LAC and PCC. Enrollment and the production of weekly student contact hours (WSCH) were used as the basis for quantifying growth as well as for determining the space needs of the future. The year 2020 was selected as the "target year." Based on the growth rates, the vectors for enrollment and WSCH were determined to intersect with the physical capacity of the two campuses at or about year 2020. Physical capacity was defined as achieving student enrollment of 27,500 and 238,000 WSCH at LAC. At this point in time, the campus will have effectively reached its physical limit for available land area, for parking, and the ability to effectively serve students.

While the 2020 target year is somewhat relative, the enrollment and WSCH benchmarks are not. Enrollment and WSCH projections may be reached prior to the year 2020 or after that point in time. However, when 238,000 WSCH are reached at LAC, the campus will effectively be operating at maximum capacity.

While looking to 2020, LAC's priorities focused on addressing the key areas for academic growth. These included the Life Sciences (Biology), Mathematics, Language Arts, Performing Arts, and Child Development. From the Student Services side of the equation, a comprehensive student center for educational support was a high priority. LAC also addressed its Physical Education facilities. With the exception of cosmetic treatment, these facilities had remained unchanged since the 1940s and 1950s. Additionally, the physical capacity of the outdoor laboratories was understated for the enrollment served, the expansion of the athletics program, and the impacts of the Title IX program. LAC also focused on the renovation of its buildings north of Carson Street. While the structural integrity of the selected buildings to be retained were in good condition, the teaching/learning environments and the technology support offered are outdated for today's methods of instructional delivery. Additionally, these buildings have utility and mechanical systems that have been extended well beyond their intended life span. The provision of parking that is close and usable to the primary academic areas will also be a high priority at LAC.

The District prepared a Supplemental Environmental Impact Report (SEIR) to address implementation of the 2020 Unified Master Plan. The Board of Trustees of the LBCCD certified the Final SEIR for the 2020 Unified Master Plan, State Clearinghouse No. 2004051060, on December 8, 2009. Table 2-3 presents the updates to the Master Plan through eliminated projects. Table 2-4 and Figure 2-4 presents LAC Master Plan Improvements previously approved under the SEIR.

Table 2-3 Eliminated Master Plan Improvements

Project	Function/Support	Scope (GSF)
Building E	Campus-wide Student Support	Retrofit/Renovation $-50,276$
Building F	Replace existing Building F with	New Construction $-\quad 15,968$

	new building	
Building G Music Building	Music	Retrofit/Renovation - 27,591
Building H Theater Arts	Drama, Dance	Retrofit/Renovation - 7,262
Office/ Classroom Building	Office/ Classroom/ Lab	New Construction - 271,791
Parking Structure	Replace Surface Parking N with 4-story Parking Structure	New Construction - 175,000

(Note: These square footage numbers have been changed from ASF to GSF for purposes of analysis within this Supplemental EIR. Only conversions from ASF to GSF or clarifications in numbers were made here.)

Table 2-4 2020 LAC Master Plan Improvements

Project	Function/Support	Scope (GSF)
Building A	Reuse for Student Services	New Construction - 9,279
Building D Science Building	Renovate bottom floor for Biology	Retrofit/Renovation - 9,326
Building E College Center	Campus-wide Student Support	Renovation - 50,276
Building F	Multi-Disciplinary	Retrofit/Renovation - 15,968
Building I Foundations Building	Conversion to Bookstore. LBCC Foundations Organization moves to Building 02	Retrofit/Renovation - 4,994 Expansion - 4,994
Building K Art Building	Fine Arts	Retrofit/Renovation - 29,479
Building S Stadium Building	Health/ Safety \& Fitness/ Wellness	Retrofit/Renovation - 57,455 Expansion - 57,455
Building 1 Math Tech	Math, Culinary Arts, Health, Instructional Support	New Construction - 83,202
Building 3 Performing Arts	Replace existing Buildings G \& H. Drama, Dance, Music	New Construction - 46,671 Remove - 27,792
Parking Structure 7	Replace Surface Parking J with 950 space Parking Structure	New Construction - 310,000
MPOE Building	Telecommunications	New Construction - 450
Outdoor Physical Education Labs	Physical Education	Relocation/Reconstruction
Olympic-sized Pool	Physical Education	New Construction - 37,062
Signage Improvements	Campus-wide improvement of directional signage; new electronic informational sign adjacent to Carson Street	New Construction/Renovation
Circulation Improvements	Closure of Faculty Avenue at Lew Davis Drive	Reconstruction
Photovoltaic Projects	LAC buildings will be studied for possible Solar Photovoltaic systems.	New Construction

(Note: These square footage numbers have been changed from ASF to GSF for purposes of analysis within this Supplemental EIR. Only conversions from ASF to GSF or clarifications in numbers were made here.)

The following descriptions identify specific improvements recommended for the 2020 Unified Master Plan LAC Improvements, that were not part of the 2004 LAC Master Plan.

- The bottom floor of Building D will be renovated for Biology.
- Building E, the College Center (Student Center) will be renovated.
- Building F will be renovated for Multi-Disciplinary uses.
- Building I will be renovated and expanded by 4,994 square feet for use as the new Bookstore. The LBCCD Foundation organization will be moved to Building O2, located south of Conant Street.
- Building K, the Fine Arts Building will be renovated.
- A new Math Tech Building (Building 1) will be built on the northwest portion of the existing surface Parking Lot J. This building will support Math, Culinary Arts, Health, and Instructional Support. It would consist of two stories and approximately 83,202 square feet in size.
- A new Performing Arts Building (Building 3) will replace the existing Buildings G and H , consisting of approximately 46,671 square feet.
- The proposed Parking Structure 7 will be built on a portion of surface Parking Lot J, immediately southeast of the proposed Building 1. It would consist of five stories and approximately 310,000 square feet. It would contain approximately 900 parking spaces with a maximum 950 parking spaces. The proposed structure would be accessed from two locations off Clark Street and one location off Lew Davis Street. These entrances would provide vehicle queuing space for eight cars entering and exiting the garage to reduce congestion on Clark Avenue. A solar photovoltaic system will be installed on the roof of the Proposed parking structure to supply electricity to the structure. The Proposed Project will also include secure bicycle parking at ground level for 100 bicycles.
- A new telecommunications building will be built adjacent to Building P. This 400 square feet building will consolidate the telecommunications network, most of which is currently housed in Building N . This will include one or two parking spaces for electronic vehicles.
- An Olympic-sized swimming pool will be constructed between Buildings R and Q. It will include grandstands to accommodate 3,000 people.
- Improvements to directional signage will take place campus-wide. This will include monument, directional, and an electronic information sign adjacent to the north side of Carson Street, midway between Faculty Avenue and Clark Avenue. The electronic information sign will be approximately 22 feet tall and 16 feet wide.
- Closure of Faculty Drive between Lew Davis Street and Carson Street. Convert closed area to athletic field. Possible drop-off zone at Faculty Drive and Lew Davis Street.
- LAC buildings will be studied for possible Solar Photovoltaic systems. The first system will be placed on the roof of the new Parking Structure 7, and others may be added if appropriate
rooftops are identified. Potential candidates include the new Math Tech Building (Building 1) and the new Performing Arts Building (Building 3).

Figure 2-4: 2020 Unified Master Plan

Figure 2-4
2020 Unified Master Plan LAC
Source: Long Beach Community College Website, 2009.

2.2 PROJECT DESCRIPTION

2.2.1 $\quad 2041$ Facilities Master Plan LAC Improvements

Since the 2020 Unified Master Plan, the District prepared the LBCCD 2041 Facilities Master Plan to provide an understanding of the projects envisioned to be constructed in the near future. This Facilities Master Plan breaks down the type and size of each project for both campuses, as well as estimating the probable cost of each project. The 2041 Facilities Master Plan allowed the District to re-evaluate available funds and expanded details of priority projects that the District is working to complete. Enrollment and the production of weekly student contact hours (WSCH) were used as the basis for quantifying growth as well as for determining the space needs of the future. Physical capacity was defined as achieving student enrollment of 28,100 and 349,844 WSCH at LAC. At this point in time, the campus will have effectively reached its physical limit for available land area, for parking, and the ability to effectively serve students.

Looking to the year of 2041, LAC's priorities will lie with addressing the key areas for academic growth. These include the Life Sciences (Biology), Mathematics, Language Arts, Performing Arts, and Construction Trade facilities. From the Student Services side of the equation, an economic and workforce development center is a high priority. LAC will also need to address its Physical Education facilities including a new Aquatic Center, renovation of the stadium and gymnasiums, and outdoor kinesiology labs. Lastly, the provision of parking that is close and usable to the primary academic areas will also be a high priority at LAC.

2.3 PROJECT DESIGN FEATURES

Master Plan Updates

The 2041 Facilities Master Plan provides updates to the 2020 Unified Master Plan and provides updated construction dates and budgets for the facilities projects. The projects incorporate the space and building needs identified to the year 2041. Figure 2-5 presents the LBCC 2041 Facilities Master Plan LAC improvements. Table 2-5 presents the updates to the Master Plan through new project details determined since the previous SEIR.

Figure 2-5 LBCC 2041 Facilities Master Plan LAC Improvements

Figure 2-5

Table 2-5 Updated 2041 Facilities Master Plan Improvements

Project	Scope/Usage	Square Feet (GSF)/ Features
Building B Classroom	Renovate Building with electrical upgrades, data and communication, larger lecture halls, better lighting, and additional lab functions	Renovation - 44,357
Building D Science Building	Renovate Science Building for improved classroom learning environments, new fiber data backbone, and enhanced signage	Renovation - 16,000
Building E College Center	Campus-wide Student Support	New Construction - 50,276
Building F Family/Consumer Education	Outdated building that will be replaced	Demolition - 15,968
Building G Performing Arts	New Performing Arts Building replaces the existing and outmoded Music Building.	New Construction - 42,857
Building J Auditorium	Complete renovation of Auditorium building with expansion of the building as well as general refurbishment and updates	$\begin{aligned} & \text { Renovation - 37,878 } \\ & \text { Expansion - 14,119 } \end{aligned}$
Building K Art Building	Fine Arts building needs complete renovation and modernization	Retrofit/Renovation - 29,479
Building M Liberal Arts	Replace Buildings M\&N with new building for classrooms, laboratory facilities, and technology center	New Construction - 81,970
Building O1 IITS/Warehouse	Structural enhancements to obtain certification by Division of State Architect	Renovation - 26,560
Building O 2 Economic \& Workforce Development/Foundation	Structural enhancements to obtain certification by Division of State Architect	Renovation - 51,302
Building P Language Arts	Upgrade building's functional systems with upgraded power systems, HVAC, plumbing, storm drainage, fire alarm, and telecommunication systems	Renovation - 16,016
Building Q Secondary Gymnasium	Renovation and upgrading to address issues related to instructional space, training needs, seismic upgrades, AHA compliance, and other upgrades	Renovation - 30,270
Building R Primary Gymnasium	Comprehensive structural and seismic renovation, ADA access, HVAC upgrades	Renovation - 78,024 New Construction - 10,000

Project	Scope/Usage	Square Feet (GSF)/ Features
Building S Stadium	Renovation including ADA access, structural upgrades	Renovation - 57,455
Building W	Construction of a new 50 meter by 25-yard pool, with a new support building	New Construction - 50,881 and pool area
Outdoor Kinesiology Labs	New construction of physical education outdoor playing fields to include softball relocation, two soccer fields, 6 tennis courts, 5 sand volleyball courts, and supporting facilities, restrooms, field house, storage. .	New Construction Supporting Facilities - 13,915
Walkways and	New and revised walkways, installation of uniform signage program	New construction/renovation
Wayfinding		

The LBCCD 2041 Facilities Master Plan LAC improvements would result in an estimated increase over the 2020 Unified Master Plan of 15,877 square feet of renovation, and 69,564 square feet removed, and estimated increase of 30,035 square feet of new construction.

The following descriptions identify specific improvements recommended for the 2041 Facilities Master Plan LAC Improvements, that were not part of the 2020 Unified Master Plan or the original 2004 LAC Master Plan Program EIR.

- Building D, Science Building renovation will be expanded from 9,326 square feet to 16,000 square feet
- Building E, the Existing College Center will be demolished (50,276 GSF) and a new building will be constructed with approximately the same GSF of 50,276 . The new construction will be in lieu of major renovation of building E that was previously shown on 2020 Master Plan.
- Building F will be demolished and replaced with new landscape and hardscape.
- The Performing Arts Building (Building G previously shown as Building 3 on 2020 Master Plan) will replace the existing G and H, consisting of approximately 42,857 square feet instead of 46,671 square feet which was shown on 2020 Master Plan.
- Building 01 will undergo structural enhancements to the 26,560-square foot building to obtain Division of State Architect certification.
- Building O 2 will undergo structural enhancements to the 51,302 -square foot building to obtain Division of State Architect certification.
- Building R, Primary Gymnasium is anticipated to have an expansion with new construction to the south of 10,000 gross square feet to accommodate program needs.
- In order to meet programmatic needs a new 10,000 gross square foot structure may be built between Buildings Q and R to accommodate swing space and title IX needs while the buildings are being renovated.
- Building W, aquatics center, will be approximately 20,000 GSF of building structure for restrooms, locker rooms, team rooms, classroom and offices and will have approximately 800 spectator seat capacity. (An Olympic sized swimming pool with grandstands to accommodate a 3,000-spectator seat capacity was shown in the 2020 Master Plan.)
- Outdoor Kinesiology Labs, Renovation and New construction of physical education outdoor playing fields to include softball relocation, two soccer fields, 6 tennis courts, and 5 sand volleyball courts, and supporting facilities, such as restrooms, field house, and storage facilities. Approximately 9,821 SF of the building W will be allocated to The Outdoor Kinesiology Labs as supporting facilities. Also, the existing field house for Softball Field will be removed and replaced with approximately 4,098 SF of new supporting facilities. (Outdoor Physical Education Labs, including softball field relocation, were previously shown in the 2020 Master Plan.)
- In order for the District to meet the state requirements and Executive Order B-18-12 for Zero-Net-Energy, LAC campus will be studied for possible Solar Photovoltaic systems at various locations. Parking Lot M as well as other parking lots may have two thirds of the lot covered with photovoltaic carport structures to meet the statewide requirements for energy production and achieve a Zero Net Energy District.

Master Plan Schedule

The 2041 Facilities Master Plan provides an approximate schedule sequence that identifies timelines for construction and project scope. Table 2-5 summarizes the 2041 Facilities Master Plan Improvements building renovation, expansion, and/or new construction. To determine the projects and sequencing in the 2041 Facilities Master Plan, the Board of Trustees of the Long Beach Community College District evaluated the District's urgent and critical capital needs, including school and student safety issues, enrollment trends, class size reduction, overcrowding, energy efficiency and computer technology, seismic safety requirements, and aging, outdated or deteriorating school buildings in developing the scope of projects to be funded. In developing the scope of projects, the District has prioritized the key health and safety and sustainability needs so that the most critical school site needs are addressed.

The timing of certain projects will be dependent on the completion of other projects and will ultimately occur over the different phases. For example, improvements to utilities will occur across the LAC. However, these improvements will be completed in portions following building construction or renovation. Other projects like this include the Photovoltaic Projects, Landscape Master Plan Projects, and Wayfinding/Walkway Projects.

The Master Plan projects called out the projects identified with the 2041 Facilities Master Plan and the timeframe that is most likely to occur during these time periods. However, the timeframe in which a project is planned may change if the priority characteristics change for an individual project due to program needs or state funding allocation. The general building scope by phase is shown in Table 2-6 for the 2041 Facilities Master Plan Updates.

Table 2-6 2041 Facilities Master Plan Construction by Planned Construction Years

Construction Start Year	Projects Planned				
Ongoing	Building P - Language Arts (Renovation), Building D - Science (Renovation), Minor Campus Improvements, Energy/Water Conservation Projects, Infrastructure Projects, Campus Landscaping				
To be Determined	Walkways \& Wayfinding, Surface Parking Improvement				
$2017 / 2018$	Building J - Auditorium (Renovation)				
$2017 / 2018$	Building J - Auditorium				
$2018 / 2019$	Kinesiology Lab \& Aquatic Center (Renovation)				
$2019 / 2020$	Building M - Liberal Arts Classroom Building	$	$	Building E - College Center	
---:	---:				
$2022 / 2023$	Building E - College Center (new construction)				
$2022 / 2023$	Building O2 - Economic \& Workforce Development/Foundation				
$2024 / 2025$	(Renovation)				
$2026 / 2027$	Building R - Primary Gymnasium (Renovation)				
$2029 / 2030$	Building Q - Secondary Gymnasium (Renovation)				
$2030 / 2031$	Building B - Classroom (Renovation)				
$2033 / 2034$	Building F - Family/Consumer Education (Demolition), Building S -				
$2034 / 2035$	Stadium (Renovation), Building O1 - IITS/Warehouse				
$2037 / 2038$					

Design Guidelines

The Design Guidelines of the 2004 LAC Master Plan are incorporated by reference into the 2041 Facilities Master Plan. The Design Guidelines include "Guiding Principles" that govern the design of the proposed campus improvements, including the buildings, parking area, planting scheme, pavement and courtyards, traffic/circulation, signage, lighting, site furnishings, and screening (LBCCD 2004). The Long Beach City College Liberal Arts Campus has outstanding examples of Spanish Colonial Revival architecture that serve as the physical and emotional core of its campus. Additions to the campus should build on this strength and extend the underlying values of this historical core. According to the Design Guidelines:

- The design objectives and guidelines used for the improvement of the architectural character at the Liberal Arts Campus are based on new construction, rehabilitation of existing buildings, and demolition or removal of obsolete or deteriorated facilities.
- New facility design should contribute to a unified campus appearance with a consistent architectural character. All future construction shall employ a single, unifying architectural vernacular based on a contemporary interpretation of the original Spanish Colonial Revival Style.
- All new buildings shall be sited in groups or clusters to define interior public courtyards protected from public ways and parking areas. All new construction shall be sited to relate to existing or future buildings so that strongly defined edges to outdoor rooms are formed. These outdoor rooms should be simple and comprehensible in shape, and pedestrian connections between the clustered buildings should be carefully articulated.

Best Management Practices

All Best Management Practices (BMPs) from the PEIR will be incorporated by reference in this NOP/IS, as well as the proposed SEIR for the 2041 Facilities Master Plan.

STATEMENT OF PROJECT GOALS AND OBJECTIVES

The District's goal as part of the California Community College system is to offer academic and vocational education to students at the lower college division level. In addition, the District's goal is to advance California's economic growth and global competitiveness through education, training, and services that contribute to continuous workforce improvement.

The objective of the 2041 Facilities Master Plan is to provide plans to implement proposed necessary construction, renovation, and general capital improvements at the campus in order to meet the District's goals. The improvements are intended to update and improve existing technological and program services in order to meet the increasing needs of students and faculty.

2.4 REQUIRED PERMITS AND APPROVALS

As required by the CEQA Guidelines, this section provides, to the extent the information is known to LBCCD, the CEQA Lead Agency, a list of the agencies that are expected to use this SEIR in their decision making and a list of permits and other approvals required to implement the project.

2.4.1 Lead Agency Approval

The Final SEIR must be certified by the LBCCD Board of Trustees (Board) as to its adequacy in complying with the requirements of CEQA before taking any action on the Proposed Project. The Board will consider the information contained in the SEIR in making a decision to approve or deny the 2041 Facilities Master Plan LAC Improvements that were not previously addressed under the 2020 Unified Master Plan SEIR or the 2004 PEIR (Proposed Project). The analysis in the SEIR is intended to provide environmental review for the whole of the Proposed Project, including the project planning, site acquisition, demolition of existing structures, site clearance, site excavation, and construction of school buildings and appurtenant facilities in accordance with CEQA requirements.

2.4.2 Required Permits and Approvals

A Responsible Agency is a public agency, other than the lead agency, that has discretionary approval power over a project. The Responsible Agencies, and their corresponding approvals, for this project include the following:

California Department of General Services

- Division of the State Architect (Approval of architectural plans)

City of Long Beach

- Department of Public Works (Approval of on- and off-site drainage infrastructure and roadway improvements)

2.4.3 Reviewing Agencies

Reviewing Agencies include those agencies that do not have discretionary powers, but that may review the SEIR for adequacy and accuracy. Potential Reviewing Agencies include the following:

State Agencies

- Department of Transportation (Caltrans)
- Environmental Protection Agency (Cal EPA)
- Department of Fish and Wildlife (CDFW)

Regional Agencies

- Southern California Association of Governments
- South Coast Air Quality Management District

2.5 CUMULATIVE SCENARIO

Cumulative impacts refer to the combined effect of Proposed Project impacts with the impacts of other past, present and reasonably foreseeable future projects. Both CEQA and the CEQA Guidelines require that cumulative impacts be analyzed in an EIR. As set forth in the CEQA Guidelines, the discussion of cumulative impacts must reflect the severity of the impacts, as well as the likelihood of their occurrence; however, the discussion need not be as detailed as the discussion of environmental impacts attributable to the project alone. As stated in CEQA, "a project may have a significant effect on the environment if the possible effects of a project are individually limited but cumulatively considerable."

According to the CEQA Guidelines:
"Cumulative impacts" refer to two or more individual effects which, when considered together, are considerable and which compound or increase other environmental impacts.

- The individual effects may be changes resulting from a single project or a number of separate projects.
- The cumulative impact from several projects is the change in the environment, which results from the incremental impact of the Proposed Project when added to other closely related past, present, and reasonable foreseeable probable future projects. Cumulative impacts can result from individually minor but collectively significant projects taking place over a period of time."

In addition, as stated in the CEQA Guidelines, it should be noted that:
"The mere existence of significant cumulative impacts caused by other projects alone shall not constitute substantial evidence that the Proposed Project's incremental effects are cumulatively considerable."

Cumulative impact discussions for each issue area are provided in the technical analyses contained within Section 4.0 - Environmental Impacts.

As previously stated, and as set forth in the CEQA Guidelines, related projects consist of, "closely related, past, present, and reasonable foreseeable probable future projects that would likely result in similar impacts and are located in the same geographic area." An area of influence, defined by an approximate 1.5 -mile radius from the Proposed Project site, was utilized in order to capture specific locations of other approved and pending projects. Based on coordination with the City of Long Beach, an area projects list was created. Responses that were received from the city were incorporated in the analysis. A majority of the study area is located in a highly urbanized area. The ability to develop new major projects within or adjacent to the study area is limited. Twenty-six pending/approved developments were identified by the City of Lakewood and City of Long Beach within the study area:

- Staybridge Suites Hotel - 2640 North Lakewood Boulevard
- Retail/Carwash Project - 4201 E. Willow Street
- New Coffee Shop - 5861-5865 Spring Street
- Northgate Market Expansion - 4700 Cherry Avenue
- Law Office of Jeff Lung - 4909 Lakewood Boulevard \#302
- Sparx Logistics - 4909 Lakewood Boulevard \#303
- Thrivent - 4909 Lakewood Boulevard \#305
- Image 2000-4909 Lakewood Boulevard \#540
- McDonalds - 4910 Lakewood Boulevard
- Petco - 5215 Lakewood Boulevard
- Kinecta Federal Credit Union - 4055 Hardwick Street
- Raising Cane’s Chicken Fingers - 4624 Candlewood Street
- Dickey's Barbeque Pit - 5125 Candlewood Street
- Outback Steakhouse - 5305 Clark Avenue
- Journey's - 500 Lakewood Center Mall \#20
- Miniso - 500 Lakewood Center Mall \#39
- Play Live Nation - 500 Lakewood Center Mall \#127
- Box Lunch - 500 Lakewood Center Mall \#307
- Burgerim - 4131 Woodruff Avenue
- Morey's Music Store - 4834 Woodruff Avenue
- Piggie's Adobo Taco Bar - 2700 Carson Street
- Carwood Carwash - 2729-35 Carson Street
- Stone Yoga Studio - 3219 Carson Street
- Bubble Express Car Wash - 2711 Del Amo Boulevard
- Starbucks - 5906 Del Amo Boulevard
- Laborers Local 1309-3971 Pixie Avenue

SECTION 3.0 - ENVIRONMENTAL DETERMINATION

3.1. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.

3.2. DETERMINATION

On the basis of this initial evaluation:
I find that the Proposed Project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

If ind that although the Proposed Project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

I find that the Proposed Project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

I find that the Proposed Project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1\} has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

Date
$2-7-18$

SECTION 4.0 - ENVIRONMENTAL IMPACTS

4.1. Organization of Environmental Analysis

Sections 4.4 through 4.24 provide a discussion of the potential environmental impacts of the Proposed Project. The evaluation of environmental impacts follows the questions provided in the Checklist provided in the CEQA Guidelines and annotated to meet requirements of Title 5 of the California Code of Regulations for school facilities.

4.2. Terminology Used in this Analysis

For each question listed in the IS checklist, a determination of the level of significance of the impact is provided. Impacts are categorized in the following categories:

- No Impact. A designation of no impact is given when no adverse changes in the environment are expected.
- Less Than Significant Impact. A less than significant impact would cause no substantial adverse change in the environment.
- Less than Significant Impact with Mitigation. A potentially significant (but mitigable) impact would have a substantial adverse impact on the environment but could be reduced to a less-than-significant level with incorporation of mitigation measure(s).
- Potentially Significant Impact. A significant and unavoidable impact would cause a substantial adverse effect on the environment and no feasible mitigation measures would be available to reduce the impact to a less-than-significant level.

4.3. Evaluation of Environmental Impacts

A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to the project (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).

All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.

Once the Lead Agency has determined that a particular physical impact may occur the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant.
"Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
"Less than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant

Impact." Mitigation measures are identified and explain how they reduce the effect to a less than significant level (mitigation measures may be cross-referenced).

Earlier analyses may be used where, pursuant to the Program EIR or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. (Section 15063[c] [3][D]). In this case, a brief discussion should identify the following:
a) Earlier analyses used where they are available for review
b) Which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and whether such effects were addressed by mitigation measures based on the earlier analysis
c) The mitigation measures that were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project, for effects that are "Less than Significant with Mitigation Measures Incorporated.

References and citations have been incorporated into the checklist references to identify information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document, where appropriate, includes a reference to the page or pages where the statement is substantiated. Source listings and other sources used or individuals contacted are cited in the discussion.

The explanation of each issue identifies:
a) The significance criteria or threshold, if any, used to evaluate each question.
b) The mitigation measure identified, if any, to reduce the impact to less than significant.

4.4. AESTHETICS

| a)Would the Project have a substantial adverse
 effect on a scenic vista? | Potentially
 Signifiant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \square | \square | \square | \square |

No Impact. The LBCCD LAC is located in an urbanized residential area and is a developed site. There are no designated scenic resources on the campus, nor is the campus part of a state, county, or municipally designated scenic vista (City 1975). The opportunities for long distance views are limited. From most directions, the visual horizon is limited by existing manmade features. Primary views of the site are in the immediate area from adjacent streets and land uses. Figure 4.4-1 shows the location and orientation of photographs of the Proposed Project site. Figures 4.4-2 through 4.4-5 show views of the Proposed Project site from surrounding locations. Overall views from surrounding areas would not be significantly impacted due to the existing surrounding development which currently obscures or limits views to and from the LAC. With the implementation of the Proposed Project, some immediate views of the LAC would be of increased building density, however, the new structures would be consistent visually with the surrounding structures. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.
b) Would the Project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

\square

No Impact. The Proposed Project site is not a scenic resource within State scenic highway corridors. Pacific Coast Highway, the closest local state highway, is not a designated scenic highway in this area (Caltrans 2017). Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Figure 4.4-1: Site Photograph Locations

Figure 4.4-2a
View of LAC looking north across E. Conant Street

Figure 4.4-2b
View of LAC from corner looking south across E. Conant Street

Figure 4.4-2c
View of LAC from corner of Clark Avenue and E. Conant Street

Figure 4.4-3a
View of LAC from Faculty Avenue east

Figure 4.4-3b
View of New Parking Structure on LAC

Figure 4.4-3c
View of LAC looking across Carson Street

Figure 4.4-4a
View of LAC from corner of Clark Avenue and Carson Street looking north

Figure 4.4-5a
View of LAC from corner of Clark Avenue and E. Harvey Way looking south
c) Would the Project substantially degrade the existing visual character or quality of public views of the site and its surroundings? If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?

| | Less than
 Sotentially
 Significant
 Impact | With Mitigation
 Incorporation | Less than
 Significant
 Impact |
| :---: | :---: | :---: | :---: | | Impact |
| :---: |
| \square |

No Impact. The visual character of the LAC and surrounding area is that of a fully developed urban corridor, developed with a mix of institutional, commercial, residential, and park uses. Implementation of the Proposed Project would involve redevelopment, renovation, demolition, and new construction on the LAC. The 2041 Facilities Master Plan LAC Improvements incorporate the design features of the 2004 LBCC LAC Master Plan and the 2020 Unified Master Plan LAC Improvements. The LBCC LAC Master Plan
has been developed to support the Long Beach Community College District vision, mission, and values. New design will contribute to a unified campus appearance with a consistent architectural character. Future construction will employ a unifying architectural vernacular, based on contemporary interpretation of the original Spanish Colonial Revival architectural style. The Proposed Project will be designed per the guidelines of the Master Plan to be compatible with the existing LAC structures and to contribute to a unified campus appearance with a consistent architectural character. The construction of buildings consistent with existing architectural style would avoid impacts associated with regulations governing scenic quality.

Development of the Proposed Project would result in the redevelopment, renovation, or replacement of existing LAC structures and the addition of new structures. The new or replacement structure would be similar in size and mass to the adjacent buildings. The design of the new or replacement structures would incorporate many of the architectural elements of the existing LAC structures and would appear as a continuation of existing background features. The new development would help unify the visual character of the LAC and would be consistent with the existing style and image of the area. Implementation of the Proposed Project will also improve the visual character of the LAC by removing features which are not consistent with the original architectural style. In addition, implementation of landscape and signage improvements will complement existing buildings and integrate future projects. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

d) Would the Project create a new source of substantial light or glare, which would adversely affect day or nighttime views in the area?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact \square	No Impact

Potentially Significant Impact. LBCCD LAC is an existing source of light in an urbanized area of the City of Long Beach. Sources of illumination on the LAC include street lighting, interior building lighting, lighting in parking lots, and security lighting.

The Proposed Project would provide additional sources of nighttime illumination. Lighting associated with renovated or new buildings would be similar to that of the existing surrounding buildings. Pedestrian lighting will be coordinated with other elements such as signage, security, paving materials, and street furniture. In addition, lighting would be added to soccer fields at the northern portion of the campus, and new lights would be installed as part of the new Aquatic Center. All lighting will be shielded and directed onto the Proposed Project site. However, with the addition of field and stadium lighting, potential impacts may result. Lighting impacts will be further analyzed in the SEIR.

Further Study Required: Light and glare impacts will be further analyzed in the SEIR.

4.5. AGRICULTURE AND FORESTRY RESOURCES

a) Would the Project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	No Impact

No Impact. The LAC is classified as "Urban and Built Up Land" by the California Department of Conservation Farmland Mapping (California Department of Conservation 2016). Since the Proposed Project site is currently developed, no farmland activities or resources will be converted to nonagricultural uses. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| b)Would the Project conflict with existing zoning for
 agricultural use, or a Williamson Act contract? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \square | \square | \square | \square |

No Impact. The LBCCD LAC has a zoning designation of Institutional and School District. Surrounding properties are zoned Residential, Park, or Planned Development (City 1998). The LAC is not zoned for agricultural use and Williamson Act contracts do not occur on or near the Proposed Project site. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.
c) Would the Project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

| | Less than
 Potentially
 Significant
 Impact | With Mitigation
 Incorporation | Less than
 Significant
 Impact |
| :---: | :---: | :---: | :---: | | Impact |
| :---: |
| \square |

No Impact. No forest land exists on or around the LBCCD LAC. Implementation of the Proposed Project will have no direct or indirect impact related to timberland conversion. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| d)Would the Project result in the loss of forest land
 or conversion of forest land to non-forest use? | Potentially
 Significant
 Impact | Less than
 Singificant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \square | \square | \square | \square |

No Impact. No forest land exists on or around the LBCCD LAC. Implementation of the Proposed Project will have no direct or indirect impact related to forest land conversion. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

e) Would the Project involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact \square	$\begin{gathered} \text { No } \\ \text { Impact } \\ \nabla \end{gathered}$

No Impact. No agricultural or forest land exists on or around the LBCCD LAC. Implementation of the Proposed Project will have no direct or indirect impact related to Farmland or forest land conversion. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: Further evaluation of the potential agriculture and forestry impacts is not required.

4.6. AIR QUALITY

| a)Would the Project result in conflict with or
 obstruct implementation of the applicable air
 quality plan? | Potentially
 Significant
 Impact | Less than
 Sigificant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | \square | \square | \square | \square |

Potentially Significant Impact. A project is deemed inconsistent with air quality plans if it results in population and/or employment growth that exceed growth estimates in the applicable air quality plan. The Proposed Project will not induce growth but will accommodate projected growth in student population. Long-term operational emissions resulting from the Proposed Project may potentially result in exceedance of air quality standards related to the applicable air quality plan. Two types of air pollutant sources are considered in respect to the Proposed Project; stationary and mobile sources. Operational emissions would primarily be generated by mobile sources in the form of vehicle trips. An increase in emissions from stationary sources associated with natural gas and electrical consumption
may also result due to the Proposed Project. An air quality study is being prepared and this issue will be analyzed and discussed in the SEIR.

| b) Would the Project violate any air quality standard |
| :--- | :--- | :--- | :--- | :--- | :--- |
| or result in a cumulatively considerable net |
| increase in an existing or projected air quality |
| violation? | | Potentially |
| :---: |
| Significant |
| Impact |\quad| Less than |
| :---: |
| Singificant
 With Mitigation
 Incorporation | | Less than |
| :---: |
| Significant |
| Impact |\quad| No |
| :---: |
| Impact |

Potentially Significant Impact. The Proposed Project may have a potentially significant impact on air quality standards or contribute substantially to an existing or projected air quality violation. The Proposed Project site is located in the South Coast Air Basin (SCAB), within the SCAQMD. The SCAQMD has established standards for air quality constituents generated by construction and by operational activities for such pollutants as ozone $\left(\mathrm{O}_{3}\right)$, carbon monoxide (CO), nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and particulate matter smaller than or equal to 10 microns in diameter (PM_{10}). The SCAQMD maintains an extensive air quality-monitoring network to measure criteria pollutant concentrations throughout the SCAB. The SCAB is designated a non-attainment area for $\mathrm{O}_{3}, \mathrm{PM}_{10}$, and particulate matter smaller than or equal to 2.5 microns in diameter $\left(\mathrm{PM}_{2.5}\right)$. The construction and operation of the Proposed Project would contribute to an increase in air pollutant emissions for which the region is nonattainment.

Construction emissions would be generated by the demolition of existing structures, grading/excavation, construction workers traveling to and from the Proposed Project site, delivery and hauling of construction supplies and debris, fuel combustion by on-site construction equipment, or the application of architectural coatings and other building materials that release emissions. Construction emissions would be short-term in nature and would be limited only to the time period when construction activity is taking place. However, construction related emissions might exceed SCAQMD daily emissions thresholds. Therefore, these temporary construction emissions will be analyzed in the SEIR.
Long-term operational emissions resulting from the Proposed Project may potentially result in exceedance of air quality standards. Two types of air pollutant sources are considered in respect to the Proposed Project; stationary and mobile sources. Operational emissions would primarily be generated by mobile sources in the form of vehicle trips. An increase in emissions from stationary sources associated with natural gas and electrical consumption may also result due to the Proposed Project. An air quality study is being prepared and this issue will be analyzed and discussed in the SEIR.

| c)Would the Project expose sensitive receptors to
 substantial pollutant concentrations? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \square | \square | \square | \square |

Potentially Significant Impact. The Proposed Project could potentially create or contribute to a nonstationary source CO "hotspot." A CO hotspot, or areas of high CO concentration, can occur at traffic congested roadway intersections as a result of accumulating vehicle emissions. The SCAQMD has established concentration thresholds to assess Proposed Project impacts associated with CO hotspots that would be created by vehicle trips. This impact will be analyzed in the SEIR.

d) Would the Project result in substantial emissions (such as odors or dust) adversely affecting a substantial number of people?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	No Impact

Less than Significant Impact. Potential sources that may emit odors are from the application of asphalt and paint and diesel-fueled equipment during the construction period and from diesel-fueled trucks during the operation of the facility. Odors generated during construction would be short-term and would not result in long-term impacts to the surrounding area. Therefore, no significant impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Issues Requiring Further Study. The SEIR will include further study related to conflicts with applicable air quality management plans, short-term construction emissions, long-term operational emissions, a cumulatively considerable net increase of any criteria pollutant, non-stationary source CO hotspot, and exposure of sensitive receptors to substantial pollutant concentrations. Cumulative impacts to global climate change will be further discussed in the SEIR.

4.7. BIOLOGICAL RESOURCES

a) Would the Project have a substantial adverse effect, either directly or through habitat modification, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?

	Less than				
Potentially	Significant Significant Impact	Less than Incorporation	Significant Impact		Impact
:---:					
\square					

Less than Significant Impact. The LBCCD LAC campus is a developed site and is located in an urbanized area in the City of Long Beach. Campus vegetation is limited to introduced landscaping. There are no known candidates, sensitive or special status species on or around the LAC. Additionally, the Open Space and Recreation Element of the City of Long Beach General Plan does not identify LAC as open space for the preservation of natural resources (City 2002). Therefore, a less than significant impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| b) Would the Project have a substantial adverse | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| effect on any riparian habitat or other sensitive | | | | |
| natural community identified in local or regional | | | | |

No Impact. The LBCCD LAC is an existing campus in an urbanized area with introduced landscaping. There are no known riparian habitats or other sensitive natural community on the Proposed Project site. Since no wetlands exist on or around the LAC, no adverse effects on any riparian habitat identified in local or regional plans, policies, and regulations or by the CDFW or the USFWS will occur. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.
c) Would the Project have a substantially adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filing, hydrological interruption, or other means?

	Less than		
Potentially			
Significant			
Impact			Significant
:---:			
With Mitigation			
Incorporation	\quad	Less than	
:---:			
Significant			
Impact	$~$	No	
:---:			
\square			

No Impact. The LBCCD LAC is an existing campus in an urbanized area with introduced landscaping. There are no known wetlands on the site. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Less than Significant Impact. The LBCCD LAC is an existing campus in an urbanized area. There are no known native resident or migratory fish or wildlife species, established wildlife corridors, or native wildlife nursery sites on the site. As discussed previously in the SEIR and PEIR, LBCCD intends to avoid the removal of mature ornamental trees; implementation of the Master Plan may require the removal of large trees that could support raptor nesting. As stated previously in the SEIR and PEIR, LBCCD shall attempt to limit removal of mature trees. As part of the Master Plan Best Managements Practices (BMPs), if removal is to occur between March 1 through July 30, a survey to identify active raptor nests shall be conducted by a qualified biologist no more than two weeks before the start of construction. Removal of any mature trees with active raptor nests will be delayed until a qualified biologist
determines that the subject raptor(s) are no longer nesting or until juveniles have fledged. No significant impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| e)Would the Project conflict with any local policies
 or ordinances protecting biological resources, such
 as a tree preservation policy or ordinance? | Potentially
 Significant
 Impact | Lessthan
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :---: | :---: | :---: |
| | \square | \square | \square | \square |

Less than Significant Impact. The Proposed Project will incorporate landscaping improvements. As discussed previously in the SEIR and PEIR, LBCCD intends to avoid the removal of mature ornamental trees; implementation of the Master Plan may require the removal of large trees that could support raptor nesting. As stated previously in the SEIR and PEIR, LBCCD shall attempt to limit removal of mature trees. The City of Long Beach has a Tree Maintenance Policy that applies to planting, maintenance, and removal of street trees located in the public rights-of-way (City 2006). The LBCCD will comply with this Tree Maintenance Policy. The Proposed Project will not conflict with any local policies or ordinances protecting biological resources. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.
f) Would the Project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional or state habitat conservation plan?

	Less than				
Potentially	Significant Significant	Less than With Mitigation Incorporation	Significant Impact		Impact
:---:					
\square					

No Impact. No habitat conservation, natural community conservation, or other approved local, regional, or state habitat conservation plans apply to the LBCCD LAC. The Proposed Project will not conflict with any habitat conservation plans. Therefore, no impact would result, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: Further evaluation of the potential biological resource impacts is not required.

4.8. CULTURAL RESOURCES

a) Would the Project cause a substantial adverse change in significance of a historical resource pursuant to State CEQA Section 15064.5?

	Less than		
Potentially	Significant	Less than	
Significant	With Mitigation	Significant	No
Impact	Incorporation	Impact	Impact
\square	\square	\square	\square

Less than Significant Impact. A cultural resources memo report was prepared for the LAC and is included in Appendix A of this document (Chambers Group 2017). The memo was prepared to assess potential changes to the Cultural Resources Inventory Report prepared by Chambers Group in 2009
(Chambers Group 2009) and included an updated cultural resources records search/literature review. The memo found the previous survey data to be correct.

On the 2009 study, buildings were surveyed based on a 45 -year age threshold by calendar year 2020. Using these criteria, buildings built in or before 1975 were considered as part of this survey. Nine buildings were determined as eligible for survey on Long Beach City College District's LAC According to the cultural resources inventory report, Buildings A, F, G, J, K, L, P, Q, and R were constructed between 1935 and 1956, with subsequent additions and alterations made to most of the original structures. The surveyed buildings do not provide for architectural stylistic or artistic integrity and do not appear to be associated with significant events, themes or persons in history and the properties are unlikely to yield future information about the past. None of the structures are known to have been directly associated with any persons or events significant to the broad patterns of local, state, or national history. The buildings therefore failed to meet any requirement for eligibility as a historical resource for either California Register of Historical Resources (CRHR) or local register listing.

On November 11, 2017, Chambers Group, Inc. received the results of the updated records search from the South Central Coastal Information Center (SCCIC) housed at the California State University, Fullerton. These results found no historical resources listed or eligible for listing on the CRHR or local register within the Project area.

Based the 2004 and 2017 findings there are no historical resources present within the Project area, and therefore the Proposed Project as planned with have no impact on Historical Resources.

b) Would the Project cause a substantial adverse change in significance of an archaeological resource pursuant to State CEQA Section 15064.5?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation V	Less than Significant Impact \square	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$ \square

Less than Significant Impact with Mitigation. The LBCC LAC is located in an urbanized area that has been previously disturbed by past activities. A Chambers Group archaeologist visited the subject property in 2004 and determined that no open ground was present for a viable archaeological survey due to the presence of buildings, hardscape, and landscaped areas that cover the project area. Results of the 2004 records search and field visit found no archaeological resources present on the LAC campus (Chambers Group 2004). Additionally, the previous results found the area to be heavily disturbed with a considerable amount of fill present due to past development in the area, and therefore found there to be very low potential for buried archaeological materials in the Project area (Chambers Group 2004).

On November 11, 2017, Chambers Group, Inc. received the results of the updated records search from the SCCIC housed at the California State University, Fullerton. These results found no archaeological resources within the Project area have been identified since the previous assessment in 2004.

Based the 2004 and 2017 findings there are no archaeological resources present within the Project area, and little to no potential for buried archaeological deposits based on the past disturbance and development of the campus. However, in the event archaeological resources are uncovered during earth moving construction activities the following measure has been provided to ensure less than significant impacts to archaeological resources.

CUL-1 In the event that a concentration of artifacts or culturally modified soil deposits (including trash pits older than 50 years) should be encountered at any time during ground disturbing activities, all work must stop until a qualified archaeologist views the finds and makes a preliminary evaluation. If warranted, further archaeological work in the discovery area should be performed.
c) Would the Project disturb any human remains, including those interred outside of dedicated cemeteries?

	Less than		
Potentially	Significant	Less than	
Significant	With Mitigation	Significant	No
Impact	Incorporation	Impact	Impact
\square	\square	\square	\square

Less than Significant Impact with Mitigation. No known human remains are located on the LAC. The LAC is located in an urbanized area previously disturbed by past activities. In addition to the updated records search completed for the 2017 cultural resources memo report, Chambers Group contacted the Native American Heritage Commission (NHAC) to conduct a Sacred Lands File (SLF) search of the Project area to determine if resources significant to Native American groups are located within the Project area. The NAHC responded that the review of the SLF returned negative results for the Project area (Chambers Group 2017). Based on the results of the updated records search, review of historic maps, and the NAHC SLF search conducted for the 2017 cultural resources memo report, there has been no change to the potential for human remains within the project area from the 2009 report. However, in the event human remains are uncovered during earth moving construction activities the following measure has been provided to ensure less than significant impacts to such resources.

CUL-2 Although unlikely, if human remains are encountered, all work must stop in the immediate vicinity of the discovery until the County Coroner and a qualified archaeologist evaluate the remains in accordance with California Public Resource Code 5097.98 and Health and Safety code 7050.5 .

Further Study Required: Further evaluation of the potential cultural resource impacts is not required.

4.9. ENERGY

a) Would the Project result in a potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy, or wasteful use of energy resources, during project construction or operation?

Less than		
Significant	Less than	
With Mitigation	Significant	No
Incorporation	Impact	Impact
\square	\square	\square

Less Than Significant Impact. The Proposed Project includes the demolition, construction, and/or renovation of buildings located on the LBCC LAC. Construction associated with the Proposed Project would result in a temporary increase in energy consumption due to the energy requirements associated with operating construction equipment. All construction activities would implement BMPs to reduce
construction related emissions, which would minimize the energy needed to implement the Proposed Project. Additionally, many of the buildings identified in Table 2-4 have inefficient utility and mechanical systems that have been extended well beyond their intended life span. The Proposed Project would implement California Code of Regulations Title 24 Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings. Compliance with this regulation would result in LAC buildings that require less electricity, natural gas, and other fuels for operational purposes. Additionally, LBCCD has adopted strategies to reduce energy consumption. These strategies include, but are not limited to, maximizing energy efficiencies to reduce both electrical consumption and peak demand, and promoting renewable power sources for offsetting peak demand. Therefore, the Proposed Project would result in less than significant impacts associated with wasteful or inefficient energy consumption during construction or operation.
b) Would the Project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

	Less than		
Potentially	Significant	Less than	
Significant	With Mitigation	Significant	No
Impact	Incorporation	Impact	Impact
\square	\square	\square	\square

Less Than Significant Impact. The Proposed Project would comply with California Code of Regulations Title 24, which regulates the amount of energy consumed by new development for heating, cooling, ventilation, and lighting. Additionally, the Proposed Project would implement the District wide strategy of promoting renewable energy sources. Therefore, the Proposed Project would result in less than significant impacts associated with renewable energy or energy efficiency plans.

Further Study Required: Further evaluation of the potential energy impacts is not required.

4.10. GEOLOGY AND SOILS

a) Would the Project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.

| | Less than
 Potentially | Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact |
| :---: | :---: | :---: | :---: | | Impact |
| :---: |
| Impact |\quad| | |
| :---: | :---: |
| \square | \square |

Less than Significant Impact. Although the LAC is located within a seismically active region of southern California, the LAC is not located within a state-designated Alquist-Priolo Special Study Zone (City 1988,

Figure 2). The Alquist-Priolo Special Study Zone prevents construction of buildings used for human occupancy on the surface trace of active faults. The nearest designated Alquist-Priolo Earthquake Fault Zone is the Newport-Inglewood Fault Zone located approximately 2.5 miles southwest of the Proposed Project site. Construction activities for the Proposed Project will be conducted in accordance with California and City of Long Beach regulations and ordinances pertaining to the mitigation of potential geologic and seismic impacts. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| ii) Strong seismic ground shaking? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :---: | :---: | :---: | :---: | :---: | :---: |

Less than Significant Impact. The four main fault systems most likely to cause potentially significant seismic damage in the Proposed Project area are the San Andreas Fault, the Santa MonicaHollywood/Malibu Coast Fault, the Newport-Inglewood Fault, and the Palos Verdes Fault (City 1988, Figure 6).

The Proposed Project design will conform to the standards and requirements of the California Building Code, the Long Beach Municipal Code, and recommendations from Structural Engineers Association of California, including strict compliance with procedures for development in areas of ground shaking and engineered fill. In addition, the Division of State Architect (DSA) will review the Proposed Project site engineering geology and geotechnical reports and approve plans prior to issuing building permits. Conformance with applicable building and seismic codes will reduce impacts associated with seismic ground shaking to a less than significant level. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| iii) Seismic-related ground failure, including | Potentially
 Significant
 liquefaction? | Lessthan
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | \square | \square | \square | \square |

Less than Significant Impact. Building-specific geotechnical studies have indicated that the potential for ground failure, specifically liquefaction and seismically-induced settlement, is possible onsite (Amec Foster Wheeler 2015a, 2015b). These geotechnical studies include construction recommendations for site-specific geological conditions. Conformance with these recommendations and all applicable building and seismic codes will reduce impacts associated with seismic-related ground failure, including liquefaction, to a level of less than significant. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

No Impact. The LAC is not shown on the City of Long Beach Slope Stability Study Areas map (City 1988, $\mathrm{pp} 46)$. The LAC is relatively flat and is not adjacent to a hillside. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| b) Would the Project result in substantial soil erosion | Potentially
 Significant
 or the loss of topsoil? | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | \square | \square | \square | \square |

Less than Significant Impact. The LAC has been previously graded, developed, and paved. Construction activities will involve minimal soil disruption. Conformance with applicable erosion control regulations during construction activities will reduce impacts to a level of less than significant. The Proposed Project would also include BMPs outlined in the PEIR including compliance with SWPPP and SUSMP. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
c) Would the Project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the Project, and potentially result in onsite or offsite landslide, lateral spreading, subsidence, liquefaction or collapse?

	Less than				
Potentially	Significant Significant Impact	With Mitigation Incorporation	Significant Impact		Impact
:---:					
\square					

Less than Significant Impact. The LAC has been previously graded and developed. Conformance with applicable building and seismic codes and implementation of geotechnical recommendations, will reduce impacts associated with unstable geologic units or soils to a level of less than significant (LBCC 2015a, 2015b). Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
d) Would the Project be located on expansive soil, as

defined in Table 18-1-B of the Uniform Building

Code (1994), creating substantial direct or indirect
risks to life or property?

Less than Significant Impact. The LAC has been previously graded and developed. Conformance with applicable building and seismic codes and implementation of geotechnical recommendations, will reduce impacts associated with expansive soils to a level of less than significant (Amec Foster Wheeler

2015a, 2015b). Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

e) Would the Project have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of waste water?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	$\begin{gathered} \text { No } \\ \text { Impact } \\ \nabla \end{gathered}$

No Impact. The LAC relies on sewers for waste water disposal and would not involve the use of alternative wastewater disposal systems. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| f)Directly or indirectly destroy a unique
 paleontological resource or site or unique geologic
 feature? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | \square | \square | \square | \square |

Less than Significant Impact with Mitigation. No known paleontological resources are located on the LAC. The LAC is located in an urbanized area previously disturbed by past activities. Furthermore, the 2004 Master Plan PEIR defines mitigation measures to reduce any impacts to paleontological resources discovered during construction to less than significant. Additionally, the LAC does not contain any unique geologic features. Therefore, no significant impacts will result from construction activities, no significant change is anticipated from previous analyses, and no further study of the issue is required. The mitigation included in the PEIR for the 2004 Master Plan includes the following:

MM PALEO 1 (MM 4.8-1a in PEIR): Prior to earthmoving that will reach depths of more than 10 feet bgs, a Project paleontologist will be retained by LBCC and will develop a mitigation plan and a discovery clause/treatment plan to be implemented during earthmoving on the Project Site. At a minimum, the treatment plan will require the recovery and subsequent treatment of any fossil remains and associated data uncovered by earthmoving activities. As part of the plan, the Project paleontologist will develop a storage agreement with the Natural History Museum of Los Angeles County, Vertebrate Paleontology Section, San Bernardino County Museum, or another acceptable museum repository to allow for the permanent storage and maintenance of any fossil remains recovered as a result of the mitigation program, and for the archiving of associated specimen data and corresponding geologic and geographic site data at the museum repository.

MM PALEO-2: (MM 4.8-1b) The paleontologist and a paleontologic construction monitor shall attend a pre-grade meeting to explain the mitigation program to grading contractor staff and to develop procedures and lines of communication to be implemented if fossil remains are uncovered by earthmoving.

MM PALEO-3: (MM 4.8-1c) Paleontologic monitoring of earthmoving will be conducted by the monitor in areas of the Project Site underlain by previously undisturbed strata that will be disturbed by earthmoving extending 10 feet bgs.

MM PALEO-4: (MM 4.8-1d) If fossil remains are found by the monitor, earthmoving will be diverted temporarily around the fossil site until the remains have been recovered and the monitor agrees to allow earthmoving to proceed.

MM PALEO-5: (MM 4.8-1e) If Pliocene-Pleistocene marine sediments are encountered, up to 6,000 pounds of fossiliferous rock will be recovered from each fossil-bearing site and processed to allow for the recovery of smaller fossil remains.

MM PALEO-5: (MM 4.8-1f) Any recovered fossil remains will be prepared to the point of identification and identified to the lowest taxonomic level possible by knowledgeable paleontologists. The remains then will be curated and catalogued, and associated specimen data and corresponding geologic and geographic site data will be archived at the museum repository by a laboratory technician. The remains then will be accessioned into the museum repository fossil collection, where they will be permanently stored, maintained, and, along with associated specimen and site data, made available for future study by qualified investigators.

MM PALEO-6: (MM 4.8-1g) A final report of findings will be prepared by the paleontologist for submission to LBCC and the museum repository following accessioning of the specimens into the museum repository fossil collection. The report will describe geology/stratigraphy; summarize field and laboratory methods used; include a faunal list and an inventory of curated/catalogued fossil specimens; evaluate the scientific importance of the specimens; and discuss the relationship of any newly recorded fossil site in the parcel to relevant fossil sites previously recorded from other areas.

Further Study Required: Further evaluation of the potential geology and soils impacts is not required.

4.11. Greenhouse Gas Emissions

| a)Would the project
 emissions, either directly or indirectly, that may
 have a significant impact on the environment? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Signifiant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \square | \square | \square | \square |

Potentially Significant Impact. The Proposed Project will generate emissions of greenhouse gases (GHGs) from mobile sources mostly related to the operation of machinery on site associated with demolition, renovation, and construction of new buildings on site. Additionally, the Proposed Project has the potential to generate emission of GHGs from stationary sources related to the operation of buildings and facilities at the LBCC LAC campus. The California Air Resources Board (CARB) has statutory responsibility to maintain a statewide inventory of GHG emissions. The California GHG inventory compiles statewide anthropogenic GHG emissions and sinks. An analysis of GHG emissions from the

Proposed Project is being prepared as part of the EIR. The EIR will further analyze impacts related to the generation of GHG emissions.

| b)Would the project conflict with an applicable plan,
 policy, or regulation adopted for the purpose of
 reducing the emissions of greenhouse gases? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :---: | :---: | :---: |

Potentially Significant Impact. An analysis of the Proposed Project's impacts on applicable plans, policies, and regulations adopted for the purpose of reducing the emissions of GHGs will be included in the EIR.

Issues Requiring Further Study. The SEIR will include further study related to short-term construction emissions, long-term operational emissions, and GHG emissions, including compliance with plans or policies related to GHG emissions.

4.12. HAZARDS AND HAZARDOUS MATERIALS

| a)Would the Project create a significant hazard to
 the public or the environment through the routine
 transport, use, or disposal of hazardous materials? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :---: | :---: | :---: |
| | \square | \square | \square | \square |

Less than Significant with Mitigation. As previously discussed in the PEIR, asbestos inspections conducted by CF Environmental, Inc., in April 2002 identified the presence and quantity of asbestos containing materials (ACM) in all permanent buildings at LBCC LAC. Compliance with federal and state law ensures that, prior to demolition, alteration, or renovation, (1) proper notification is given to the SCAQMD, (regulates airborne pollutants), and the local California OSHA office; and (2) the LBCCD will certify that ACM's have been removed or mitigated by a licensed asbestos abatement contractor certified by the State of California Contractors Licensing Board. Because these permitting requirements automatically apply to Project development, they are considered standard conditions for Project approval that will reduce potential effects to a less than significant level during construction and operation. In addition, the Proposed Project would include the mitigation measures as outlined in the 2004 Master Plan PEIR and included below.

The use of hazardous materials (i.e., fuel, cleaning solvents, paint, etc.) during construction activities will be minimal and in compliance with applicable City, State, and Federal regulations. The use of hazardous materials post-construction will include minimal amounts of cleaning solvents and fuel for janitorial purposes and landscaping maintenance. Limited amounts of these types of hazardous materials will be transported or disposed of during routine day-to-day operations. Therefore, no significant impacts are expected and no further study of the issue is required. The mitigation measure included in the 2004 Master Plan PEIR includes the following:

MM HAZ-1: (MM 4.10-1 and 2 in the PEIR) Prior to demolition, alteration, or renovation of structures at LAC, a LBP sampling and analysis survey of buildings and appurtenances will be conducted to assess the presence of LBP. If found, prior to demolition, alteration, or renovation, the LBP will be removed and disposed of by a licensed LBP abatement contractor certified by the State of California Contractors Licensing Board in compliance with state and federal policy.
b) Would the Project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

	Less than				
Potentially	Significant Significant Impact	With Mitigation Incorporation	Less than Signicant		Impact
:---:					
Impact					

Less than Significant Impact. Hazardous or flammable substances that may be used during the construction phase of the Proposed Project would include vehicle fuels and oils for the operation of heavy equipment. Diesel and/or other construction equipment and vehicle fuels would be used; however, the transport, storage, and usage of hazardous materials such as fuels are regulated by the State. The Proposed Project would comply with all State regulations during construction reducing any impacts to be less than significant. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
c) Would the Project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

	Less than				
Potentially	Significant Significant Impact	With Mitigation Incorporation	Significant Impact		Impact
:---:					
\square					

Less than Significant Impact. Twain Elementary School is located approximately 0.25 -mile north of the LBCCD LAC. Construction of the Proposed Project will result in the storage and use of minimal amounts of hazardous materials for routine cleaning and landscaping on LAC. The use of hazardous materials (i.e., fuel, cleaning solvents, paint, etc.) during construction activities will be minimal. The Proposed Project would comply with applicable City, State, and Federal regulations reducing any impacts to less than significant. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
d) Would the Project be located on a site, which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5, and, as a result, would it create a significant hazard to the public or the environment?

	Less than				
Potentially	Significant Significant Impact	With Mitigation Incorporation	Significant Impact		Impact
:---:					
\square					

No Impact. The Proposed Project site is not included on the list of hazardous material sites compiled by the government (California Department of Toxic Substances Control 2017, California State Water Resources Control Board 2017). Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
e) For a Project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the Project result in a safety hazard or excessive noise for people residing or working in the Project area?

	Less than				
Potentially	Significant Significant Impact	Less than Mitigation Incorporation	Significant Impact		Impact
:---:					
\square					

No Impact. The LBCCD LAC is located approximately 0.3-mile northeast of the Long Beach Municipal Airport; however, the LAC is located well outside the 65 dB CNEL contour for the airport (Chambers Group 2009). Additionally, the LBCC LAC is not located within any of the nine Runway Protection Zones (RPZ) identified in the Airport Land Use Compatibility Plan (ALUCP) of the Long Beach Municipal Airport. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| f)Would the Project impair implementation of or
 physically interfere with an adopted emergency
 response plan or emergency evacuation plan? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :---: | :---: | :---: |
| | \square | \square | \square | \square |

No Impact. The Proposed Project will be designed to provide unobstructed access at all times. Permitting requirements require the Long Beach Fire Department and the Division of State Architect (DSA) to perform an Access Compliance review and a Fire and Life Safety review, respectively, prior to approval of the Proposed Project drawings and specification documents. Emergency access will be ensured and the Proposed Project will not interfere with adopted emergency response or evacuation plans. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| g)Would the Project expose people or structures,
 either directly or indirectly, to a significant risk of
 loss, injury or death involving wildland fires? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :---: | :---: | :---: | :---: |

No Impact. The LAC is located in an urbanized area of the City of Long Beach that does not include wildlands or high fire hazard terrain or vegetation. The Proposed Project will not expose persons or structures to the risk of wildland fires during construction or operation. Therefore, no impacts are
expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: Further evaluation of the potential hazards and hazardous materials impacts is not required.

4.13. HYDROLOGY AND WATER QUALITY

a) Would the Project violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
	\square	\square	『	\square

Less than Significant Impact. Surface water runoff from LBCCD LAC is regulated under the City of Long Beach National Pollutant Discharge Elimination System (NPDES) permit (NPDES Permit No. 99-060, CAS004003/CI 8052) for municipal stormwater discharges. Surface water runoff from LAC for construction activities is regulated under the statewide NPDES General Permit for Stormwater Discharges Associated with Construction Activity (General Construction Permit, Order No. 99-08-DWQ; Permit No. CASOOOOO2). Pollutants from construction activities have the potential to enter the LAC storm drain system. To reduce potential impacts to water quality and to comply with the requirements of the NPDES General Construction Permit, a Stormwater Pollution Prevention Plan (SWPPP) will be prepared. The SWPPP outlines BMPs that prevent such impacts. BMPs would be implemented prior to initiation of construction activities and throughout the duration of construction reducing any impacts to less than significant. Additionally, the LAC is developed and not identified as a groundwater recharge basin. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

b) Would the Project substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$

Less than Significant Impact. The Proposed Project is located on a developed site and will not substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level. Construction of the Proposed Project will not significantly alter existing groundwater recharge patterns. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
c) Would the Project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:

i.	Result in substantial erosion or siltation on or off-site?				
		Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
		\square	\square	『	\square

Less than Significant Impact. The LAC is an existing campus in an urbanized location. The drainage pattern of the LAC and surrounding area is established and there are no streams or rivers on the LAC. The drainage system for LAC and the City of Long Beach is also established. Construction activities will conform to regulatory requirements and will not result in substantial erosion or siltation on or off site. Additionally, the Proposed Project would not result in a significant increase in impervious surface on the LAC. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Less than Significant Impact. The drainage pattern of the LAC and surrounding area is established and there are no streams or rivers on the LAC. The drainage system for LAC and the City of Long Beach is also established. The Proposed Project would not substantially increase the amount of impervious surface on the LAC. The amount of surface runoff resulting from implementation of the Proposed Project would be similar to the existing condition. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
iii. Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

	Less than				
Potentially	Significant Significant Impact	With Mitigation Incorporation	Less than Significant		Imo
:---:					
\square					

Less than Significant Impact. Implementation of the Proposed Project will not exceed the capacity of the existing stormwater drainage system or result in additional sources of polluted runoff. As part of implementation of the Proposed Project, improvements will be made to the existing campus drainage system. The District will also prepare a Standard Urban Stormwater Mitigation Plan (SUSMP) for LAC. SUSMP requirements require "treatment" of 85 percent of the total annual runoff. The BMPs identified
in the SUSMP will reduce impacts to water quality to less than significant level. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

iv.	Impede or redirect flood flows?	Less than			
		Potentially	Significant	Less than	
		Significant	With Mitigation	Significant	No
		Impact	Incorporation	Impact	Impact
		\square	\square	\square	区

No Impact. The LAC is a developed site and is not located in a Flood Hazard Zone or 100-year or 500year flood plain (FEMA 2008). Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

d) In flood hazard, tsunami or seiche zones, risk release of pollutants due to project inundation?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	No Impact

No Impact. Seiche is not an assumed hazard in the Proposed Project area. Tsunamis have the potential to impact the coastal area; however, LAC is located five miles inland and is not located in an inundation or tsunami hazard area (City 1988). Additionally, the LAC is not located in a Flood Hazard Zone. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| e)Conflict with or obstruct implementation of a water
 quality control plan or sustainable groundwater
 management plan? | Potentially
 Significant
 Impact | Less than
 Sisnificant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :---: | :--- | :---: | :---: |
| | \square | \square | \square | \square |

Less Than Significant Impact. The Regional Water Board's Basin Plan is the applicable water quality control plan for the Proposed Project area. The Basin Plan is designed to preserve and enhance water quality and protect the beneficial uses of all regional waters. As mentioned above, the Proposed Project would comply with the NPDES General Construction Permit, which required the preparation of a SWPPP. The SWPPP outlines BMPs that prevent impacts to water quality. BMPs would be implemented prior to initiation of construction activities and throughout the duration of construction reducing any impacts to less than significant. Additionally, the operation use of the Proposed Project area will remain the same as the existing use and rate and amount of runoff would be substantially similar to existing conditions. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: Further evaluation of the potential hydrology and water quality impacts is not required.

4.14. LAND USE AND PLANNING

| a)Would the Project physically divide an established
 community? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mititation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \square | \square | \square | \square |

No Impact. The Proposed Project is located within an established institutional setting and is a continuation of existing educational uses. The Proposed Project will not physically divide an established community. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

b) Would the Project cause a significant						
environmental impact due to a conflict with any						
land use plan, policy, or regulation adopted for the					\quad	Potentially
:---:						
purpose of avoiding or mitigating an environmental						
effect?						

No Impact. The Proposed Project is in conformance with the Land Use Element of the City of Long Beach General Plan's land use designation of "Institutions/Schools." Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: Further evaluation of the potential land use impacts is not required.

4.15. MINERAL RESOURCES

| a)Would the Project result in the loss of availability of
 a known mineral resource that would be of value to
 the region and the residents of the state? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | Noo
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |

No Impact. LBCC LAC is located northeast of the Wilmington Oil Field (LBCCD 2004). There is no extraction of oil on the LAC, and there will be no loss of availability of oil to the region or state. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| b)Would the Project result in the loss of availability of
 a locally-important mineral resource recovery site
 delineated on a local general plan, specific plan or
 other land use plan? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |

No Impact. The LAC is not designated as an important mineral resource recovery site in the City of Long Beach General Plan or any other land use plan (City 1973). There is no extraction of mineral resources on the LAC. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: Further evaluation of the mineral resource impacts is not required.

4.16. NOISE

a) Would the Project result in generation of a
substantial temporary or permanent increase in
ambient noise levels in the vicinity of the project in

Potentially Significant Impact. Construction and operation of the Proposed Project could potentially expose nearby sensitive uses (such as the adjacent residences) to noise levels above established noise standards. The Proposed Project would create noise on a temporary basis during construction due to the use of construction equipment. Permanent operational impacts associated with the redistribution of traffic in the area, and mechanical equipment associated with heating, ventilation, air conditioning, and building operations could also be significant sources of noise. Noise impacts associated with the exposure to or generation of noise levels in excess of standards established by the City of Long Beach are considered potentially significant. Analysis of the Proposed Project's consistency with local noise standards and guidelines based on existing and proposed land uses within and surrounding the sites will be completed. Therefore, this impact will be analyzed in the SEIR.

	Would the Project result in generation of excessive groundborne vibration or groundborne noise levels?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	$\begin{aligned} & \text { No } \\ & \text { Impact } \end{aligned}$
		マ	\square	\square	\square

Potentially Significant Impact. The Proposed Project may result in generation of groundborne vibration or noise levels. Construction activities typically create an increase in groundborne vibrations and noise levels. Groundborne vibrations and noise generated by construction activities associated with the Proposed Project would increase noise levels intermittently at nearby sensitive receptors. The California Department of Transportation (Caltrans) has established groundborne vibration thresholds expressed in Peak Particle Velocity (PPV) for residences and buildings. Therefore, sensitive uses may be subjected to vibration attributable to construction activities in excess of these standards. As such, this impact would be evaluated further in the SEIR.

Issues Requiring Further Study. Issues requiring further study in the SEIR include construction and operation noise impacts, vibration impacts, and potential to expose sensitive receptors to noise above ambient noise levels.

4.17. POPULATION AND HOUSING

a) Would the Project induce unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?
Potentially
Significant
Impact

Less than	
Significant	Less than
With Mitigation	Significant
Incorporation	Impact

No Impact

No Impact. The 2041 Facilities Master Plan identifies capital improvement strategies to accommodate future program needs based on enrollment growth through 2041 and is designed to respond to projected increases in population in the LBCCD through 2041. The Proposed Project will facilitate the Master Plan capital improvements. The LAC Facilities Master Plan does not induce population growth, employment growth, or housing growth. The enrollment growth is expected to come from local residences and is not expected to draw significantly from out of town students who would require additional housing. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
b) Would the Project displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?
Potentially
Significant
Impact

Less than	
Significant	Less than
With Mitigation	Significant
Incorporation	Impact

No Impact

No Impact. There is no removal or addition of housing related to the Proposed Project. The Proposed Project will not result in the displacement of housing or people. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: No further study of population and housing is required.

4.18. PUBLIC SERVICES

No Impact. The Long Beach Fire Department serves the LBCC LAC. The closest fire station to the LAC is Fire Station 19, located one-half mile south. The Proposed Project will be implemented in compliance with applicable state and municipal code requirements that regulate construction, emergency access, water main capacity, fire flows, and fire hydrant capacity and location. The Proposed Project will be designed to provide unobstructed access to the Proposed Project Site at all times. Emergency access will be ensured through an Access Compliance review by the appropriate fire department and a Fire and Life Safety review by the Division of State Architect (DSA). Existing fire safety compliance will be enforced through established state and municipal project review and permitting procedures. The Proposed Project's compliance with these procedures will ensure that it does not exceed a fire department's ability to provide adequate fire protection and emergency services to the LAC during construction and operation. Therefore, the Proposed Project will not result in short-term or long-term impacts to a fire department's ability to provide fire protection and emergency services to the LAC. No impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

No Impact. Campus security is provided by the Long Beach Police Department (LBPD) City College Section, comprised of a Lieutenant, police officers, and security officers assigned to both LBCC LAC and PCC. Security is provided 24 hours a day, seven days a week. The City College Section is responsible for campus law enforcement, security, safety escorts, and emergency response. Proposed Project construction will comply with campus security emergency access, site lighting, and crime prevention requirements and procedures. Compliance with these procedures will ensure that the Proposed Project will not increase the need for police protection services. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

c) Schools?	Potentially Significant	Less than Significant With Mitigation Incorporation	Less than Significant Impact	No Impact	
		\square	\square	\square	\square

No Impact. The LBCC LAC Facilities Master Plan identifies capital improvement strategies to accommodate future program needs based on enrollment growth through 2041 and is designed to respond to projected increases in population in the LBCCD through 2041. The Proposed Project will facilitate the Facilities Master Plan capital improvements and will not induce population growth that would result in long-term impacts to public schools. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

d) Parks?	Less than Potentially	Significant Significant Impact	With Mitigation Incorporation	Less than Significant Impact	No Impact
	\square	\square	\square	\square	\square

No Impact. The Proposed Project includes new construction of a new swimming pool along with physical education outdoor playing fields to include a relocated softball field, two soccer fields, six tennis courts, five sand volleyball courts, and supporting facilities, restrooms, field house, and storage. During relocation of the softball field, a temporary lack of public access to the softball field would occur. Demands for access to these fields can be satisfied at other recreation facilities located in the City of Long Beach with little, if any, impact to those facilities. After construction, the new swimming pool facility and outdoor playing fields would better serve the college and the public. This and the other improvements to recreational facilities would result in a beneficial longterm impact to parks and recreation facilities in the Project Area. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

e) Other public facilities?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	No Impact

No Impact. The Proposed Project would not result in any impacts to other public facilities. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: No further study of public services is required.

4.19. Recreation

| a)Would the Project increase the use of existing
 neighborhood and regional parks or other
 recreational facilities such that substantial physical | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| deterioration of the facility would occur or be
 accelerated? | Potentially
 Significant
 Impact | Less sthan
 Sisnificant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |

Less than Significant Impact. The Proposed Project includes new construction of a new swimming pool along with physical education outdoor playing fields to include a relocated softball field, two soccer fields, six tennis courts, five sand volleyball courts, and supporting facilities, restrooms, field house, storage. During relocation of the softball field, a temporary lack of public access to the softball field would occur. Demands for access to these fields can be satisfied at other recreation facilities located in the City of Long Beach with little, if any, impact to those facilities. After construction, the new swimming pool facility and outdoor playing fields would better serve the college and the public. This and the other improvements to recreational facilities would result in a beneficial long-term impact to parks and recreation facilities in the Project Area. Therefore, less than significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
b) Does the Project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

| | Less than
 Sotentially | Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact |
| :---: | :---: | :---: | :---: | | Impact |
| :---: |
| Impact |\quad| Impant |
| :---: |
| \square |

Less-than-Significant Impact. See discussion regarding recreational facilities in Section 4.19 Impact a), above. The Proposed Project would not require the construction or expansion of off-site recreational facilities. The Proposed Project would include upgrades to existing recreational facilities. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: No further study of recreation is required.

4.20. TRANSPORTATION

a) Would the Project conflict with a plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle lanes, and pedestrian paths?	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
	V	\square	\square	\square

Potentially Significant Impact. The Proposed Project has no components that will cause conflict or alter adopted policies, plans, or programs supporting alternative transportation. The Proposed Project includes upgrades to the LAC pedestrian and bicycle circulation system. However, implementation of the Proposed Project has the potential to cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system. This could result in a corresponding increase in the volume to capacity ratio on these roadways or increased congestion at intersections and, therefore, represents a potentially significant impact. The SEIR will document the results of a detailed traffic study, including the analysis of traffic impacts at local intersections and roadway segments and access to the LAC.

Less Than Significant Impact. The Proposed Project area is located within one-half mile of numerous transit stops. Although the Proposed Project would not likely reduce vehicle miles travelled in the project area compared to existing conditions, the proximity to multiple transit stops would result in a less than significant impact associated with transportation. Therefore, no significant impacts are expected, and no further analysis is required.

| c) | For a transportation project, would the project
 conflict or be consistent with CEQA Guidelines
 section 15064.3, subdivision (b)(2)?? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :---: | :--- | :---: | :---: |
| | \square | \square | \square | \square | |

No Impact. The Proposed Project is not a transportation project. Therefore, no impacts are expected, and no further study of the issue is required.
d) Would the Project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

	Less than		
Potentially	Significant	Less than	
Significant	With Mitigation	Significant	No
Impact	Incorporation	Impact	Impact

No Impact. The LAC is located in a developed urban area characterized by moderate traffic levels. The Proposed Project will involve upgrades and improvements to vehicular and pedestrian access and circulation. The Proposed Project will not pose traffic hazards to motor vehicles, bicyclists, or pedestrians. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| e)Would the Project result in inadequate emergency
 access? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

No Impact. Implementation of the Proposed Project will be designed to provide unobstructed access at all times. Permitting requirements require the Long Beach Fire Department and the DSA to perform an Access Compliance review and a Fire and Life Safety review prior to approval of Proposed Project drawings and specification documents. Therefore, emergency access will be ensured and the Proposed Project will not interfere with adopted emergency response or evacuation plans. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: Further study of transportation especially related to policies or plans related to the circulation system is required and will be addressed in the SEIR.

4.21. TRIBAL CULTURAL RESOURCES

4.21.1 Evaluation

a) Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:
i. Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k),

| | Less than
 Potentially
 Significant
 Impact | Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact |
| :---: | :---: | :---: | :---: | | Impact |
| :---: |
| \square |

No Impact: The LBCC LAC is in an urbanized area that has been previously disturbed by past activities. A Chambers Group archaeologist visited the subject property in 2004 and determined that no open ground was present for viable for archaeological survey due to the presence of buildings, hardscape, and landscaped areas that cover the project area. Results of the 2004 records search and assessment found no previously recorded historical resources (or local register historical resources) present on the LAC campus (Chambers Group 2004).

On November 11, 2017, Chambers Group, Inc. received the results of the updated records search from the SCCIC housed at the California State University, Fullerton. The results with the SCCIC found no listed or eligible for listing CRHR historical resources or local register resources present within the Project area. Additionally, a search with the NAHC failed to identify any SLF within the Project area.

On December 14, 2017, LBCCD submitted an AB 52 project notification letter to Mr. Anthony Morales (Chief, San Gabriel Band of Mission Indians), which is the only Tribe that has requested notification of projects for this area under AB 52 from LBCCD. The notification letter included project information, location, point of contact for the District, and requested that the Tribe respond within 30 days if they would like to consult on this Project. As of January 30, 2018, no response has been received from the Tribe requesting consultation on the Project. The 30-day request for consultation ended January 13, 2018. As a result, AB 52 tribal consultation efforts are considered closed for this Project.

Based on the 2004 and 2017 findings there are no tribal cultural resources present within the Project area, and little to no potential for buried tribal cultural resources based on the past disturbance and development of the campus. However, in the event tribal cultural resources are uncovered during earth moving construction activities the mitigation measures presented above for cultural resources shall be in effect (CUL-1 and CUL-2).

| ii)A resource determined by the lead agency, in its
 discretion and supported by substantial
 evidence, to be significant pursuant to criteria | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| set forth in subdivision (c) of Public Resources | | | | |

No Impact: The LBCC LAC is in an urbanized area that has been previously disturbed by past activities. A Chambers Group archaeologist visited the subject property in 2004 and determined that no open ground was present for viable for archaeological survey due to the presence of buildings, hardscape, and landscaped areas that cover the project area. Results of the 2004 records search and assessment found no previously recorded cultural resources present on the LAC campus (Chambers Group 2004).

On November 11, 2017, Chambers Group, Inc. received the results of the updated records search from the SCCIC housed at the California State University, Fullerton. The results with the SCCIC found Native

American cultural resources recorded within the project area. Additionally, a search with the NAHC SLF search, did not identify any SLFs within the Project area.

On December 14, 2017, LBCCD submitted an AB 52 project notification letter to Mr. Anthony Morales (Chief, San Gabriel Band of Mission Indians), which is the only Tribe that has requested notification of projects for this area under AB 52 from LBCCD. The notification letter included Project information, location, point of contact for the District, and requested that the Tribe respond within 30 days if they would like to consult on this Project.

As of January 30, 2018, no response has been received from the Tribe requesting consultation on the Project. The 30 -day request for consultation ended January 13, 2018. As a result, AB 52 tribal consultation efforts are considered closed for this Proposed Project.

Therefore, based on the 2004 and 2017 findings there are no tribal cultural resources present within the Project area, and little to no potential for buried tribal cultural resources based on the past disturbance and development of the campus. However, in the event tribal cultural resources are uncovered during earth moving construction activities the mitigation measures presented above for cultural resources shall be in effect (CUL-1 and CUL-2).

Further Study Required: No further study of tribal cultural resources is required.

4.22. UTILITIES AND SERVICE SYSTEMS

Less Than Significant Impact. The Proposed Project would not be expected to place an undue burden on existing water, wastewater treatment, electric power, natural gas, or telecommunication facilities. The Proposed Project would be developed on a site where the LAC is already established in an urbanized setting. The Proposed Project will not induce growth, but will accommodate a regional growth in population. Such development was taken into account by regional water purveyors and wastewater treatment facilities in their regional planning for upgrading facilities (LBWD 2015, LBWD 2014). Additionally, electric and natural gas utilities are considered on demand utilities and service is provided as needed.

The Proposed Project will involve upgrades to the existing on-site stormwater conveyance system. Short-term impacts to site drainage during construction will be mitigated through the use of BMPs. Long-term impacts will not result to the storm drain system as the Proposed Project will not significantly increase impervious surfaces that would contribute to additional stormwater flow. Therefore, no
impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| b)Would the Project have sufficient water supplies
 available to serve the Project and reasonably
 foreseeable future development during normal,
 dry, and multiple dry years? | Potentially
 Significant
 Impact | Less sthan
 Sisnificant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \square | \square | \square | \square |

No Impact. The Proposed Project will not induce growth, but will accommodate a regional growth in population for which future water use has been accounted by regional water purveyors (LBWD 2015). Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
c) Would the Project result in a determination by the wastewater treatment provider, which serves or may serve the Project that it has adequate capacity to serve the Project's projected demand in addition to the provider's existing commitments?

	Less than				
Potentially	Significant Significant Impact	Less than Incorporation	Significant Impact		Impact
:---:					
\square					

No Impact. The Proposed Project will not induce growth, but will accommodate a projected growth in student population for which future demand on regional wastewater facilities has been projected by local and regional planning agencies. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| d)Would the Project generate solid waste in excess of
 State or local standards or in excess of the capacity
 of local infrastructure? | Potentially
 Significant
 Impact | Less than
 Sisnificant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :---: | :--- | :---: | :---: |
| \square | \square | \square | \square | |

Less than Significant Impact. The Sanitation Districts of Los Angeles County (LACSD) and private waste management collectors and disposal facilities manage solid waste in the county. The LACSD operates a comprehensive solid waste management system that includes three active sanitary landfills, three closed landfills, two materials recovery/transfer stations, three gas-to-energy facilities, a clean-fuel facility, two full-service recycle centers, multiple landfill recycling programs, and, in conjunction with the County's Department of Public Works, an extensive program of household hazardous waste and electronic waste collection round-ups.

The active landfills and the materials recovery/transfer stations receive approximately 19,000 tons of nonhazardous solid waste per day, of which approximately 15,500 tons per day is disposed, with the remainder being reused or recycled. This disposal represents approximately 40 percent of the total solid
waste disposed of by the residents and businesses of the county. The remaining 60 percent is disposed of at privately owned landfills. In general, solid waste is hauled directly to Class III landfills, transfer stations, resource recovery centers, and refuse-to-energy facilities.

The Proposed Project will not significantly affect the volume of solid waste. Construction of the Proposed Project would result in the generation of solid waste including scrap lumber, concrete, residual waste, packaging material, plastics, and vegetation. To ensure optimal diversion of solid waste resources by the Proposed Project, the District will require contractors to recycle or salvage nonhazardous waste materials generated during demolition and/or construction, to foster material recovery and reuse, and to minimize disposal in landfills. Furthermore, impacts from construction activities will be short-term and intermittent, and will be mitigated by compliance with existing state solid waste reduction statutes. A less than significant impact to regional landfills is expected to result from the Proposed Project. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| e)Would the Project negatively impact the provision
 of solid waste services or impair the attainment of
 solid waste reduction goals? | Potentially
 Significant
 Impact | Less than
 Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \square | \square | \square | \square |

Less Than Significant Impact. As discussed above, construction of the Proposed Project would result in the generation of solid waste including scrap lumber, concrete, residual waste, packaging material, plastics, and vegetation. To ensure optimal diversion of solid waste resources by the Proposed Project, the District will require contractors to recycle or salvage nonhazardous waste materials generated during demolition and/or construction, to foster material recovery and reuse, and to minimize disposal in landfills. Furthermore, impacts from construction activities will be short-term and intermittent, and will be mitigated by compliance with existing state solid waste reduction statutes. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

f) Would the Project comply with federal, state, and local statutes and regulations related to solid waste?		Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
		\square	\square	\square	∇

No Impact. The Proposed Project will comply with all applicable federal, state, and local statutes and regulations relating to solid waste. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: No further study of utilities is required.

4.23. WILDFIRE

If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project: a) Impair an adopted emergency response plan or emergency evacuation plan?				
	Potentially Significant Impact	Less than Significant With Mitigation Incorporation	Less than Significant Impact	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
	\square	\square	\square	マ

No Impact. The LAC is not located within a state or locally classified very high fire hazard severity zone (Cal Fire 2007, 2011). Additionally, emergency access will be ensured and the Proposed Project will not interfere with adopted emergency response or evacuation plans. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required
b) Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?

| | Less than
 Potentially
 Significant
 Impact | Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact |
| :---: | :---: | :---: | :---: | | Impact |
| :---: |
| \square |

No Impact. The LAC is located in an urbanized area of the City of Long Beach that does not include wildlands or high fire hazard terrain or vegetation. Additionally, the Proposed Project area is relatively flat and does not contain perceptible slopes on site. The Proposed Project will not expose occupants to pollutant conversations from a wildfire during construction or operation. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.
c) Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?

| | Less than
 Sotentially
 Significant
 Impact | With Mitigation
 Incorporation | Less than
 Significant
 Impact |
| :---: | :---: | :---: | :---: | | Impact |
| :---: |

No Impact. The LAC is located in an urbanized area of the City of Long Beach that does not include wildlands or high fire hazard terrain or vegetation. Additionally, the Proposed Project does not include the installation or maintenance of structures associated with fire prevention or control. Therefore, no
impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| d)Expose people or structures to significant risks,
 including downslope or downstream flooding or | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| landslides, as a result of runoff, post-fire slope
 instability, or drainage changes? | Potentially
 Significant
 Impact | Less than
 Singificant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact | No
 Impact |
| | \square | \square | \square | \square |

No Impact. The LAC is located in an urbanized area of the City of Long Beach that does not include wildlands or high fire hazard terrain or vegetation. Additionally, the Proposed Project area is relatively flat. Therefore, no impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

Further Study Required: No further study of risk associated with wildfire is required.

4.24. MANDATORY FINDINGS OF SIGNIFICANCE

a) Does the Project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

| | Less than
 Potentially
 Significant
 Impact | Significant
 With Mitigation
 Incorporation | Less than
 Significant
 Impact |
| :---: | :---: | :---: | :---: | | Impact |
| :---: |
| \square |

Less than Significant with Mitigation. The Proposed Project site does not contain any sensitive natural resources, which could be disturbed as a result of the Proposed Project. Due to the highly urbanized nature of the Proposed Project area, the Proposed Project would not reduce the habitat of fish and wildlife species; cause a fish or wildlife population to drop below self-sustaining levels; threaten to eliminate a plant or animal community; or reduce the number or restrict the range of a rare or endangered plant or animal. Additionally, the Proposed Project would not significantly impact examples of the major periods of California history or prehistory with the incorporation of mitigation measures mentioned above. Therefore, no significant impacts are expected, no significant change is anticipated from previous analyses, and no further study of the issue is required.

| b) Does the Project have impacts that are individually |
| :--- | :--- | :--- | :--- | :--- | :--- |
| limited, but cumulatively considerable? |
| ("Cumulatively considerable" means that the |

Potentially Significant Impact. Implementation of the Proposed Project would have the potential to have impacts that are individually limited, but cumulatively considerable. Where the Proposed Project would have no impact, specifically with respect to agricultural resources, biological resources, mineral resources, and population and housing, it would not contribute to cumulative impacts. In addition, issues specific to site conditions, such as site geology and soils, do not have cumulative effects. The Proposed Project is not growth inducing; thus, it would not contribute to the cumulative effects of population growth. The incremental effects of the Proposed Project that could contribute to cumulative impacts include air, noise, and traffic impacts associated with vehicle trips generated by the project and construction impacts. These issues will be further analyzed in the SEIR, and, subsequently, their cumulative effects will also be analyzed in the SEIR.

| c) Does the Project have environmental effects that |
| :--- | :--- | :--- | :--- | :--- | :--- |
| will cause substantial adverse effects on human beings, |
| either directly or indirectly? | | Potentially |
| :---: |
| Significant |
| Impact |\quad| Less than |
| :---: |
| Significant |
| With Mititation |
| Incorporation |\quad| Less than |
| :---: |
| Significant |
| Impact |\quad| No |
| :---: |
| Impact |

Potentially Significant Impact. The Proposed Project could potentially result in environmental effects that may cause adverse effects on human beings with regard to the following environmental areas discussed in this NOP/IS: air quality, noise, and traffic. These issues will be studied further in the SEIR.

SECTION 5.0 - REFERENCES

Amec Foster Wheeler
2015a Geotechnical Investigation Proposed Auditorium Renovation and Additions. September 2015

2015b Report of Geotechnical Investigation Proposed Building P Renovation. August 2015.
California Department of Conservation
2016 Important Farmland in California, Farmland Mapping and Monitoring Program Map http://www.conservation.ca.gov/dlrp/FMMP/Pages/Index.aspx

California Department of Forestry and Fire Protection (Cal Fire)
2007 Los Angeles County Fire Hazard Severity Zone Map. State Responsibility Area.
2011 Los Angeles County Fire Hazard Severity Zone Map. Local Responsibility Area.
California Department of Transportation (Caltrans).
2004 Transportation-and Construction-Induced Vibration Guidance Manual, June 2004.
2017 California Scenic Highway Mapping System.
http://www.dot.ca.gov/hq/LandArch/16_livability/scenic_highways/
California Department of Toxic Substances Control
2017 http://www.envirostor.dtsc.ca.gov/public/
California State Water Resources Control Board
2017 http://geotracker.waterboards.ca.gov
Chambers Group Inc.
2004 Long Beach City College Draft PEIR for Liberal Arts College Master Plan
2009 Draft Supplemental EIR Long Beach City College Unified 2020 Master Plan Liberal Arts Campus

2017 Cultural Resources Memo Report
City of Long Beach General Plan (City)
1973 Conservation Element
1975 Scenic Highways Element

```
    1988 Seismic Safety Element
    1989 Land Use Element
    1991 Transportation Element
    1996 Air Quality Element
    1998 Department of Building and Planning, Zoning Map
    2002 Open Space and Recreation Element
City of Long Beach Public Works Department
    2006 Tree Maintenance Policy
Federal Emergency Management Agency (FEMA)
    2008 National Flood Insurance Rate Map
Long Beach Community College District (LBCCD)
    2004 Long Beach City College Master Plan Liberal Arts Campus
    2007 Long Beach City College 2020 Unified Master Plan
    2016 2041 Facilities Master Plan
Long Beach Water Department
    2014 Long Beach Sewer System Management Plan (SSMP) Final Report
    2015 Long Beach Water 2015 Urban Water Management Plan
```


SECTION 6.0 - REPORT AUTHORS AND CONSULTANTS

Long Beach Community College District (LBCCD)
Ann-Marie Gabel, Executive Vice President, Finance, Facilities and Technology Services
Timothy Wootton, Facilities \& Maintenance, Director
Margie Padron, Business Support Services, Director
Medhanie Ephrem, Facilities \& Maintenance, Deputy Director of Planning \& Construction

Long Beach Community College District (LBCCD) Bond Management Team

Farzam Fathi, Construction Manager
Terrance DeGray, Program Director

Chambers Group, Inc.

Meghan Directo
Project Manager/Project Environmental Planner
Corinne Lytle-Bonine
Managing Environmental Planner
Eunice Bagwan
Environmental Planner
Thomas Strand
Environmental Planner

Rachael Nixon
Managing Cultural Resources Specialist
Justin Castells
Senior Architectural Historian

To: Long Beach Community College District (LBCCD) and Interested Parties
From: Rachael Nixon, MA, RPA

Date: February 5, 2018

RE: Long Beach Community College District 2041 Facilities Master Plan - Liberal Arts Campus Cultural Resources Records Search Update

In July 2009, Chambers Group, Inc. (Chambers Group) prepared a Cultural Resources Inventory for Liberal Arts and Pacific Coast campuses of Long Beach City College as part of Long Beach Community College District 2020 Unified Master Plan. As part of the report, a cultural resources records search/literature review was conducted on April 6, 2009 at the South Central Coastal Information Center (SCCIC), located at California State University, Fullerton Campus. The purpose of this review was to examine any existing cultural resources survey reports, archaeological site records, and historic maps to determine whether previously documented prehistoric or historic archaeological sites, architectural resources, cultural landscapes, or ethnic resources exist within or near the property. The records search/literature review was also conducted to determine whether any historic properties listed on or determined eligible for listing on the National Register of Historic Places (NRHP) or California Register of Historical Resources (CRHR) exist within a one-mile radius of property. The following update is for the Liberal Arts campus.

The results of the 2009 records search indicated that seven prior cultural resource studies and one historical resource are located within a 1-mile search radius of the project location. No prior cultural resource surveys or historic or cultural resources were identified within the project area.

An updated records search was conducted on November 11, 2017 at the SCCIC. Based on the results of the updated records search, 16 prior cultural resources reports are located within the 1-mile search radius and five of those reports are located within the project area. Three cultural resources have been identified within the 1-mile search radius, one prehistoric resource and two built environment resources. None of the previously recorded prehistoric or historic resources are located within the project area.

In addition to the updated records search, Chambers Group contacted the Native American Heritage Commission (NHAC) to conduct a Sacred Lands File (SLF) search of the project area to determine if resources significant to Native American groups are located within the project area. In a letter dated November 28, 2017, the NAHC responded that the review of the SLF returned negative results for the project area.

Based on the results of the updated records search and NAHC SLF search, there has been no change to the potential for cultural resources within the project area from the 2009 report. Chambers Group recommends that no further cultural resources work is required for this project.

February 12, 2018
Farzam Fathi
Long Beach Community College District
4901 E. Carson Street - G21
Long Beach, CA 90808
Sent via e-mail: CEQA@lbcc.edu
RE: SCH\# 2004051060; 2041 Facilities Master Plan Liberal Arts Campus Improvements Project, City of Long Beach; Los Angeles County, California

Dear Mr. Fathi:
The Native American Heritage Commission has received the Notice of Preparation (NOP) for Draft Environmental Impact Report for the project referenced above. The California Environmental Quality Act (CEQA) (Pub. Resources Code § 21000 et seq.), specifically Public Resources Code section 21084.1, states that a project that may cause a substantial adverse change in the significance of an historical resource is a project that may have a significant effect on the environment. (Pub. Resources Code § 21084.1; Cal. Code Regs., tit. 14, § 15064.5 (b) (CEQA Guidelines Section 15064.5 (b)). If there is substantial evidence, in light of the whole record before a lead agency, that a project may have a significant effect on the environment, an environmental impact report (EIR) shall be prepared. (Pub. Resources Code § 21080 (d); Cal. Code Regs., tit. 14, § 15064 subd. (a)(1) (CEQA Guidelines § 15064 (a)(1)). In order to determine whether a project will cause a substantial adverse change in the significance of a historical resource, a lead agency will need to determine whether there are historical resources with the area of project effect (APE).

CEQA was amended significantly in 2014. Assembly Bill 52 (Gatto, Chapter 532, Statutes of 2014) (AB 52) amended CEQA to create a separate category of cultural resources, "tribal cultural resources" (Pub. Resources Code § 21074) and provides that a project with an effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment (Pub. Resources Code § 21084.2). Please reference California Natural Resources Agency (2016) "Final Text for tribal cultural resources update to Appendix G: Environmental Checklist Form," http://resources.ca.gov/ceqa/docs/ab52/Clean-final-AB-52-App-G-text-Submitted.pdf. Public agencies shall, when feasible, avoid damaging effects to any tribal cultural resource. (Pub. Resources Code § 21084.3 (a)). AB 52 applies to any project for which a notice of preparation or a notice of negative declaration or mitigated negative declaration is filed on or after July 1, 2015. If your project involves the adoption of or amendment to a general plan or a specific plan, or the designation or proposed designation of open space, on or after March 1, 2005, it may also be subject to Senate Bill 18 (Burton, Chapter 905, Statutes of 2004) (SB 18). Both SB 18 and AB 52 have tribal consultation requirements. If your project is also subject to the federal National Environmental Policy Act (42 U.S.C. § 4321 et seq.) (NEPA), the tribal consultation requirements of Section 106 of the National Historic Preservation Act of 1966 (154 U.S.C. 300101,36 C.F.R. $\S 800$ et seq.) may also apply.

The NAHC recommends lead agencies consult with all California Native American tribes that are traditionally and culturally affiliated with the geographic area of your proposed project as early as possible in order to avoid inadvertent discoveries of Native American human remains and best protect tribal cultural resources. Below is a brief summary of portions of AB 52 and SB 18 as well as the NAHC's recommendations for conducting cultural resources assessments. Consult your legal counsel about compliance with AB 52 and SB 18 as well as compliance with any other applicable laws.
$A B 52$ has added to CEQA the additional requirements listed below, along with many other requirements:

1. Fourtaen Day Period to Provide Notice of Completion of an Application/Decision to Undertake a Project: Within fourteen (14) days of determining that an application for a project is complete or of a decision by a public agency to undertake a project, a lead agency shall provide formal notification to a designated contact of, or tribal representative of, traditionally and culturally affliated Calfiornia Native American tribes that have requested notice, to be accomplished by at least one written notice that includes:
a. A brief description of the project.
b. The lead agency contact information.
c. Notification that the California Native American tribe has 30 days to request consultation. (Pub. Resources Code § 21080.3 .1 (d)).
d. A "Califormia Native American tribe" is defined as a Native American tribe located in California that is on the contact list maintained by the NAHC for the purposes of Chapter 905 of Statutes of 2004 (SB 18). (Pub. Resources Code § 21073).
2. Begin Consultation Within 30 Days of Receiving a Tribe's Request for Consultation and Before Releasing a Negative Declaration, Mitigated Negative Declaration, or Environmental Impact Report: A lead agency shall begin the consultation process within 30 days of receiving a request for consultation from a California Native American tribe that is tradisionally and culturally affiliated with the geographic area of the proposed project. (Pub. Resources Code $\$ 21080.3 .1$, subds. (d) and (e)) and prior to the release of a negative declaration, mitigated negative declaration or environmental Impact report. (Pub. Resources Code § 21080.3.1(b)).
a. For purposes of $A B 52$, "consultation shall have the same meaning as provided in Gov. Code § 65352.4 (SB 18). (Pub. Resources Code § 21080.3 .1 (b)).
3. Mandatory Topics of Consultation If Requested by a Tribe: The following topics of consultation, if a tribe requests to discuss them, are mandatory topics of consultation:
a. Alternatives to the project.
b. Recommended mitigation measures.
c. Significant effects. (Pub. Resources Code § 21080.3.2 (a)).
4. Discretionary Topics of Consultation: The following topics are discretionary topics of consultation:
a. Type of environmental review necessary.
b. Significance of the tribal cultural resources.
c. Significance of the project's impacts on tribal cultural resources.
d. If necessary, project alternatives or appropriate measures for preservation or mitigation that the tribe may recommend to the lead agency. (Pub. Resources Code § 21080.3.2 (a)).
5. Confidentiality of Information Submitted by a Tribe During the Environmental Review Process: With some exceptions, any information, including but not limited to, the location, description, and use of tribal cultural resources submitted by a California Native American tribe during the environmental review process shall not be included in the environmental document or otherwise disclosed by the lead agency or any other public agency to the public, consistent with Govemment Code sections 6254 (r) and 6254.10. Any information submitted by a California Native American tribe during the consultation or environmental review process shall be published in a confidential appendix to the environmental document unless the tribe that provided the information consents, in writing, to the disclosure of some or all of the information to the public. (Pub. Resources Code §2.1082.3 (c)(1)).
6. Discussion of Impacts to Tribal Cultural Resources in the Environmental Document: If a project may have a significant impact on a tribal cultural resource, the lead agency's environmental document shall discuss both of the following:
a. Whether the proposed project has a significant impact on an identified tribal cultural resource.
b. Whether feasible alternatives or mitigation measures, including those measures that may be agreed to pursuant to Public Resources Code section 21082.3, subdivision (a), avold or substantially lessen the impact on the identifled tribal cultural resource. (Pub. Resources Code § 21082.3 (b)).
7. Conclusion of Consultation: Consultation with a tribe shall be considered concluded when either of the following occurs:
a. The parties agree to measures to mitigate or avoid a significant effect, if a significant effect exists, on a tribal cultural resource; or
b. A party, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached. (Pub. Resources Code § 21080.3 .2 (b)).
8. Recommending Mitigation Measures Agreed Upon in Consultation in the Environmental Document: Any mitigation measures agreed upon in the consultation conducted pursuant to Public Resources Code section 21080.3.2 shall be recommended for inclusion in the environmental document and in an adopted mitigation monitoring and reporting program, if determined to avoid or lessen the impact pursuant to Public Resources Code section 21082.3, subdivision (b), paragraph 2, and shall be fully enforceable. (Pub. Resources Code § 21082.3 (a)).
9. Required Consideration of Feasible Mitigation: If mitigation measures recommended by the staff of the lead agency as a result of the consultation process are not included in the environmental document or if there are no agreed upon mitigation measures at the conclusion of consultation, or if consultation does not occur, and if substantial evidence demonstrates that a project will cause a significant effect to a tribal cultural resource, the lead agency shall consider feasible mitigation pursuant to Public: Resources Code section 21084.3 (b). (Pub. Resources Code § 21082.3 (e)).
10. Examples of Mitigation Measures That If Feasible, May Be Considered to Avoid or Minimize Significant Adverse Impacts to Tribal Cultural Resources:
a. Avoidance and preservation of the resources in place, including, but not limited to:
i. Planning and construction to avoid the resources and protect the cultural and natural context.
ii. Planning greenspace, parks, or other open space, to incorporate the resources with culturally appropriate protection and management criteria.
b. Treating the resource with culturally appropriate dignity, taking into account the tribal cultural values and meaning of the resource, including, but not limited to, the following:
I. Protecting the cultural character and integrity of the resource.
ii. Protectirg the traditional use of the resource.
iii. Protecting the confidentiality of the resource.
c. Permanent conservation easements or other interests in real property, with culturally appropriate management criteria for the purposes of preserving or utilizing the resources or places.
d. Protecting the resource. (Pub. Resource Code § 21084.3 (b)).
-. Please note that a federally recognized California Native American tribe or a nonfederally recognized California Native American tribe that is on the contact list maintained by the NAHC to protect a California prehistoric, archaeological, cultural, spiritual, or ceremonial place may acquire and hold conservation easements if the conservation easement is voluntarily conveyed. (Civ. Code § 815.3 (c)).
f. Please note that it is the policy of the state that Native American remains and associated grave arlifacts shall be repatriated. (Pub. Resources Code § 5097.991).
11. Prerequisites for Certifying an Environmental Impact Report or Adopting a Mitigated Negative Declaration or Negative Declaration with a Significant Impact on an Identified Tribal Cultural Resource: An environmental impact report may not be ceritified, nor may a mitigated negative declaration or a negative declaration be adopted unless one of the following occurs:
a. The consultation process between the tribes and the lead agency has occurred as provided in Public Resources Code sections 21080.3.1 and 21080.3.2 and concluded pursuant to Public Resources Code section 21080.3.2.
b. The tribe that requested consultation failed to provide comments to the lead agency or otherwise failed to engage in the consultation process.
c. The lead agency provided notice of the project to the tribe in compliance with Public Resources Code section 21080.3 .1 (d) and the tribe failed to request consultation within 30 days. (Pub. Resources Code § 21082.3 (d)).
This process should be documented in the Cultural Resources section of your environmental document.
The NAHC's PowerPoint presentation titted, "Tribal Consultation Under AB 52: Requirements and Best Practices" may be found online at http://nahc.ca.gov/wp-content/uploads/2015/10/AB52TribalConsultation_CalEPAPDF.pdf

SB 18

SB 18 applies to local governments and requires local governments to contact, provide notice to, refer plans to, and consult with tribes prior to the adoption or amendment of a general plan or a specific plan, or the designation of open space. (Gov. Code § 65352.3). Local governments should consult the Govemor's Office of Planning and Research's "Tribal Consultation Guidelines," which can be found online at:
https://www.opr.ca.gov/docs/09_14_05_Updated_Guidelines_.922.pdf
Some of SB 18's provisions include:

1. Tribal Consultation: If a local government considers a proposal to adopt or amend a general plan or a specific plan, or to designate open space it is required to contact the appropriate tribes identified by the NAHC by requesting a "Tribal Consultation List." If a tribe, once contacted, requests consultation the local government must consult with the tribe on the plan proposal. A tribe has $\mathbf{9 0}$ days from the date of receipt of notification to request consultation unless a shorter timeframe has been agreed to by the tribe. (Gov. Code § 65352.3 (a)(2)).
2. No Statutory Time Limit on SB 18 Tribal Consultation. There is no statutory time limit on SB 18 tribal consultation.
3. Confidentiality: Consistent with the guidelines developed and adopted by the Office of Planning and Research pursuant to Gov. Code section 65040.2, the city or county shall protect the confidentiality of the information concerning the specific identity, location, character, and use of places, features and objects described in Public Resources Code sections 5097.9 and 5097.993 that are within the city's or county's juristiction. (Gov. Code § 65352.3 (b)).
4. Conclusion of SB 18 Tribal Consultation: Consultation should be concluded at the point in which:
a. The parties to the consultation come to a mutual agreement concerning the appropriate measures for preservation or mitigation; or
b. Either the local government or the tribe, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached concerning the appropriate measures of preservation or mitigation. (Tribal Consultation Guidelines, Governor's Office of Planning and Research (2005) at p. 18).

Agencies should be aware that neither AB 52 nor SB 18 precudes agencies from intiating tribal consultation with tribes that are traditionally and culturally affiliated with their jurisdictions before the timeframes provided in AB 52 and SB 18. For that reason, we urge you to continue to request Native American Tribal Contact Lists and "Sacred Lands File" searches from the NAHC. The request forms can be found online at:
http://hahc.ca.gov/resources/forms/

NAHC Recommendations for Cultural Resources Assessments

To adequately assess the existence and significance of tribal cultural resources and plan for avoidance, preservation in place, or barring both, rnitigation of project-related impacts to tribal cultural resources, the NAHC recomrnends the following actions:

1. Contact the appropriate regional California Historical Research Information System (CHRIS) Center (http://ohp.parks.ca.gov/?page_id=1068) for an archaeological records search. The records search will determine:
a. If part or all of the APE has been previousiy surveyed for cultural resources.
b. If any known cuttural resources have been already been recorded on or adjacent to the APE.
c. If the probability is low, moderate, or high that cultural resources are located in the APE.
d. If a survey is required to determine whether previously unrecorded cuitural resources are present.
2. If an archaeological inventory survey is required, the final stage is the preparation of a professional report detailing the findings and recommendations of the records search and field survey.
a. The final report containing site forms, site significance, and mitigation measures should be submitted immediately to the planning department. All information regarding site locations, Native American hurnan remains, and associated funerary objects should be in a separate confidential addendum and not be made available for public cisclosure.
b. The final written report should be submitted within 3 months after work has been completed to the appropriate regional CHRIS center.
3. Contact the NAHC for:
a. A Sacred Lands File search. Remember that tribes do not always record their sacred sites in the Sacred Lands File, nor are they required to do so. A Sacred Lands File search is not a substitute for consultation with tribes that are traditionally and culturally affiliated with the geographic area of the project's APE.
b. A Native American Tribal Consultation List of appropriate tribes for consultation concerning the project site and to assist in planning for avoidance, preservation in place, or, failing both, mitigation measures.
4. Remember that the lack of surface evidence of archaeological resources (including tribal cultural resources) does not preclude their subsurface existence.
a. Lead agencies should include in their mitigation and monitoring reporting program plan provisions for the identification and evaluation of inadvertently discovered archaeological resources per Cal. Code Regs., tit. 14, section 15064.5(f) (CEQA Guidelines section 15064.5(f)). In areas of identified archaeological sensitivity, a certified archaeologist and a culturally affiliated Native American with knowledge of cultural resources should monitor all ground-disturbing activities.
b. Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the disposition of recovered cultural items that are not burial associated in consultation with culturally affiliated Native Americans.
c. Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the treatment and disposition of inadvertently discovered Native American human remains. Health and Safety Code section 7050.5, Public Resources Code section 5097.98, and Cal. Code Regs., tit. 14, section 15064.5, subdivisions (d) and (e) (CEQA Guidelines section 15064.5, subds. (d) and (e)) address the processes to be followed in the event of an inadvertent discovery of any Native American human remains and associated grave goods in a location other than a dedicated cemetery.

Please contact me if you need any additional information at gayle.totton@nahc.ca.gov.

Sincerely,

gaylerotton, M.A.A. PhD.
Associate Governmental Program Analyst (916) 373-3714
cc: State Clearinghouse

Barbara A. Lee, Director 5796 Corporate Avenue Cypress, California 90630

Edmund G. Brown Jr. Governor

February 28, 2018

Mr. Farzam Fathi
Bond Management Team
Long Beach Community College District
4901 East Carson Street - G21
Long Beach, California 90808
CEQA@lbcc.edu

NOTICE OF PREPARATION (NOP) FOR AN ENVIRONMENTAL IMPACT REPORT (EIR) FOR THE 2041 FACILITIES MASTER PLAN LIBERAL ARTS CAMPUS IMPROVEMENTS PROJECT, LONG BEACH COMMUNITY COLLEGE DISTRICT (SCH\# 2004051060)

Dear Mr. Fathi:

The Department of Toxic Substances Control (DTSC) has reviewed the subject NOP. The following project description is stated in the NOP: "The 2041 Facilities Master Plan provides a prioritized program of work incorporating the 2004 LAC Master Plan, the 2020 Unified Master Plan for LAC, and the space and building needs identified to the year 2041. The LBCCD 2041 Facilities Master Plan LAC improvements would result in an estimated increase over the 2020 Unified Master Plan of 15,877 square feet of renovation, and 69,564 square feet removed, and estimated increase of 30,035 square feet of new construction."

Based on the review of the submitted document, DTSC has the following comments:

1. The EIR should identify and determine whether current or historic uses at the project site may have resulted in any release of hazardous wastes/substances. A Phase I Environmental Site Assessment may be appropriate to identify any recognized environmental conditions.
2. If there are any recognized environmental conditions in the project area, then proper investigation, sampling and remedial actions overseen by the appropriate regulatory agencies should be conducted prior to the new development or any construction.
3. If the project plans include discharging wastewater to a storm drain, you may be required to obtain an NPDES permit from the overseeing Regional Water Quality Control Board (RWQCB).
4. If the proposed project involves the demolition of existing structures, lead-based paints or products, mercury, and asbestos containing materials (ACMs) should be addressed in accordance with all applicable and relevant laws and regulations.
5. If the site was used for agricultural or related activities, residual pesticides may be present in onsite soil. DTSC recommends investigation and mitigation, as necessary, to address potential impact to human health and environment from residual pesticides.
6. DTSC recommends evaluation, proper investigation and mitigation, if necessary, of onsite areas with current or historic PCB-containing transformers.
7. If the project development involves soil export/import, proper evaluation is required. If soil contamination is suspected or observed in the project area, then excavated soil should be sampled prior to export/disposal. If the soil is contaminated, it should be disposed of properly in accordance with all applicable and relevant laws and regulations. In addition, if imported soil was used as backfill onsite and/or backfill soil will be imported, DTSC recommends proper evaluation/sampling as necessary to ensure the backfill material is free of contamination.
8. If during construction/demolition of the project, soil and/or groundwater contamination is suspected, construction/demolition in the area should cease and appropriate health and safety procedures should be implemented. If it is determined that contaminated soil and/or groundwater exist, the EIR should identify how any required investigation and/or remediation will be conducted and the appropriate government agency to provide regulatory oversight.

Mr. Farzam Fathi

February 28, 2018
Page 3

If you have any questions regarding this letter, please contact me at (714) 484-5380 or by email at Johnson.Abraham@dtsc.ca.gov.

Project Manager
Brownfields Restoration and School Evaluation Branch
Site Mitigation and Restoration Program - Cypress
kl/sh/ja
cc: Governor's Office of Planning and Research (via e-mail)
State Clearinghouse
P.O. Box 3044

Sacramento, California 95812-3044
State.clearinghouse@opr.ca.gov
Mr. Dave Kereazis (via e-mail)
Office of Planning \& Environmental Analysis
Department of Toxic Substances Control
Dave.Kereazis@dtsc.ca.gov
Mr. Shahir Haddad, Chief (via e-mail)
Brownfields Restoration and School Evaluation Branch
Site Mitigation and Restoration Program - Cypress
Shahir.Haddad@dtsc.ca.gov
CEQA\# 2004051060

DEPARTMENT OF TRANSPORTATION

DISTRICT 7- OFFICE OF REGIONAL PLANNING
100 S. MAIN STREET, SUITE 100
LOS ANGELES, CA 90012
www.dot.ca.gov

March 9, 2018
Farzam Fathi
Long Beach Community College District
4901 E. Carson Street -G21
Long Beach, Ca 90808

RE: 2041 Facilities Master Plan Liberal Arts SCH\#2004051060 GTS\#07-LA-2018-01342ME-NOP

Dear Mr. Fathi:
Thank you for including the California Department of Transportation (Caltrans) in the environmental review process for the above referenced project. The 2041 Facilities Master Plan provides updates to the 2020 Unified Master Plan and provides updated construction dates and budgets for the facilities projects. The projects incorporate the space and building needs identified to the year 2041.

We note that proposed project may have potentially significant impacts to the state highway system as stated in the documents provided. Please make effort to mitigate direct and cumulative impacts to a level of no significance. In the Spirit of mutual cooperation, Caltrans staff is available to work with your planners and traffic engineers for this project, if needed.

We encourage the Lead Agency to integrate transportation and land use in a way that reduces Vehicle Miles Traveled (VMT) and Greenhouse Gas (GHG) emissions by facilitating the provision of more proximate goods and services to shorten trip lengths, and achieve a high level of nonmotorized travel and transit use. We also encourage the Lead Agency to evaluate the potential of Transportation Demand Management (TDM) strategies and Intelligent Transportation System (ITS) applications in order to better manage the transportation network, as well as transit service and bicycle or pedestrian connectivity improvements.

Caltrans looks forward to reviewing the Supplemental Environmental Impact Report containing the detailed traffic study. If you have any questions, please contact project coordinator Ms. Miya Edmonson, at (213) 897-6536 and refer to GTS\# LA-2018-01342ME.

FRANCES LEE
IGR/CEQA Acting Branch Chief
cc: Scott Morgan, State Clearinghouse

Air Quality and Greenhouse Gas Modeling ASSUMPTIONS

Long Beach City College 2041 Facilities Master Plan for the
Liberal Arts Campus Improvements

Long Beach Community College District

Lead Agency:
Long Beach Community College District

Prepared By:
Vista Environmental
1021 Didrikson Way
Laguna Beach, California 92651
MARISA JUE
Greg Tonkovich, AICP
Telephone (949) 510-5355
FACSIMILE (949) 494-3150

Project No. 17053

TABLE OF CONTENTS

1.0 Introduction 1
1.1 Purpose of Report and Study Objectives 1
1.2 Site Location and Study Area 1
1.3 Proposed Project Description 1
2.0 Air Pollutants 3
2.1 Criteria Pollutants and Ozone Precursors 3
2.2 Other Pollutants of Concern. 5
3.0 Greenhouse Gases 7
3.1 Greenhouse Gases 7
3.2 Global Warming Potential 9
4.0 Modeling Parameters and Assumptions 10
4.1 CalEEMod Model Input Parameters 10
5.0 Modeling Results 1513
5.1 Criteria Pollutant Emissions 1513
5.2 Generation of Greenhouse Gas Emissions 2014
6.0 References 2215

APPENDIX

Appendix A - OFFROAD2017 Model Printouts and Calculations
Appendix BA - CalEEMod Model Interim Year 2020円aily Printouts
Appendix C - CalEEMod Model Interim Year 2025 Printouts
Appendix D - CalEEMod Model Interim Year 2030 Printouts
Appendix E - CalEEMod Model Interim Year 2035 Printouts
Appendix F - CalEEMod Model Interim Year 2040 Printouts

Appendix $\underline{G B}$ - CalEEMod Model Master Plan Annual Printouts

LIST OF FIGURES

Figure 1 - Project Local Study Area and Proposed Site Plan 2
LIST OF TABLES
Table A - Global Warming Potentials, Atmospheric Lifetimes and Abundances of GHGs 9
Table B - CalEEMod Land Use Parameters 10
Table C - OFFROAD2017 NOx Emissions Calculations 11
Table D - Construction-Related Regional Criteria Pollutant Emissions for Years 2019-2021 15
Table E - Construction-Related Regional Criteria Pollutant Emissions for Years 2021-2025 16
Table F - Construction-Related Regional Criteria Pollutant Emissions for Years 2026-2030 16
Table G - Construction-Related Regional Criteria Pollutant Emissions for Years 2031-2035 17
Table H - Construction-Related Regional Criteria Pollutant Emissions for Years 2036-2041 17
Table I - Operational and Construction Regional Criteria Pollutant Emissions for Year 2020 18
Table J - Operational and Construction Regional Criteria Pollutant Emissions for Year 2025 19
Table K - Operational and Construction Regional Criteria Pollutant Emissions for Year 2030 19
Table L - Operational and Construction Regional Criteria Pollutant Emissions for Year 2035 19
Table M - Operational and Construction Regional Criteria Pollutant Emissions for Year 2041 20
Table E - Project Related Greenhouse Gas Annual Emissions 20
Table A Global Warming Potentials, Atmospheric Lifetimes and Abundances of GHGs 9
Table B - CalEEMod Land Use Parameters 10
Table C Construction-Related Regional Criteria Pollutant Emissions 13
Table D- Operational Regional Criteria Pollutant Emissions 14
Table E-Project Related Greenhouse Gas Annual Emissions 14

ACRONYMS AND ABBREVIATIONS

AB	Assembly Bill
Air Basin	South Coast Air Basin
AQMP	Air Quality Management Plan
BACT	Best Available Control Technology
CAAQS	California Ambient Air Quality Standards
CalEEMod	California Emissions Estimator Model
CalEPA	California Environmental Protection Agency
CAPCOA	California Air Pollution Control Officers Association
CARB	California Air Resources Board
CAT	Climate Action Team
CCAA	California Clean Air Act
CEC	California Energy Commission
CEQA	California Environmental Quality Act
CFCs	chlorofluorocarbons
Cf_{4}	tetrafluoromethane
$\mathrm{C}_{2} \mathrm{~F}_{6}$	hexafluoroethane
$\mathrm{C}_{2} \mathrm{H}_{6}$	ethane
CH_{4}	Methane
City	City of Moreno Valley
CO	Carbon monoxide
CO_{2}	Carbon dioxide
$\mathrm{CO}_{2} \mathrm{e}$	Carbon dioxide equivalent
CPUC	California Public Utilities Commission
DPM	Diesel particulate matter
EPA	Environmental Protection Agency
EV	Electric vehicle
${ }^{\circ} \mathrm{F}$	Fahrenheit
FTIP	Federal Transportation Improvement Program
GHG	Greenhouse gas
GWP	Global warming potential
HAP	Hazardous Air Pollutants
HFCs	Hydrofluorocarbons

HOV	High occupancy vehicle
IPCC	International Panel on Climate Change
LAC	Language Arts Campus
LBCCD	Long Beach Community College District
LCFS	Low Carbon Fuel Standard
LST	Localized Significant Thresholds
MATES	Multiple Air Toxics Exposure Study
$\mathrm{MMTCO}_{2} \mathrm{e}$	Million metric tons of carbon dioxide equivalent
MPO	Metropolitan Planning Organization
MSAT	Mobile Source Air Toxics
MWh	Megawatt-hour
NAAQS	National Ambient Air Quality Standards
NO_{x}	Nitrogen oxides
NO_{2}	Nitrogen dioxide
O_{3}	Ozone
OPR	Office of Planning and Research
Pb	Lead
Pfc	Perfluorocarbons
PM	Particle matter
PM10	Particles that are less than 10 micrometers in diameter
PM2.5	Particles that are less than 2.5 micrometers in diameter
PPM	Parts per million
PPB	Parts per billion
PPT	Parts per trillion
RTIP	Regional Transportation Improvement Plan
RTP/SCS	Regional Transportation Plan/Sustainable Communities Strategy
SAR	Second Assessment Report
SB	Senate Bill
SCAQMD	South Coast Air Quality Management District
SCAG	Southern California Association of Governments
SCS	Sustainable communities strategy
SF_{6}	Sulfur Hexafluoride
SIP	State Implementation Plan
SO_{x}	Sulfur oxides

TAC Toxic air contaminants
UNFCCC United Nations' Framework Convention on Climate Change
VOC Volatile organic compounds

1.0 INTRODUCTION

1.1 Purpose of Report and Study Objectives

This Air Quality and Greenhouse Gas (GHG) Modeling Assumptions Report has been completed to determine the air quality and greenhouse gas (GHG) emissions impacts associated with the proposed Long Beach City College 2041 Facilities Master Plan for the Liberal Arts Campus Improvements project (proposed project). The following is provided in this report:

- A description of the proposed project;
- A description of the criteria pollutants and GHGs;
- A description of the construction and operational emissions modeling parameters utilized in the CalEEMod model; and
- The short-term construction related and long-term operational air quality and GHG emissions data as calculated through use of the CalEEMod model.

1.2 Site Location and Study Area

The project site is located in the northeastern portion of the City of Long Beach (City) on the northwest and southwest corners of Clark Avenue and East Carson Street. The approximately 20.84-acre project site is currently developed with existing Long Beach City College LAC facilities. The northern portion of the LAC is bounded by Harvey Way and residential uses to the north, Clark Avenue and residential uses to the east, East Carson Street and the southern portion of the LAC to the south, and Faculty Avenue and residential uses to the west. The southern portion of the LAC is bounded by East Carson, residential uses, and the northern portion of the LAC to the north, Clark Avenue, recreational open space, and residential uses to the east, industrial and recreational uses to the south, and commercial uses and North Lakewood Boulevard to the west.

Sensitive Receptors in Project Vicinity

The nearest sensitive receptor to the project site are single-family homes located approximately 130 feet north of the proposed recreational swimming pool, which would be located along East Carson Street. There are also nearby homes to the LAC campus on the west side of Faculty Avenue, north side of Harvey Way, and east side of Clark Avenue. The nearest school to the project site is Mark Twain Elementary School which is located approximately 0.27 miles north of the project site.

1.3 Proposed Project Description

The Long Beach Community College District (LBCCD) is proposing the Long Beach City College (LBCC) 2041 Facilities Master Plan for the Liberal Arts Campus (LAC) Improvements. Development of the 2041 Facilities Master Plan would result in the demolition of 109,156 -square feet of existing structures, renovation of 387,341 -square feet of existing buildings, and construction of 264,018 -square feet of new building space. In addition, the student enrollment size is anticipated to increase by 7,458 students by 2041 (Linscott, Law \& Greenspan, 2018). The project study area and proposed site plan is shown in Figure 1.

2.0 AIR POLLUTANTS

Air pollutants are generally classified as either criteria pollutants or non-criteria pollutants. Federal ambient air quality standards have been established for criteria pollutants, whereas no ambient standards have been established for non-criteria pollutants. For some criteria pollutants, separate standards have been set for different periods. Most standards have been set to protect public health. For some pollutants, standards have been based on other values (such as protection of crops, protection of materials, or avoidance of nuisance conditions).

2.1 Criteria Pollutants and Ozone Precursors

The criteria pollutants consist of: ozone, $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{SO}_{\mathrm{x}}$, lead (Pb), and particulate matter (PM). The ozone precursors consist of NO_{x} and VOC. These pollutants can harm your health and the environment, and cause property damage. The Environmental Protection Agency (EPA) calls these pollutants "criteria" air pollutants because it regulates them by developing human health-based and/or environmentally-based criteria for setting permissible levels. The following provides descriptions of each of the criteria pollutants and ozone precursors.

Nitrogen Oxides

Nitrogen Oxides (NOx) is the generic term for a group of highly reactive gases which contain nitrogen and oxygen. While most NOx are colorless and odorless, concentrations of NO_{2} can often be seen as a reddish-brown layer over many urban areas. NOx form when fuel is burned at high temperatures, as in a combustion process. The primary manmade sources of NO_{x} are motor vehicles, electric utilities, and other industrial, commercial, and residential sources that burn fuel. NOx reacts with other pollutants to form, ground-level ozone, nitrate particles, acid aerosols, as well as NO_{2}, which cause respiratory problems. NO_{x} and the pollutants formed from NO_{x} can be transported over long distances, following the patterns of prevailing winds. Therefore, controlling NOx is often most effective if done from a regional perspective, rather than focusing on the nearest sources.

Ozone

Ozone is not usually emitted directly into the air but in the vicinity of ground-level is created by a chemical reaction between NOx and volatile organic compounds (VOC) in the presence of sunlight. Motor vehicle exhaust, industrial emissions, gasoline vapors, chemical solvents as well as natural sources emit NOx and VOC that help form ozone. Ground-level ozone is the primary constituent of smog. Sunlight and hot weather cause ground-level ozone to form with the greatest concentrations usually occurring downwind from urban areas. Ozone is subsequently considered a regional pollutant. Groundlevel ozone is a respiratory irritant and an oxidant that increases susceptibility to respiratory infections and can cause substantial damage to vegetation and other materials. Because NOx and VOC are ozone precursors, the health effects associated with ozone are also indirect health effects associated with significant levels of NOx and VOC emissions.

Carbon Monoxide

Carbon monoxide (CO) is a colorless, odorless gas that is formed when carbon in fuel is not burned completely. It is a component of motor vehicle exhaust, which contributes approximately 56 percent of all CO emissions nationwide. In cities, 85 to 95 percent of all CO emissions may come from motor vehicle exhaust. Other sources of CO emissions include industrial processes (such as metals processing and chemical manufacturing), residential wood burning, and natural sources such as forest fires. Woodstoves, gas stoves, cigarette smoke, and unvented gas and kerosene space heaters are indoor sources of CO. The highest levels of CO in the outside air typically occur during the colder months of the year when inversion conditions are more frequent. The air pollution becomes trapped near the ground beneath
a layer of warm air. CO is described as having only a local influence because it dissipates quickly. Since CO concentrations are strongly associated with motor vehicle emissions, high CO concentrations generally occur in the immediate vicinity of roadways with high traffic volumes and traffic congestion, active parking lots, and in automobile tunnels. Areas adjacent to heavily traveled and congested intersections are particularly susceptible to high CO concentrations.

CO is a public health concern because it combines readily with hemoglobin and thus reduces the amount of oxygen transported in the bloodstream. The health threat from lower levels of CO is most serious for those who suffer from heart disease such as angina, clogged arteries, or congestive heart failure. For a person with heart disease, a single exposure to CO at low levels may cause chest pain and reduce that person's ability to exercise; repeated exposures may contribute to other cardiovascular effects. High levels of CO can affect even healthy people. People who breathe high levels of CO can develop vision problems, reduced ability to work or learn, reduced manual dexterity, and difficulty performing complex tasks. At extremely high levels, CO is poisonous and can cause death.

Sulfur Oxides

Sulfur Oxide (SOx) gases are formed when fuel containing sulfur, such as coal and oil is burned, as well as from the refining of gasoline. SOx dissolves easily in water vapor to form acid and interacts with other gases and particles in the air to form sulfates and other products that can be harmful to people and the environment.

Lead

Lead is a metal found naturally in the environment as well as manufactured products. The major sources of lead emissions have historically been motor vehicles and industrial sources. Due to the phase out of leaded gasoline, metal processing is now the primary source of lead emissions to the air. High levels of lead in the air are typically only found near lead smelters, waste incinerators, utilities, and lead-acid battery manufacturers. Exposure of fetuses, infants and children to low levels of Pb can adversely affect the development and function of the central nervous system, leading to learning disorders, distractibility, inability to follow simple commands, and lower intelligence quotient. In adults, increased lead levels are associated with increased blood pressure.

Particulate Matter

Particle matter (PM) is the term for a mixture of solid particles and liquid droplets found in the air. PM is made up of a number of components including acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust particles. The size of particles is directly linked to their potential for causing health problems. Particles that are less than 10 micrometers in diameter (PM10) are the particles that generally pass through the throat and nose and enter the lungs. Once inhaled, these particles can affect the heart and lungs and cause serious health effects. Particles that are less than 2.5 micrometers in diameter (PM2.5) have been designated as a subset of PM10 due to their increased negative health impacts and its ability to remain suspended in the air longer and travel further.

Volatile Organic Compounds

Hydrocarbons are organic gases that are formed from hydrogen and carbon and sometimes other elements. Hydrocarbons that contribute to formation of O_{3} are referred to and regulated as VOCs (also referred to as reactive organic gases). Combustion engine exhaust, oil refineries, and fossil-fueled power plants are the sources of hydrocarbons. Other sources of hydrocarbons include evaporation from petroleum fuels, solvents, dry cleaning solutions, and paint.

VOC is not classified as a criteria pollutant, since VOCs by themselves are not a known source of adverse health effects. The primary health effects of VOCs result from the formation of O_{3} and its related health
effects. High levels of VOCs in the atmosphere can interfere with oxygen intake by reducing the amount of available oxygen through displacement. Carcinogenic forms of hydrocarbons, such as benzene, are considered toxic air contaminants (TACs). There are no separate health standards for VOCs as a group.

2.2 Other Pollutants of Concern

Toxic Air Contaminants

In addition to the above-listed criteria pollutants, toxic air contaminants (TACs) are another group of pollutants of concern. TACs is a term that is defined under the California Clean Air Act and consists of the same substances that are defined as Hazardous Air Pollutants (HAPs) in the Federal Clean Air Act. There are over 700 hundred different types of TACs with varying degrees of toxicity. Sources of TACs include industrial processes such as petroleum refining and chrome plating operations, commercial operations such as gasoline stations and dry cleaners, and motor vehicle exhaust. Cars and trucks release at least 40 different toxic air contaminants. The most important of these TACs, in terms of health risk, are diesel particulates, benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Public exposure to TACs can result from emissions from normal operations as well as from accidental releases. Health effects of TACs include cancer, birth defects, neurological damage, and death.

TACs are less pervasive in the urban atmosphere than criteria air pollutants, however they are linked to short-term (acute) or long-term (chronic or carcinogenic) adverse human health effects. There are hundreds of different types of TACs with varying degrees of toxicity. Sources of TACs include industrial processes, commercial operations (e.g., gasoline stations and dry cleaners), and motor vehicle exhaust.

According to The California Almanac of Emissions and Air Quality 2013 Edition, the majority of the estimated health risk from TACs can be attributed to relatively few compounds, the most important of which is DPM. DPM is a subset of PM2.5 because the size of diesel particles are typically 2.5 microns and smaller. The identification of DPM as a TAC in 1998 led the CARB to adopt the Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-fueled Engines and Vehicles in September 2000. The plan's goals are a 75-percent reduction in DPM by 2010 and an 85 -percent reduction by 2020 from the 2000 baseline. Diesel engines emit a complex mixture of air pollutants, composed of gaseous and solid material. The visible emissions in diesel exhaust are known as particulate matter or PM, which includes carbon particles or "soot." Diesel exhaust also contains a variety of harmful gases and over 40 other cancer-causing substances. California's identification of DPM as a toxic air contaminant was based on its potential to cause cancer, premature deaths, and other health problems. Exposure to DPM is a health hazard, particularly to children whose lungs are still developing and the elderly who may have other serious health problems. Overall, diesel engine emissions are responsible for the majority of California's potential airborne cancer risk from combustion sources.

Abstract

Asbestos Asbestos is listed as a TAC by CARB and as a HAP by the EPA. Asbestos occurs naturally in mineral formations and crushing or breaking these rocks, through construction or other means, can release asbestiform fibers into the air. Asbestos emissions can result from the sale or use of asbestos-containing materials, road surfacing with such materials, grading activities, and surface mining. The risk of disease is dependent upon the intensity and duration of exposure. When inhaled, asbestos fibers may remain in the lungs and with time may be linked to such diseases as asbestosis, lung cancer, and mesothelioma. The nearest likely locations of naturally occurring asbestos, as identified in the General Location Guide for Ultramafic Rocks in California, prepared by the California Division of Mines and Geology, is located in Santa Barbara County. The nearest historic asbestos mine to the project site, as identified in the Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Other Natural Occurrences of Asbestos in California, prepared by U.S. Geological Survey, is located at Asbestos Mountain, which is approximately

97 miles southeast of the project site in the San Jacinto Mountains. Due to the distance to the nearest natural occurrences of asbestos, the project site is not likely to contain asbestos.

3.0 GREENHOUSE GASES

3.1 Greenhouse Gases

Constituent gases of the Earth's atmosphere, called atmospheric greenhouse gases (GHGs), play a critical role in the Earth's radiation amount by trapping infrared radiation from the Earth's surface, which otherwise would have escaped to space. Prominent greenhouse gases contributing to this process include carbon dioxide $\left(\mathrm{CO}_{2}\right)$, methane $\left(\mathrm{CH}_{4}\right)$, ozone $\left(\mathrm{O}_{3}\right)$, water vapor, nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$, and chlorofluorocarbons (CFCs). This phenomenon, known as the Greenhouse Effect, is responsible for maintaining a habitable climate. Anthropogenic (caused or produced by humans) emissions of these greenhouse gases in excess of natural ambient concentrations are responsible for the enhancement of the Greenhouse Effect and have led to a trend of unnatural warming of the Earth's natural climate, known as global warming or climate change. Emissions of gases that induce global warming are attributable to human activities associated with industrial/manufacturing, agriculture, utilities, transportation, and residential land uses. Transportation is responsible for 41 percent of the State's greenhouse gas emissions, followed by electricity generation. Emissions of CO_{2} and $\mathrm{N}_{2} \mathrm{O}$ are byproducts of fossil fuel combustion. Methane, a potent greenhouse gas, results from off-gassing associated with agricultural practices and landfills. Sinks of CO_{2}, where CO_{2} is stored outside of the atmosphere, include uptake by vegetation and dissolution into the ocean. The following provides a description of each of the greenhouse gases and their global warming potential.

Water Vapor

Water vapor is the most abundant, important, and variable GHG in the atmosphere. Water vapor is not considered a pollutant; in the atmosphere it maintains a climate necessary for life. Changes in its concentration are primarily considered a result of climate feedbacks related to the warming of the atmosphere rather than a direct result of industrialization. The feedback loop in which water is involved is critically important to projecting future climate change. As the temperature of the atmosphere rises, more water is evaporated from ground storage (rivers, oceans, reservoirs, soil). Because the air is warmer, the relative humidity can be higher (in essence, the air is able to "hold" more water when it is warmer), leading to more water vapor in the atmosphere. As a GHG, the higher concentration of water vapor is then able to absorb more thermal indirect energy radiated from the Earth, thus further warming the atmosphere. The warmer atmosphere can then hold more water vapor and so on and so on. This is referred to as a "positive feedback loop." The extent to which this positive feedback loop will continue is unknown as there is also dynamics that put the positive feedback loop in check. As an example, when water vapor increases in the atmosphere, more of it will eventually also condense into clouds, which are more able to reflect incoming solar radiation (thus allowing less energy to reach the Earth's surface and heat it up).

Carbon Dioxide

The natural production and absorption of CO_{2} is achieved through the terrestrial biosphere and the ocean. However, humankind has altered the natural carbon cycle by burning coal, oil, natural gas, and wood. Since the industrial revolution began in the mid 1700s, each of these activities has increased in scale and distribution. CO_{2} was the first GHG demonstrated to be increasing in atmospheric concentration with the first conclusive measurements being made in the last half of the $20^{\text {th }}$ century. Prior to the industrial revolution, concentrations were fairly stable at 280 parts per million (ppm). The International Panel on Climate Change (IPCC) indicates that concentrations were 379 ppm in 2005, an increase of more than 30 percent. Left unchecked, the IPCC projects that concentration of carbon dioxide in the atmosphere is projected to increase to a minimum of 540 ppm by 2100 as a direct result of anthropogenic sources. This could result in an average global temperature rise of at least two degrees Celsius or 3.6 degrees Fahrenheit.

Methane

CH_{4} is an extremely effective absorber of radiation, although its atmospheric concentration is less than that of CO_{2}. Its lifetime in the atmosphere is brief (10 to 12 years), compared to some other GHGs (such as $\mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}$, and Chlorofluorocarbons (CFCs)). CH_{4} has both natural and anthropogenic sources. It is released as part of the biological processes in low oxygen environments, such as in swamplands or in rice production (at the roots of the plants). Over the last 50 years, human activities such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of methane. Other anthropocentric sources include fossil-fuel combustion and biomass burning.

Nitrous Oxide

Concentrations of $\mathrm{N}_{2} \mathrm{O}$ also began to rise at the beginning of the industrial revolution. In 1998, the global concentration of this GHG was documented at 314 parts per billion (ppb). $\mathrm{N}_{2} \mathrm{O}$ is produced by microbial processes in soil and water, including those reactions which occur in fertilizer containing nitrogen. In addition to agricultural sources, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid production, and vehicle emissions) also contribute to its atmospheric load. $\mathrm{N}_{2} \mathrm{O}$ is also commonly used as an aerosol spray propellant (i.e., in whipped cream bottles, in potato chip bags to keep chips fresh, and in rocket engines and race cars).

Chlorofluorocarbons

CFCs are gases formed synthetically by replacing all hydrogen atoms in methane or ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ with chlorine and/or fluorine atoms. CFCs are nontoxic, nonflammable, insoluble, and chemically unreactive in the troposphere (the level of air at the Earth's surface). CFCs have no natural source, but were first synthesized in 1928. They were used for refrigerants, aerosol propellants, and cleaning solvents. Due to the discovery that they are able to destroy stratospheric ozone, a global effort to halt their production was undertaken and in 1989 the European Community agreed to ban CFCs by 2000 and subsequent treaties banned CFCs worldwide by 2010. This effort was extremely successful, and the levels of the major CFCs are now remaining level or declining. However, their long atmospheric lifetimes mean that some of the CFCs will remain in the atmosphere for over 100 years.

Hydrofluorocarbons

HFCs are synthetic man-made chemicals that are used as a substitute for CFCs. Out of all the GHGs, they are one of three groups with the highest global warming potential. The HFCs with the largest measured atmospheric abundances are (in order), HFC-23 (CHF_{3}), $\mathrm{HFC}-134 \mathrm{a}\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{~F}\right)$, and $\mathrm{HFC}-152 \mathrm{a}$ $\left(\mathrm{CH}_{3} \mathrm{CHF}_{2}\right)$. Prior to 1990 , the only significant emissions were HFC-23. HFC-134a use is increasing due to its use as a refrigerant. Concentrations of HFC-23 and HFC-134a in the atmosphere are now about 10 parts per trillion (ppt) each. Concentrations of HFC-152a are about 1 ppt . HFCs are manmade for applications such as automobile air conditioners and refrigerants.

Perfluorocarbons

Perfluorocarbons (PFCs) have stable molecular structures and do not break down through the chemical processes in the lower atmosphere. High-energy ultraviolet rays about 60 kilometers above Earth's surface are able to destroy the compounds. Because of this, PFCs have very long lifetimes, between 10,000 and 50,000 years. Two common PFCs are tetrafluoromethane $\left(\mathrm{CF}_{4}\right)$ and hexafluoroethane $\left(\mathrm{C}_{2} \mathrm{~F}_{6}\right)$. Concentrations of CF_{4} in the atmosphere are over 70 ppt. The two main sources of PFCs are primary aluminum production and semiconductor manufacturing.

Sulfur Hexafluoride

Sulfur Hexafluoride $\left(\mathrm{SF}_{6}\right)$ is an inorganic, odorless, colorless, nontoxic, nonflammable gas. SF_{6} has the highest global warming potential of any gas evaluated; 23,900 times that of CO_{2}. Concentrations in the

1990s were about 4 ppt. Sulfur hexafluoride is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection.

Aerosols

Aerosols are particles emitted into the air through burning biomass (plant material) and fossil fuels. Aerosols can warm the atmosphere by absorbing and emitting heat and can cool the atmosphere by reflecting light. Cloud formation can also be affected by aerosols. Sulfate aerosols are emitted when fuel containing sulfur is burned. Black carbon (or soot) is emitted during biomass burning due to the incomplete combustion of fossil fuels. Particulate matter regulation has been lowering aerosol concentrations in the United States; however, global concentrations are likely increasing.

3.2 Global Warming Potential

GHGs have varying global warming potential (GWP). The GWP is the potential of a gas or aerosol to trap heat in the atmosphere; it is the cumulative radiative forcing effects of a gas over a specified time horizon resulting from the emission of a unit mass of gas relative to the reference gas, CO_{2}. The GHGs listed by the IPCC and the CEQA Guidelines are discussed in this section in order of abundance in the atmosphere. Water vapor, the most abundant GHG, is not included in this list because its natural concentrations and fluctuations far outweigh its anthropogenic (human-made) sources. To simplify reporting and analysis, GHGs are commonly defined in terms of their GWP. The IPCC defines the GWP of various GHG emissions on a normalized scale that recasts all GHG emissions in terms of $\mathrm{CO}_{2} \mathrm{e}$. As such, the GWP of CO_{2} is equal to 1. The GWP values used in this analysis are based on the IPCC Second Assessment Report (SAR) and United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines, and are detailed in Table A. The SAR GWPs are used in CARB's California inventory and Assembly Bill (AB) 32 Scoping Plan estimates.

Table A - Global Warming Potentials, Atmospheric Lifetimes and Abundances of GHGs

Gas	Atmospheric Lifetime (years)	Global Warming Potential $(\mathbf{1 0 0} \text { Year Horizon) })^{2}$	Atmospheric Abundance
Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$	$50-200$	1	379 ppm
Methane $\left(\mathrm{CH}_{4}\right)$	$9-15$	25	$1,774 \mathrm{ppb}$
Nitrous Oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$	114	298	319 ppb
HFC-23	270	14,800	18 ppt
HFC-134a	14	1,430	35 ppt
HFC-152a	1.4	124	3.9 ppt
PFC: Tetrafluoromethane $\left(\mathrm{CF}_{4}\right)$	50,000	7,390	74 ppt
PFC: Hexafluoroethane $\left(\mathrm{C}_{2} \mathrm{~F}_{6}\right)$	10,000	12,200	2.9 ppt
Sulfur Hexafluoride $\left(\mathrm{SF}_{6}\right)$	3,200	22,800	5.6 ppt

Notes:
${ }^{1}$ Defined as the half-life of the gas.
${ }^{2}$ Compared to the same quantity of CO_{2} emissions and is based on the Intergovernmental Panel On Climate Change (IPCC) 2007 standard, which is utilized in CalEEMod (Version 2016.3.2), that is used in this report (CalEEMod user guide: Appendix A).
Definitions: $\mathrm{ppm}=$ parts per million; $\mathrm{ppb}=$ parts per billion; $\mathrm{ppt}=$ parts per trillion
Source: IPCC 2007, EPA 2015

4.0 MODELING PARAMETERS AND ASSUMPTIONS

4.1 CalEEMod Model Input Parameters

The criteria air pollution and GHG emissions impacts created by the proposed project have been analyzed through use of CalEEMod Version 2016.3.2. CalEEMod is a computer model published by the SCAQMD for estimating air pollutant emissions. The CalEEMod program uses the EMFAC2014 computer program to calculate the emission rates specific for South Coast Air Basin portion of Riverside County for employee, vendor and haul truck vehicle trips and the OFFROAD2011 computer program to calculate emission rates for heavy equipment operations. EMFAC2014 and OFFROAD2011 are computer programs generated by CARB that calculates composite emission rates for vehicles. Emission rates are reported by the program in grams per trip and grams per mile or grams per running hour.

The project characteristics in the CalEEMod were set to a project location of the South Coast Air Basin portion of Los Angeles County, a Climate Zone of 10, and utility company of Southern California Edison. Since the proposed improvements in the Master Plan would be completed over a 20 year period, the SCAQMD has requested that the interim milestone years of 2020, 2025, 2030, 2035, and 2040 to be analyzed and that the combined construction and operational emissions be compared against SCAQMD's operational criteria pollutant thresholds (SCAQMD, 2018), and the opening year of 2040 was utilized, which is the closest year available to the proposed project's buildout year of 2041 in the CalEEMod model.

Land Use Parameters

The proposed project would consist of the renovation and new construction of up to-development of a 702,240 -square feeert of building space that would include a 50,881 -square foot aquatic building with a recreational swimming pool, and 10.34 -acres of paved areas, which would include onsite sidewalks, curbs, and parking lots junior college. Implementation of the proposed Master Plan is also for an estimated to increase the student population byof 7,458 students., a 50,881 -square foot aquatic building with a recreational swimming pool, and 10.34 -acres of paved areas, which would include onsite sidewalks, curbs, and parking lots. The proposed project's land use parameters that were entered into the CalEEMod model are shown in Table B Table B.

Table B - CalEEMod Land Use Parameters

Proposed Land Use	Land Use Subtype in CalEEMod	Land Use Size ${ }^{1}$	Lot Acreage ${ }^{2}$	Building/Paving ${ }^{3}$ (square feet)
Year 2020 (Years 2019 to 2020 Construction Activities and Year 2020 Student Population)				
Junior College Facilities	Junior College (2 Years)	8067,458 ST	8.502 .18	702,240179,898
Aquatic Building	Recreational Swimming Pool	1,500 SF	2.0	50,881
Paved Areas ${ }^{4}$	Other Non-Asphalt Surfaces	$\underline{2.0710 .34 ~ A ~}$	0.342 .07	450,41090,169
Year 2025 (Years 2021 to 2025 Construction Activities and Year 2025 Student Population)				
Junior College Facilities	Junior College (2 Years)	2,211 ST	$\underline{1.23}$	101,578
Paved Areas	Other Non-Asphalt Surfaces	2.07 AC	2.07	90,169
Year 2030 (Years 2026 to 2030 Construction Activities and Year 2030 Student Population)				
Junior College Facilities	Junior College (2 Years)	3,736 ST	$\underline{0.88}$	72,336
Paved Areas	Other Non-Asphalt Surfaces	2.07 AC	2.07	90,169
Year 2035 (Years 2031 to 2035 Construction Activities and Year 2035 Student Population)				
Junior College Facilities	Junior College (2 Years)	5,362 ST	$\underline{1.97}$	162,651
$\underline{\text { Paved Areas }}$	Other Non-Asphalt Surfaces	2.07 AC	$\underline{2.07}$	$\underline{90,169}$

Year 2041 (Years 2036 to 2041 Construction Activities and Year 2041 Student Population)

Junior College Facilities	$\underline{\text { Junior College (2 Years) }}$	$\underline{7,458 ~ S T}$	$\underline{1.02}$	$\underline{84,015}$
$\underline{\text { Paved Areas }}$	$\underline{\text { Other Non-Asphalt Surfaces }}$	$\underline{2.07 \mathrm{AC}}$	$\underline{2.07}$	$\underline{90,169}$
\underline{l}				

Notes:
${ }^{1}$ ST $=$ Students, $\mathrm{SF}=$ Thousand Square Foot, AC = Acres
${ }^{2}$ Lot acreage calculated based on a total lot acreage of 20.84 .
${ }^{3}$ Building/Paving square feet represent area where architectural coatings will be applied. Square footage of the Recreational Swimming Pool obtained from the project applicant.
${ }^{4}$ A total of 10.34 acres of new hardscaped or paved areas from implementation of Master Plan. Estimated that $1 / 5$ of the new paved areas would be constructed every five years.

Construction Parameters

Construction activities are anticipated to start around Summer 2018-in 2019 and would occur until buildout of the proposed Facilities Master Plan in 2041. Construction activities were modeled in five year increments that are detailed above in Table B. Since the OFFROAD2011 model only provides emissions rates out to 2023, every year after 2023 utilizes the year 2023 emissions rates in the CalEEMod model. As such, the CalEEMod model does not account for the industry adoption of Tier 4 engines that have been required for all horsepower levels for all model years 2015 or newer as well as the phase out of older engines that will occur well after 2023. CARB has recently released OFFROAD 2017 that provides offroad equipment emissions rates past 2040. In order to provide a more accurate representation of the NOx emissions created by the off-road equipment in the future years of 2030, 2035, and 2040, the OFFROAD2017 model was run for off-road equipment that was modeled in CalEEMod for all analysis years and then the percent reduction over year 2025 emissions were calculated for the years 2030, 2035 and 2040 and are shown in Table C. The calculated percent reduction in NOx emissions was then applied to the off-road equipment exhaust emissions calculations for the year 2030, 2035 and 2040 CalEEMod model runs. The OFFROAD2017 model run printouts and associated calculations are shown in Appendix A.

Table C - OFFROAD2017 NOx Emissions Calculations

Off-Road Equipment	OFFROAD2017 NOx Emissions (Grams per HorsePower-Hour) ${ }^{1}$							
	Year	Year	Year	Reduction	Year	Reduction	Year	Reductio
	2020	2025	2030	(2025 to 2030)	2035	(2025 to 2035)	2040	(2025 to 2040)
ConstMin - Cranes	1.295	0.753	0.538	28.6\%	0.416	44.8\%	0.329	56.3\%
ConstMin - Excavators	$\underline{0.809}$	$\underline{0.448}$	0.341	23.9\%	$\underline{0.288}$	35.8\%	$\underline{0.249}$	44.4\%
ConstMin - Graders	1.966	1.095	0.676	38.2\%	0.454	58.5\%	$\underline{0.315}$	71.3\%
ConstMin - Other Construction Equipment	1.399	$\underline{0.856}$	0.635	25.8\%	$\underline{0.502}$	41.3\%	$\underline{0.412}$	51.9\%
ConstMin - Pavers	1.347	0.780	0.557	28.5\%	$\underline{0.437}$	44.0\%	$\underline{0.353}$	54.7\%
ConstMin - Paving Equipment	$\underline{1.099}$	0.600	0.477	20.5\%	$\underline{0.388}$	35.4\%	$\underline{0.342}$	43.1\%
ConstMin - Rollers	1.269	$\underline{0.840}$	$\underline{0.699}$	16.9\%	$\underline{0.617}$	26.6\%	$\underline{0.557}$	33.7\%
ConstMin - Rubber Tired Dozers	2.327	1.475	$\underline{1.116}$	24.3\%	$\underline{0.869}$	41.1\%	$\underline{0.674}$	54.3\%
ConstMin - Scrapers	1.868	1.032	0.706	31.7\%	0.534	48.3\%	$\underline{0.406}$	60.6\%
ConstMin - Tractors/Loaders/Backhoes	1.144	0.709	0.581	18.1\%	0.528	25.4\%	0.491	30.7\%
Industrial - Forklifts	0.788	0.483	0.357	26.1\%	$\underline{0.307}$	36.4\%	0.278	42.5\%
Portable Equipment - Rental Compressor	$\underline{0.366}$	0.174	$\underline{0.089}$	48.5\%	$\underline{0.081}$	53.3\%	$\underline{0.085}$	50.9\%
Average (All Equipment)	$\underline{\underline{1.307}}$	$\underline{0.770}$	$\underline{0.564}$	$\underline{\mathbf{2 6 . 7 \%}}$	$\underline{0.452}$	41.4\%	$\underline{0.374}$	51.4\%

Notes:

${ }^{1}$ NOx grams per HorsePower-Hour calculated by converting OFFROAD 2017 NOx emissions (tons per day) to tons per year, then dividing by total horsepower hours per year for each piece of equipment. Finally the emission rates were converted from tons to grams for readability. Source OFFROAD2017 Version 1.0.1 (see Appendix A)

However, in order to provide a conservative analysis, all construction activities were modelled based on occurring over the shortest feasible amount of time that it would take to complete the proposed improvements, if all proposed improvements were to occur concurrently. This was calculated at approximately four years of construction activities.

The construction-related GHG emissions were based on a 30 -year amortization rate as recommended in the SCAQMD GHG Working Group meeting on November 19, 2009. The phases of construction activities that have been analyzed are detailed below and include: 1) demolition, 2) grading, 3) building construction, 4) application of architectural coatings and 5) paving. As the painting and construction activities are anticipated to occur simultaneously, the architectural coatings phases wereas set to the same length as the building construction phases, since application of architectural coatings wouldte occur concurrently with the-building construction activitiesphase.

Demolition

The demolition phase would consist of demolishing: (1) Building M (48,768 square feet) in years 20192020; (2) approximatelyBuilding E (50,276 square feet) in years 2021-2025; (3) Building G (27,792 square feet) in years 2026-2030; and (4) Building F (15,968 square feet) in years 2031-2035. 109, 156 square feet of existing structures. For the existing structures, CalEEMod utilizes a factor of 0.046 tons of debris of building material per building square foot. Therefore, the demolition of the 109,156 square feet of building space would result in 5,021 tons of building debris and would require 496 haul truck trips.

The demolition phase is anticipated to start around June 2018 and was modeled as occurring over 12 weeks. The demolition activities would require 15 worker trips per day. In order to account for water truck emissions, six vendor truck emissions were added to the demolition phases. The onsite equipment and worker trips were based would consist of one concrete/industrial saw, two rubber tired dozer, and three excavators, which is based on the CalEEMod default valuesequipment mix for each demolition scenario analyzed. The mitigation of water all exposed areas three times per day was chosen in order to account for the fugitive dust reduction that would occur through adhering to SCAQMD Rule 403, which requires that the Best Available Control Measures be utilized to reduce fugitive dust emissions.

Grading

The grading phase was modelled as occurring after the demolition phase-was modelled and as-occurring over approximately onesix months for each scenario analyzed. The proposed grading is balanced, which would result in no dirt being imported or exported from the project site. The onsite equipment and worker trips were- based would consist of one grader, one rubber tired dozer, two excavators, two serapers, and two tractors, loaders, or backhoes, which is based on the CalEEMod default values equipment mix for each grading scenario analyzed. The grading activities would require 20 worker trips per day. In order to account for water truck emissions, six daily vendor truck trips were added to the grading phase. The mitigation of water all exposed areas three times per day was chosen in order to account for the fugitive dust reduction that would occur through adhering to SCAQMD Rule 403, which requires that the Best Available Control Measures be utilized to reduce fugitive dust emissions.

Building Construction

The building construction was modetled as occurring after the grading phase and was modelled as occurring over approximately 1132 months for each scenario analyzed. The building construetion would require up to 485 worker trips and 189 vendor trips per day. The onsite equipment, worker trips and vendor trips were would consist of the simultaneous operation of one crane, one generator set, one
welder, three forklifts, and three tractors, loaders, or backhoes, which is-based on the CalEEMod default values for equipment mixeach building construction scenario analyzed.

Architectural Coating

The application of architectural coatings was modelled as occurring concurrently with eachthe building construction phase that was modelled as oceuring over approximately 32 months. The architectural coating phases from all scenarios was modeled were based on covering a total of $1,129,682$ square feet of nonresidential interior area, 376,561 square feet of nonresidential exterior area, and 27,025 square feet of parking area that includes striping of parking lots, painting of signs, and other architectural coatings in public areas. The architectural coating phases would require up to 15 worker trips per day. The onsite equipment and worker trips werewould consist of one air compressor, which is based on the CalEEMod default valueequipmentsmix for each architectural coating phase analyzed.

Paving

The paving was modelted as occurring after the building construction and architectural coating phases. The paving activities was modeled as occurring over approximately one month 12 weeks for each scenario analyzedand would require up to 97 worker trips per day. The onsite equipment and worker trips werewould consist of the simultaneous operation of two pavers, two paving equipment, and two rollers, which is based on the CalEEMod default equipment mixvalues for each paving phase analyzed.

Operational Emissions Modeling

The operations-related criteria air pollutant emissions and GHG emissions created by the proposed project have been analyzed through use of the CalEEMod model. The proposed project was analyzed in the CalEEMod model based on the land use parameters provided above.

Mobile Sources

Mobile sources include emissions the additional vehicle miles generated from the proposed project. The vehicle trips associated with the proposed project have been obtained from the Traffic Impact Analysis Report LBCCD 2041 Master Plan Liberal Arts Campus Long Beach, California (Traffic Impact Analysis), prepared by Linscott, Law \& Greenspan, Engineers, January 19, 2018. The Traffic Impact Analysis found that implementation of the proposed project would result in an increase of approximately 7,458 students at the LAC campus and a trip generation rate of 1.15 two-way trips per student at the junior college and of 0.0 daily trips at the proposed recreational swimming pool was used in the CalEEMod Model. This resulted in a total of 8,577 daily trips generated by the proposed project. No other changes were made to the CalEEMod default mobile source parameters.

In addition, mitigation of Increase Transit Accessibility with a 0.1 mile distance to the nearest transit station was selected since the majority of the LAC is located within 0.1 mile of the existing bus stops on Clark Avenue and Carson Street. The mitigation of Improve Pedestrian Network on the project site and connecting offsite selected to account for the existing onsite sidewalks that connect to the offsite sidewalks along the nearby public roads. Since both of these CalEEMod mitigation measures already exist in the vicinity of the project site, they are not required mitigation measures for the proposed project.

Area Sources

Area sources include emissions from consumer products, landscape equipment and architectural coatings. The area source emissions were based on the on-going use of the proposed junior college, recreational swimming pool, and paved areas in the CalEEMod model. No changes were made to the default area source parameters in the CalEEMod model.

Energy Usage

Energy usage includes emissions from electricity and natural gas used onsite. The energy usage was based on the ongoing use of the proposed junior college, recreational swimming pool, and paved areas in the CalEEMod Model. No changes were made to the default energy usage parameters in the CalEEMod model.

Solid Waste

Waste includes the GHG emissions associated with the processing of waste from the proposed project as well as the GHG emissions from the waste once it is interred into a landfill. The analysis was based on the default CalEEMod waste generation rates of 1,370 tons of solid waste per year from the proposed project. No changes were made to the default solid waste parameters or mitigation measures in the CalEEMod model.

Water and Wastewater

Water includes the water used for the interior of the building as well as for landscaping and is based on the GHG emissions associated with the energy used to transport and filter the water. The analysis was based on the default CalEEMod water usage rate of $16,057,039$ gallons per year of indoor water usage and $25,030,470$ gallons per year of outdoor water usage. No changes were made to the default water and wastewater parameters in the CalEEMod model.

5.0 MODELING RESULTS

5.1 Criteria Pollutant Emissions

The following section calculates the potential air emissions associated with the construction and operations of the proposed project. The CalEEMod model has been utilized to calculate the constructionrelated and operational regional emissions based on the input parameters detailed above in Section 4.1.

Construction Emissions

The worst-case summer or winter daily construction-related criteria pollutant emissions from the proposed project for each phase of construction activities are shown below in Table DTable C for years 2019-2020, Table E for years 2021-2025, Table F for years 2026-2030, Table G for years 2031-2035, and Table H for years 2036-2041. The and the-CalEEMod daily printouts are shown in Appendix BA for years 2019-2020, Appendix C for years 2021-2025, Appendix D for years 2026-2030, Appendix E for years 2031-2035, and Appendix F for years 2036-2041. Since it is anticipated that building construction and architectural coating activities would occur concurrently, the TablesTable C shows the combined criteria pollutant emissions from the building construction and architectural coating phases of construction.

Table DE - Construction-Related Regional Criteria Pollutant Emissions for Years 2019-2021

Activity	Pollutant Emissions (pounds/day)					
	VOC	NOx	CO	$\mathbf{S O}_{2}$	PM10	PM2.5
Demolition ${ }^{1}$						
	3.723 .51	38.3235.	22.3022	0.04	2.642 .73	1.911 .81
Onsite ${ }^{2}$		78	. 06			
	0.200.22	3.514.20	1.561 .6	0.01	0.370.42	0.110.13
Offsite ${ }^{3}$			4			
	3.923 .73	41.8339.	23.8623	0.05	3.013 .15	2.021 .94
Demolition Total		$\underline{\underline{98}}$. 70			
Grading ${ }^{1}$						
Onsite	5.092 .58	$\frac{59.5228}{35}$	$\begin{gathered} 35.0916 \\ .29 \end{gathered}$	0.060 .03	6.023 .95	3.832 .60
Offsite	0.150 .11	0.830 .76	$\begin{gathered} 1.280 .9 \\ \underline{1} \\ \hline \end{gathered}$	0.00	0.270 .21	0.080.06
Grading Total	5.242 .69	$\begin{gathered} 60.3529 . \\ 11 \end{gathered}$	$\begin{array}{r} 36.3717 \\ .20 \end{array}$	0.060 .03	6.294 .16	3.942 .66
Building Construction \& Architectural Coating						
Onsite	$\begin{gathered} 13.17 \underline{12 .} \\ \underline{04} \end{gathered}$	$\begin{gathered} 22.9+22 . \\ \underline{92} \end{gathered}$	$\begin{gathered} 19.0+19 \\ .00 \\ \hline \end{gathered}$	0.03	1.42	1.34
Offsite	4.040 .96	$\begin{gathered} 24.275 .7 \\ \underline{7} \\ \hline \end{gathered}$	$\begin{gathered} 33.877 . \\ \underline{99} \\ \hline \end{gathered}$	0.120 .03	7.941 .87	2.260 .53
Building and Painting Total	$\begin{gathered} 17.2413 . \\ \underline{00} \\ \hline \end{gathered}$	$\begin{gathered} 47.1828 . \\ \underline{69} \\ \hline \end{gathered}$	$\begin{array}{r} 52.8726 \\ \underline{.99} \end{array}$	0.150 .06	9.333.29	3.601 .87
Paving						
Onsite	1.261 .36	$\begin{gathered} 12.9214 . \\ \underline{07} \end{gathered}$	14.65	0.02	0.680 .75	0.620.69
Offsite	0.070 .08	0.05	$\begin{gathered} 0.600 .6 \\ \underline{6} \\ \hline \end{gathered}$	0.00	0.17	0.05
Paving Total	1.331.44	$\begin{gathered} 12.9714 . \\ \underline{12} \\ \hline \end{gathered}$	$\begin{gathered} 15.2515 \\ .31 \\ \hline \end{gathered}$	0.02	0.850 .92	0.670 .74

Maximum Daily Emissions	$\underline{13.00}$	$\underline{\mathbf{3 9 . 9 8}}$	$\underline{\mathbf{2 6 . 9 9}}$	$\underline{\mathbf{0 . 0 6}}$	$\underline{\mathbf{4 . 1 6}}$	$\underline{\mathbf{2 . 6 6}}$
SCQAMD Thresholds	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{5 5 0}$	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$	$\mathbf{5 5}$
Exceeds Threshold?	No	No	No	No	No	No

Notes:
${ }^{1}$ Demolition and Grading based on adherence to fugitive dust suppression requirements from SCAQMD Rule 403.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
Source: CalEEMod Version 2016.3.2

Table E-Construction-Related Regional Criteria Pollutant Emissions for Years 2021-2025

Activity	Pollutant Emissions (pounds/day)					
	VOC	NOx	CO	$\underline{\underline{\mathrm{SO}_{2}}}$	$\underline{\text { PM10 }}$	PM2.5
Demolition ${ }^{1}$						
Onsite ${ }^{2}$	3.17	$\underline{31.44}$	$\underline{21.57}$	$\underline{0.04}$	$\underline{2.52}$	1.59
Offsite ${ }^{3}$	$\underline{0.19}$	3.74	$\underline{1.48}$	$\underline{0.01}$	$\underline{0.42}$	$\underline{0.12}$
Demolition Total	$\underline{3.36}$	$\underline{35.18}$	$\underline{23.05}$	$\underline{0.05}$	$\underline{2.94}$	1.71
Grading ${ }^{1}$						
Onsite	$\underline{2.29}$	$\underline{24.74}$	$\underline{15.86}$	$\underline{0.03}$	3.72	$\underline{2.38}$
Offsite	$\underline{0.09}$	$\underline{0.63}$	$\underline{0.76}$	$\underline{0.00}$	$\underline{0.21}$	$\underline{0.06}$
Grading Total	$\underline{\underline{2.38}}$	$\underline{25.37}$	$\underline{16.62}$	$\underline{0.03}$	3.93	$\underline{\underline{2.44}}$
Building Construction \& Architectural Coating						
Onsite	$\underline{6.32}$	$\underline{18.96}$	$\underline{18.40}$	$\underline{0.03}$	$\underline{1.05}$	$\underline{0.99}$
Offsite	$\underline{0.57}$	$\underline{3.32}$	$\underline{4.69}$	$\underline{0.02}$	$\underline{1.30}$	$\underline{0.36}$
Building and Painting Total	6.89	$\underline{22.28}$	$\underline{23.09}$	0.05	$\underline{2.35}$	$\underline{1.35}$
Paving						
Onsite	$\underline{0.98}$	9.52	$\underline{12.19}$	$\underline{0.02}$	$\underline{0.49}$	$\underline{0.45}$
Offsite	$\underline{0.09}$	$\underline{0.06}$	$\underline{0.74}$	$\underline{0.00}$	$\underline{0.23}$	$\underline{0.06}$
Paving Total	$\underline{1.07}$	$\underline{9.59}$	$\underline{12.93}$	0.02	0.72	0.51
Maximum Daily Emissions	6.89	35.18	$\underline{23.09}$	$\underline{0.05}$	3.93	$\underline{2.44}$
SCQAMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	No	$\underline{\underline{\text { No }}}$	$\underline{\mathrm{No}}$	No	$\underline{\mathrm{No}}$	$\underline{\underline{\text { No }}}$

Notes:
${ }^{1}$ Demolition and Grading based on adherence to fugitive dust suppression requirements from SCAQMD Rule 403.
${ }^{2}$ Onsite emissions from equipment not operated on public roads.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
Source: CalEEMod Version 2016.3.2.
$\underline{\text { Table F - Construction-Related Regional Criteria Pollutant Emissions for Years 2026-2030 }}$

Activity	Pollutant Emissions (pounds/day)					
	VOC	NOx	CO	$\underline{\mathbf{S O}_{2}}$	PM10	PM2.5
Demolition ${ }^{1}$						
Onsite ${ }^{2}$	1.34	9.46	13.33	0.02	1.08	0.59
Offsite ${ }^{3}$	$\underline{0.09}$	1.44	0.85	0.01	0.30	0.08
Demolition Total	$\underline{1.43}$	$\underline{10.90}$	$\underline{14.18}$	$\underline{0.03}$	$\underline{1.38}$	$\underline{0.67}$
Grading ${ }^{1}$						
Onsite	$\underline{1.19}$	$\underline{9.10}$	8.49	0.02	3.05	$\underline{1.77}$
Offsite	$\underline{0.05}$	$\underline{0.43}$	$\underline{0.40}$	$\underline{0.00}$	$\underline{0.15}$	$\underline{0.04}$
Grading Total	1.24	$\underline{9.53}$	$\underline{8.89}$	$\underline{0.02}$	3.20	$\underline{1.81}$

Building Construction \& Architectural Coating

Activity	Pollutant Emissions (pounds/day)					
	VOC	NOx	CO	SO_{2}	PM10	PM2.5
Onsite	$\underline{4.82}$	$\underline{9.65}$	$\underline{15.82}$	$\underline{0.03}$	$\underline{0.52}$	$\underline{0.50}$
Offsite	$\underline{0.35}$	$\underline{2.01}$	$\underline{2.82}$	0.01	$\underline{1.10}$	$\underline{0.30}$
Building and Painting Total	5.17	$\underline{11.66}$	$\underline{18.64}$	0.04	$\underline{1.62}$	$\underline{0.80}$
Paving						
Onsite	$\underline{0.79}$	7.44	$\underline{11.67}$	$\underline{0.02}$	$\underline{0.35}$	$\underline{0.32}$
Offsite	$\underline{0.05}$	$\underline{0.03}$	$\underline{0.39}$	$\underline{0.00}$	$\underline{0.17}$	$\underline{0.05}$
Paving Total	$\underline{0.84}$	7.47	$\underline{12.06}$	0.02	$\underline{0.52}$	0.37
Maximum Daily Emissions	5.17	$\underline{11.66}$	$\underline{18.64}$	0.04	3.20	1.81
SCQAMD Thresholds	75	100	550	150	150	55
Exceeds Threshold?	$\underline{\underline{\text { No }}}$	$\underline{\text { No }}$	$\underline{\mathrm{No}}$	$\underline{\text { No }}$	$\underline{\text { No }}$	$\underline{\text { No }}$

Notes:

${ }^{1}$ Demolition and Grading based on adherence to fugitive dust suppression requirements from SCAQMD Rule 403.
${ }^{2}$ Onsite emissions from equipment not operated on public roads. A 26.7% reduction was applied to the onsite NOx emissions per the
OFFROAD2017 model results shown above in Table C.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
Source: CalEEMod Version 2016.3.2.

Table G-Construction-Related Regional Criteria Pollutant Emissions for Years 2031-2035

Activity	Pollutant Emissions (pounds/day)					
	$\underline{\text { VOC }}$	NOx	CO	$\underline{\underline{S_{2}}}$	PM10	PM2.5
Grading ${ }^{1}$						
Onsite	1.62	4.54	14.45	0.04	2.79	1.55
Offsite	$\underline{0.05}$	0.41	0.42	0.00	0.21	$\underline{0.06}$
Grading Total	$\underline{1.67}$	4.95	$\underline{14.87}$	$\underline{0.04}$	$\underline{3.00}$	$\underline{\underline{1.61}}$
Building Construction \& Architectural Coating						
Onsite	8.11	5.15	$\underline{17.96}$	$\underline{0.03}$	0.17	0.17
Offsite	$\underline{0.43}$	$\underline{2.87}$	$\underline{3.34}$	$\underline{0.02}$	$\underline{1.70}$	$\underline{0.46}$
Building and Painting Total	8.54	8.02	$\underline{21.30}$	$\underline{0.05}$	$\underline{1.87}$	$\underline{0.63}$
Paving						
Onsite	1.15	6.23	13.09	0.02	0.25	0.25
Offsite	0.05	0.02	0.38	0.00	0.22	0.06
Paving Total	$\underline{1.20}$	6.25	$\underline{13.47}$	0.02	0.47	$\underline{0.31}$
Maximum Daily Emissions	8.54	8.02	$\underline{21.30}$	0.05	3.00	$\underline{1.61}$
SCOAMD Thresholds	75	$\underline{100}$	550	150	$\underline{150}$	$\underline{55}$
Exceeds Threshold?	No	No	No	No	No	No

Notes:
${ }^{{ }^{1} \text { Demolition and Grading based on adherence to fugitive dust suppression requirements from SCAQMD Rule } 403 .}$
${ }^{2}$ Onsite emissions from equipment not operated on public roads. A 41.4% reduction was applied to the onsite NOx emissions per the OFFROAD2017 model results shown above in Table C.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
Source: CalEEMod Version 2016.3.2.

Table H - Construction-Related Regional Criteria Pollutant Emissions for Years 2036-2041

Activity	Pollutant Emissions (pounds/day)					
	VOC	NOx	CO	SO_{2}	PM10	PM2.5
Demolition ${ }^{1}$						

Onsite ${ }^{2}$	$\underline{1.83}$	3.36	$\underline{18.71}$	$\underline{0.05}$	0.53	$\underline{0.27}$
Offsite ${ }^{3}$	$\underline{0.06}$	$\underline{0.93}$	$\underline{0.56}$	$\underline{0.01}$	0.27	0.07
Demolition Total	$\underline{1.89}$	4.29	$\underline{19.27}$	$\underline{0.06}$	0.80	0.34
Grading ${ }^{1}$						
Onsite	$\underline{1.46}$	$\underline{2.91}$	$\underline{14.33}$	$\underline{0.04}$	$\underline{2.71}$	$\underline{1.47}$
Offsite	$\underline{0.04}$	$\underline{0.40}$	$\underline{0.35}$	$\underline{0.00}$	0.21	$\underline{0.06}$
Grading Total	$\underline{1.50}$	3.31	$\underline{14.68}$	$\underline{0.04}$	2.92	1.53
Building Construction \& Architectural Coating						
$\underline{\text { Onsite }}$	$\underline{4.83}$	3.85	$\underline{17.91}$	$\underline{0.03}$	$\underline{0.10}$	$\underline{0.10}$
Offsite	$\underline{0.24}$	$\underline{1.95}$	1.88	$\underline{0.01}$	$\underline{1.18}$	0.32
Building and Painting Total	5.07	5.80	$\underline{19.79}$	$\underline{0.04}$	1.28	0.42
Paving						
Onsite	$\underline{0.99}$	$\underline{4.74}$	$\underline{13.07}$	$\underline{0.02}$	$\underline{0.15}$	$\underline{0.15}$
Offsite	$\underline{0.04}$	$\underline{0.02}$	$\underline{0.32}$	$\underline{0.00}$	0.22	$\underline{0.06}$
Paving Total	$\underline{1.03}$	$\underline{4.76}$	13.39	0.02	0.37	0.21
Maximum Daily Emissions	5.07	5.80	$\underline{19.79}$	0.06	$\underline{2.92}$	1.53
SCQAMD Thresholds	75	$\underline{100}$	550	150	150	55
Exceeds Threshold?	No	No	No	$\underline{\text { No }}$	No	No

Notes:
${ }^{1}$ Demolition and Grading based on adherence to fugitive dust suppression requirements from SCAQMD Rule 403.
${ }^{2}$ Onsite emissions from equipment not operated on public roads. A 51.4% reduction was applied to the onsite NOx emissions per the OFFROAD2017 model results shown above in Table C.
${ }^{3}$ Offsite emissions from vehicles operating on public roads.
Source: CalEEMod Version 2016.3.2.

Operational Emissions

The worst-case summer or winter VOC, NOx, $\mathrm{CO}, \mathrm{SO}_{2}, \mathrm{PM} 10$, and PM2.5 daily emissions created from the proposed project's long-term operations have been calculated and are summarized below in Table IFable D for year 2020, Table J for year 2025, Table K for year 2030, Table L for year 2035, and Table M for year 2041. Since Construction activities would be occurring simultaneously with operational activities, the maximum daily construction emissions are also included for each year analyzed. and tThe CalEEMod daily emissions printouts are shown in Appendix BA for year 2020, Appendix C for year 2025, Appendix D for year 2030, Appendix E for year 2035, and Appendix F for year 2041.

Table ID --_Operational and Construction Regional Criteria Pollutant Emissions for Year 2020

Activity	Pollutant Emissions (pounds/day)					
	VOC	NOx	CO	SO_{2}	PM10	PM2.5
	17.095.2	0.010 .0			0.00	0.00
Area Sources ${ }^{1}$	-	$\underline{0}$	0.760 .08	0.00	0.00	0.00
Energy Usage ${ }^{2}$	0.560 .14	$\begin{gathered} 5.111 .3 \\ \underline{1} \end{gathered}$	4.291.10	0.030 .01	0.390 .10	0.390 .10
Mobile Sources ${ }^{3}$	1.94	9.14	25.25	0.08	6.30	1.74
nstruction ${ }^{\text {Mobile Source }}$	$\frac{7.2+\underline{13.0}}{0}$	$\begin{gathered} 46.4339 \\ .98 \end{gathered}$	$92.7426 .$	$0.52 \underline{0.06}$	55.324.16	14.952 .66
	24.8620.	51.5550	97.7953.	0.550 .15	55.7110 .5	15.344 .50
Total Emissions for Year 2020	$\underline{28}$. 43	42	0.550 .15	6	15.344 .50
SCQAMD Operational Thresholds	55	55	550	150	150	55

Exceeds Threshold?	No	No	No	No	No	No

Notes:
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.
${ }^{2}$ Energy usage consist of emissions from natural gas usage (excluding hearths).
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2020 from Table D.
Source: Calculated from CalEEMod Version 2016.3.2.

Table J - Operational and Construction Regional Criteria Pollutant Emissions for Year 2025

Activity	Pollutant Emissions (pounds/day)					
	VOC	NOx	CO	$\underline{\mathrm{SO}_{2}}$	PM10	PM2.5
Area Sources ${ }^{1}$	$\underline{7.53}$	$\underline{0.00}$	$\underline{0.31}$	$\underline{0.00}$	$\underline{0.00}$	$\underline{0.00}$
Energy Usage ${ }^{2}$	$\underline{0.22}$	$\underline{2.05}$	$\underline{1.72}$	$\underline{0.01}$	$\underline{0.16}$	$\underline{0.16}$
Mobile Sources ${ }^{3}$	3.58	$\underline{15.71}$	45.97	$\underline{0.19}$	$\underline{16.46}$	$\underline{4.50}$
Construction ${ }^{4}$	$\underline{6.89}$	35.18	23.09	$\underline{0.05}$	3.93	2.44
Total Emissions for Year 2025	$\underline{18.22}$	52.94	71.09	$\underline{0.25}$	$\underline{20.55}$	7.10
SCQAMD Operational Thresholds	55	55	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No
Notes: ${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment. Emissions are combined year 2020 and year 2025 model run totals.						
${ }^{2}$ Energy usage consist of emissions from natur totals. ${ }^{3}$ Mobile sources consist of emissions from vehi ${ }^{4}$ Construction emissions for year 2025 from Tab Source: Calculated from CalEEMod Version 20	usage nd road	ing heart	missions	mbined y	0 and yea	5 model ru

Table K - Operational and Construction Regional Criteria Pollutant Emissions for Year 2030

Activity	Pollutant Emissions (pounds/day)					
	VOC	NOx	CO	SO_{2}	PM10	PM2.5
Area Sources ${ }^{1}$	$\underline{9.22}$	$\underline{0.01}$	$\underline{0.69}$	$\underline{0.00}$	$\underline{0.00}$	$\underline{0.00}$
Energy Usage ${ }^{2}$	$\underline{0.28}$	$\underline{2.58}$	$\underline{2.16}$	$\underline{0.02}$	$\underline{0.20}$	0.20
Mobile Sources ${ }^{3}$	5.98	$\underline{22.11}$	50.21	0.22	$\underline{21.47}$	5.87
Construction ${ }^{4}$	$\underline{5.17}$	$\underline{11.66}$	18.64	0.04	$\underline{3.20}$	6.07
Total Emissions for Year 2030	20.65	36.35	71.69	0.28	24.87	7.88
SCQAMD Operational Thresholds	55	55	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Notes:
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment. Emissions are combined year 2020, year 2025 and year 2030 model run totals.
${ }^{2}$ Energy usage consist of emissions from natural gas usage (excluding hearths). Emissions are combined year 2020, year 2025 and year 2030 model run totals.
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2030 from Table F.
Source: Calculated from CalEEMod Version 2016.3.2.

Table L - Operational and Construction Regional Criteria Pollutant Emissions for Year 2035

Activity	Pollutant Emissions (pounds/day)					
	VOC	NOx	CO	SO_{2}	PM10	PM2.5
Area Sources ${ }^{1}$	$\underline{12.94}$	0.01	1.23	0.00	0.00	0.00
Energy Usage ${ }^{2}$	0.41	3.76	3.15	0.03	0.29	0.29
Mobile Sources ${ }^{3}$	5.82	32.91	75.66	0.39	39.88	10.86
Construction ${ }^{4}$	8.54	8.02	$\underline{21.30}$	$\underline{0.05}$	3.00	1.61

Total Emissions for Year 2035	27.71	44.71	101.34	0.47	43.17	12.76
SCOAMD Operational Thresholds	55	55	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No
Notes: ${ }^{1}$ Area sources consist of emissions from consu ${ }^{2}$ Energy usage consist of emissions from natura ${ }^{3}$ Mobile sources consist of emissions from vehi ${ }^{4}$ Construction emissions for year 2035 from Ta Source: Calculated from CalEEMod Version 20	oducts, usage (nd road		and lan	equip		

Table M - Operational and Construction Regional Criteria Pollutant Emissions for Year 2041

	-	Pollutant Emissions (pounds/day)				
Activity	$\underline{\text { VOC }}$	$\underline{\text { NOx }}$	$\underline{\mathbf{C O}}$	$\underline{\text { SO }_{2}}$	$\underline{\text { PM10 }}$	$\underline{\text { PM2.5 }}$
Area Sources 1	$\underline{17.09}$	$\underline{0.01}$	$\underline{0.76}$	$\underline{0.00}$	$\underline{0.00}$	$\underline{0.00}$
$\underline{\text { Energy Usage }^{2}}$	$\underline{0.56}$	$\underline{5.11}$	$\underline{4.29}$	$\underline{0.03}$	$\underline{0.39}$	$\underline{0.39}$
Mobile Sources 3	$\underline{6.36}$	$\underline{42.34}$	$\underline{74.56}$	$\underline{\underline{0.41}}$	$\underline{42.71}$	$\underline{11.54}$
Construction	$\underline{5.07}$	$\underline{5.80}$	$\underline{19.79}$	$\underline{0.06}$	$\underline{2.92}$	$\underline{1.53}$
Total Emissions for Year 2041	$\underline{\mathbf{2 9 . 0 8}}$	$\underline{\mathbf{5 3 . 2 6}}$	$\underline{\mathbf{9 9 . 4 0}}$	$\underline{\mathbf{0 . 5 0}}$	$\underline{\mathbf{4 6 . 0 2}}$	$\underline{\mathbf{1 3 . 4 6}}$
SCQAMD Operational Thresholds	$\underline{\mathbf{5 5}}$	$\underline{\mathbf{5 5}}$	$\underline{\mathbf{5 5 0}}$	$\underline{\mathbf{1 5 0}}$	$\underline{\mathbf{1 5 0}}$	$\underline{\mathbf{5 5}}$
$\underline{\text { Exceeds Threshold? }}$	$\underline{\text { No }}$	$\underline{\underline{\text { No }}}$	$\underline{\underline{\text { No }}}$			

Notes:
${ }^{1}$ Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment. Area source emissions are from CalEEMod model run of entire master plan.
${ }^{2}$ Energy usage consist of emissions from natural gas usage (excluding hearths). Energy usage emissions are from CalEEMod model run of entire master plan.
${ }^{3}$ Mobile sources consist of emissions from vehicles and road dust.
${ }^{4}$ Construction emissions for year 2041 from Table H.
Source: Calculated from CalEEMod Version 2016.3.2.

5.2 Generation of Greenhouse Gas Emissions

The project's GHG emissions have been calculated with the CalEEMod model based on the construction and operational parameters detailed in Section 4.1 above. A summary of the results is shown below in Table NFable E and the CalEEMod model run annual printouts are provided for operational emissions are provided in Appendix B. The construction emissions for year 2020 are provided in Appendix G

Table NE - Project Related Greenhouse Gas Annual Emissions

Category	Greenhouse Gas Emissions (Metric Tons per Year)			
	CO_{2}	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	$\mathrm{CO}_{2} \mathrm{e}$
Area Sources ${ }^{1}$	0.19	0.00	0.00	0.20
Energy Usage ${ }^{2}$	3,256.76	0.11	0.04	3,270.81
Mobile Sources ${ }^{3}$	6,627.71	0.25	0.00	6,634.06
Solid Waste ${ }^{4}$	278.02	16.43	0.00	688.79
Water and Wastewater ${ }^{5}$	160.32	0.53	0.01	177.63
Construction Year 2020^{6}	$\underline{12.20}$	$\underline{0.00}$	$\underline{0.00}$	12.24
Construction Year 2025^{6}	$\underline{10.65}$	$\underline{0.00}$	$\underline{0.00}$	10.70
Construction Year 2030^{6}	8.53	$\underline{0.00}$	$\underline{0.00}$	8.56
Construction Year 2035^{6}	$\underline{11.63}$	$\underline{0.00}$	$\underline{0.00}$	$\underline{11.64}$
Construction Year 2040 ${ }^{6}$	57.6910 .40	$0.01 \underline{0.00}$	0.00	57.8010 .41
Total 2040 Emissions	10,376.4180.69	17.33	0.05	10,8259.0429
Service Population				7,458
Metric Tons $\mathrm{CO}_{2} \mathrm{e}$ per Service Population				1.45
SCAQMD Draft Threshold of Significance (Metric Tons $\mathrm{CO}_{2} \mathrm{e}$ e per Service Population) ${ }^{\underline{7}}$				4.13 .96

Quantitative Metric Tons COO2e Threshold	$\mathbf{3 0 , 5 7 7 . 8 0}$
Notes:	
${ }^{1}$ Area sources consist of GHG emissions from consumer products, architectural coatings, and landscaping equipment.	
${ }^{2}$ Energy usage consists of GHG emissions from electricity and natural gas usage.	
${ }^{3}$ Mobile sources consist of GHG emissions from vehicles.	
${ }^{4}$ Waste includes the CO CO_{2} and CH_{4} emissions created from the solid waste placed in landfills.	
${ }^{5}$ Water includes GHG emissions from electricity used for transport of water and processing of wastewater.	
${ }^{6}$ Construction emissions amortized over 30 years as recommended in the SCAQMD GHG Working Group on November 19, 2009.	
${ }^{7}$ SCAQMD's Year 2020 threshold of 6.6 MTCO2e per year was reduced by 40 percent to account for AB 197 and SB 32.	
Source: CalEEMod Version 2016.3.2.	

6.0 REFERENCES

California Air Resources Board, Appendix VII Risk Characterization Scenarios, October 2000.
California Air Resources Board, California's 2017 Climate Change Scoping Plan, November 2017.
California Air Resources Board, First Update to the Climate Change Scoping Plan, May 2014.
California Air Resources Board, Resolution 08-43, December 12, 2008.
California Air Resources Board, Recommended Approaches for Setting Interim Significance Thresholds for Greenhouse Gases under the California Environmental Quality Act, on October 24, 2008.

California Air Resources Board, Final Staff Report Proposed Update to the SB 375 Greenhouse Gas Emission Reduction Targets, October 2017.

California Air Resources Board, The California Almanac of Emissions and Air Quality 2013 Edition.
California Department of Conservation, A General Guide for Ultramafic Rocks in California - Areas More Likely to Contain Naturally Occurring Asbestos, August, 2000.

City of Long Beach, Mobility Element City of Long Beach General Plan, July 2013.
Environmental Protection Agency, Nonattainment Major New Source Review Implementation Under 8Hour Ozone National Ambient Air Quality Standard: Reconsideration, June 30, 2005.

Linscott Law \& Greenspan, Traffic Impact Analysis Report LBCCD 2041 Master Plan Liberal Arts Campus Long Beach, California, January 19, 2018.

Office of Environmental Health Hazard Assessment (OEHHA), Air Toxics Hot Spots Program Risk Assessment Guidelines Guidance Manual for Preparation of Health Risk Assessments, February 2015

South Coast Air Quality Management District, 2007 Air Quality Management Plan, June 1, 2007.
South Coast Air Quality Management District, Appendix A Calculation Details for CalEEMod, February 2011.

South Coast Air Quality Management District, CEQA Air Quality Handbook, April 1993.
South Coast Air Quality Management District, Final 2012 Air Quality Management Plan, December, 2012.

South Coast Air Quality Management District, Final 2016 Air Quality Management Plan, March, 2017.
South Coast Air Quality Management District, Final Localized Significance Threshold Methodology, Revised July 2008.

South Coast Air Quality Management District, Revised Draft - 2012 Lead State Implementation Plan Los Angeles County, May 4, 2012.

South Coast Air Quality Management District, Rule 402 Nuisance, Adopted May 7, 1976.

South Coast Air Quality Management District, Rule 403 Fugitive Dust, Amended June 3, 2005.
South Coast Air Quality Management District, Rule 1108 Cutback Asphalt, Amended February 1, 1985.
South Coast Air Quality Management District, Rule 1108.1 Emulsified Asphalt, Amended November 4, 1983.

South Coast Air Quality Management District, Rule 1113 Architectural Coatings, Amended September 6, 2013.

South Coast Air Quality Management District, Rule 1143 Consumer Paint Thinners \& Multi-Purpose Solvents, Amended December 3, 2010.

South Coast Air Quality Management District, SCAQMD Air Quality Significance Thresholds, March 2015.

South Coast Air Quality Management District, Draft Report Multiple Air Toxics Exposure Study in the South Coast Air Basin, MATES III, January 2008.

South Coast Air Quality Management District, Draft Report Multiple Air Toxics Exposure Study in the South Coast Air Basin, MATES-IV, October 2014.

Southern California Association of Governments, 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy, April 2016.

Southern California Association of Governments, 2015 Federal Transportation Improvement Program (FTIP) Guidelines, October 2013.

University of California, Davis, Transportation Project-Level Carbon Monoxide Protocol, December 1997.
U.S. Geological Survey, Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Other Natural Occurrences of Asbestos in California, 2011.

APPENDIX A

OFFROAD2017 Model Printouts and CalculationsGalEEMod Model Daily Printouts
OFFROAD2017 (v1.0.1) Emissions Inventory Region Type: Air Basin
Region: South Coast
Calendar Year: 2020, 2025, 2030, 2035, 2040 Scenario: All Adopted Rules - Exhaust
Vehicle Classification: OFFROAD2017 Equipment Types
Units: Emissions: tons/day, Fuel Consumption: gallons/y
Units: Emissions: tons/day, Fuel Consumption: gallons/year, Activity: hours/year, HP-Hours: HP-hours/year
Per HorsePower-Hour
Pounds Grams
 Total_Activity_Y Total_Popi Horsepower_Hours_hhF NO

 $\begin{array}{lll}\mathbf{7} 26836.37 & 1584.512 & 168178435.5\end{array}$ 5604443645.1
197883648
146148404.3
34480522.48
 97052913.19 60051972.66

 3052.7

 63651401.51 470386149
 O.
ก
N
N
in

 $\stackrel{\sim}{n}$

 100058313.5 61578761.59

 \begin{tabular}{l}
on

N

O

-1

\hline

0

∞

∞

 597612880.2

$\stackrel{\rightharpoonup}{\infty}$

O

O

$\underset{\sim}{+}$

$\underset{\sim}{7}$

\hline
\end{tabular}

 214934375.9
158783650.5

2
0
0
0
10

 1925468.42

 o

 Tons per hour Pounds

Total_Activity_łTotal_Popı Horsepower_Hours_hhr NOx

Year			2025-2030		2025-2035		2025-2040	
Equipment	2020	2025	2030	Reductic	2035	tion	2040	
ConstMin - Cranes	1.295	0.753	0.538	28.6\%	0.416	44.8\%	0.329	56.3\%
ConstMin-Excavators	0.809	0.448	0.341	23.9\%	0.288	35.8\%	0.249	44.4\%
ConstMin-Graders	1.966	1.095	0.676	38.2\%	0.454	58.5\%	0.315	71.3\%
ConstMin - Other Construct	1.399	0.856	0.635	25.8\%	0.502	41.3\%	0.412	51.9\%
ConstMin - Pavers	1.347	0.780	0.557	28.5\%	0.437	44.0\%	0.353	54.7\%
ConstMin - Paving Equipme	1.099	0.600	0.477	20.5\%	0.388	35.4\%	0.342	43.1\%
ConstMin - Rollers	1.269	0.840	0.699	16.9\%	0.617	26.6\%	0.557	33.7\%
ConstMin - Rubber Tired Dc	2.327	1.475	1.116	24.3\%	0.869	41.1\%	0.674	54.3\%
ConstMin-Scrapers	1.868	1.032	0.706	31.7\%	0.534	48.3\%	0.406	60.6\%
ConstMin - Tractors/Loader	1.144	0.709	0.581	18.1\%	0.528	25.4\%	0.491	30.7\%
Industrial - Forklifts	0.788	0.483	0.357	26.1\%	0.307	36.4\%	0.278	42.5\%
Portable Equipment - Rentē	0.366	0.174	0.089	48.5\%	0.081	53.3\%	0.085	50.9\%
Average (All Equipment)	1.307	0.770	0.564	26.7\%	0.452	41.4\%	0.374	51.4\%

츤 Region South Coas
 South Coas South Coas South Coas South Coas South Coas South Coas South Coas South Coas South Coas South Coas
 South Coas South Coas South Coas South Coas South Coas South Coas

\qquad Aggregatec Aggregatec Diesel Aggregatec Aggregatec Diesel | 2035 ConstMin - Scrapers | Aggregatec Aggregatec Diesel | 0.777 |
| :--- | :--- | :--- |
| 035 ConstMin - Tractors/Loader Aggregatec Aggregatec Diesel | 1.409 | |

 2035 Portable Equipment - Rentc̄ Aggregatec Aggregatec Diesel 0.062 $\begin{array}{lrl}2040 \text { ConstMin - Cranes } & \text { Aggregatec Aggregatec Diesel } & 0.062 \\ & \text { Agrén }\end{array}$ 2040 ConstMin - Excavators \quad Aggregatec Aggregatec Diesel $\quad 0.483$
 2040 ConstMin - Other Construct Aggregatec Aggregatec Diesel
 2040 ConstMin - Paving Equipme Aggregatec Aggregatec Diesel $\quad 0.028$ 2040 ConstMin-Rollers Aggregatec Aggregatec Diesel $\quad 0.187$ ןəsə!

VehClass
35 ConstMin - Pavers 35 ConstMin - Paving E 035 ConstMin - Rubber Tir 35 ConstMin - Scrapers 2035 Industrial - Forklifts Aggregatec Aggregatec Diesel 0.557 0.068 2040 Portable Equipment - Renť̄ Aggregatec Aggregatec Diesel South Coas

APPENDIX B

CalEEMod Model Interim Year 2020Annmat Printouts
Date: 11/25/2018 9:39 PM

Page 1 of 27
 LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Summer
 LBCC LAC Interim Year 2020
 Los Angeles-South Coast County, Summer

1.0 Project Characteristics
CalEEMod Version: CalEEMod.2016.3.2
1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	806.00	Student	2.18	179,898.00	0
OTher Non-Asphalt Surfaces	2.07	Acre	2.07	90,169.20	0
Recreational Swimming Pool	1.50	1000saft	2.00	1,500.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)
Climate Zone	9	
Utility Company	Southern California Edison	
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity $(\mathrm{Ib} / \mathrm{MWhr})$

1.3 User Entered Comments \& Non-Default Data
CalEEMod Version: CalEEMod.2016.3.2
Project Characteristics - Interim Year 2020
Land Use - 806 student Junior College on 2.18 acres and 179,898 sq ft of building, 50,881 SF Recreational Swimming Pool, and 2.07-acres Other Non-Asphalt Surfaces. Construcion Phase 20 days Demo, 20 days Grading, 230 days Building Construction to occur
Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.

Demolition - Demolition of 48,768 SF of building space

Grading

 Energy Use -Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsit and connecting offsite
Mobile Commute Mitigation -
Vehicle Emission Factors -
Vehicle Emission Factors -
Vehicle Emission Factors

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	230.00
tbiConstructionPhase	PhaseEndDate	877/2020	6/12/2020
tbiConstructionPhase	PhaseStartorate	7/1/12020	7/27/2019
tbilanduse	LandUseSquareFeet	35,183.70	179,898.00
tbiLandUse	LotAcreage	0.81	2.18
tbluanduse	LotAcreage	0.03	2.00
toiTripsAndVıT	VendorTripNumber	0.00	6.00
	VendorTrip ${ }^{\text {ajumber }}$	0.00	6.00
tblvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary

Unmitigated Construction

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	46.60	0.00	35.55	52.51	0.00	32.11	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

Mitigated Operational
Mitigated Operational
-

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										Ib/day					
Area	5.2022	$\begin{gathered} 7.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0832	$\begin{aligned} & 1.00000- \\ & 005 \end{aligned}$		$\begin{aligned} & 3.0000 \mathrm{e} \\ & 004 \end{aligned}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 3.0000 \mathrm{e} \\ 004 \end{gathered}$	$3.0000 \mathrm{e}-$		0.1772	0.1772	$\begin{gathered} 4.8000 \mathrm{e}- \\ 004 \end{gathered}$		0.1891
Energy	0.1439	1.3085	1.0992	$\begin{aligned} & 7.8500 \mathrm{e}- \\ & 003 \end{aligned}$		0.0995	0.0995		0.0995	0.0995		${ }_{8}^{1,570.229}$	${ }_{8}^{1,570.229}$	0.0301	0.0288	$\begin{gathered} 1,579.560 \\ \hline 9 \end{gathered}$
	1.7500	7.6942	20.4073	0.0637	4.7979	0.0640	4.8618	1.2841	0.0600	1.3441		: ${ }^{6,471.808}$	6,471.808	0.3652		$\begin{gathered} 6,480.939 \\ 3 \end{gathered}$
Total	7.0961	${ }^{9.0035}$	21.5897	0.0715	4.7979	0.1637	4.9616	1.2841	0.1597	1.4438		$\underset{1}{8,042.215}$	${ }_{1}^{8,042.215}$	0.3958	0.0288	$\begin{array}{\|c} 8,060.689 \\ 2 \end{array}$

CalEEMod Version: CalEEMod.2016.3.2				Page 5 of 27									Date: 11/25/2018 9:39 PM			
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Summer																
	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
$\begin{aligned} & \hline \begin{array}{c} \text { Percent } \\ \text { Reduction } \end{array} \end{aligned}$	2.58	11.86	18.32	19.63	22.81	9.44	22.44	22.81	9.12	21.51	0.00	18.05	18.05	18.05	0.00	18.04

3.0 Construction Detail
CalEEMod Version: CalEEMod.2016.3.2

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	:Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	:Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Grading	Excavators	1	8.00	158	0.38
Grading	:Graders	1	8.00	187	0.41
Grading	:Rubber Tired Dozers	1	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	:Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	$2:$	8.00	80	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	6.00	222.00	14.70	6.90	20.00	D_Mix	1HDT_Mix	!HHDT
Grading	6	15.0	6.	0.0	14.7	6.9	20.0	-Mix	, HDT_Mix	1HHDT
Building Construction		114.00	45.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	\|HHDT
Architectural Coatin		23.00	0.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	THHDT
Paving	6	15.00	0.00	0.00	14.70	6.90	20.00	D_Mix	:HDT_Mix	:HHDT

Page 7 of 27
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Summer
CalEEMod Version: CaIEEMod.2016.3.2
3.1 Mitigation Measures Construction
Water Exposed Area
3.2 Demolition-2019
Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive	Exhaust	$\begin{gathered} \text { PM10 } \\ \hline \text { Total } \end{gathered}$	Fugitive	$\begin{aligned} & \hline \text { Exhaust } \end{aligned}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					2.4003	0.0000	2.4003	0.3634	0.0000	0.3634			0.0000			0.0000
Off-Road	3.5134	35.7830	22.0600	0.0388		1.7949	1.7949		1.6697	1.6697		${ }^{3,816.899}$	3,866.899	1.0618		${ }^{3,843.445}$
Total	3.5134	35.7830	22.0600	0.0388	2.4003	1.7949	4.1952	0.3634	1.6697	2.0331		$3,816.899$ 4	$\begin{array}{\|c\|} \hline 3,816.899 \\ 4 \end{array}$	1.0618		$\begin{aligned} & \hline 3,843.445 \\ & \hline \end{aligned}$

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust					0.9361	0.0000	0.9361	0.1417	0.0000	0.1417			0.0000			0.0000
Oift-Road	3.5134	35.7830	22.0600	0.0388		1.7949	1.7949		1.6697	1.6697	0.0000	${ }^{3,816.899}$	$3,816.899$	1.0618		$3,843.445$
Total	${ }^{3.5134}$	35.7830	22.0600	0.0388	0.9361	1.7949	2.7310	0.1417	1.6697	1.8114	0.0000	$\underset{4}{3,816.899}$	$\underset{4}{3,816.899}$	1.0618		${ }_{1}^{3,843.445}$

Mitigated Construction Off-Site

3.3 Grading - 2019

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dus					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Off-Road	2.5805	28.3480	16.2934	0.0297		1.3974	1.3974		1.2856	1.2856		${ }_{8}^{2,936806}$	${ }_{8}^{2,936.806}$	0.9292		${ }^{2,960.036}$
Total	2.5805	28.3480	16.2934	0.0297	${ }^{6.5523}$	1.3974	7.9497	3.3675	1.2856	4.6531		$2,936.806$	2,936.806	0.9292		${ }^{2,960.036}$

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										Ib/day					
Fugitive Dust					2.5554	0.0000	2.5554	1.3133	0.0000	${ }^{1.3133}$			0.0000			0.0000
Ofi-Road	2.5805	28.3480	16.2934	0.0297		1.3974	1.3974		1.2856	1.2856	0.0000	${ }_{8}^{2,936806}$	$\begin{gathered} 2,96680 \\ 8 \end{gathered}$	0.9292		$2,960.036$
Total	2.5805	28.3480	16.2934	0.0297	2.5554	1.3974	3.9528	1.3133	1.2856	2.5989	0.0000	${ }_{8}^{2,936.806}$	${ }_{8}^{2,936.806}$	0.9292		${ }_{1}^{2,960.036}$

Page 11 of 27
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Summer
CalEEMod Version: CaIEEMod.2016.3.2
3.3 Grading - 2019

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0249	0.6944	0.1843	$\begin{gathered} 1.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.0384	$4.4300 \mathrm{e}-$ 003	0.0428	0.0111	$\begin{gathered} 2.2300 \mathrm{e}- \\ 003 \end{gathered}$	0.0153		167.2888	167.2888	0.0107		167.5568
Worker	0.0749	0.0551	0.7233	$\begin{gathered} 1.8300 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.4500 \mathrm{e}- \\ 003 \end{gathered}$	0.1691	0.0445	$\begin{gathered} 1.3300 \mathrm{e}- \\ 003 \end{gathered}$	0.0458		181.9429	181.9429	${ }^{6.2500 e-}$		182.0992
Total	0.0999	0.7495	0.9075	$\begin{gathered} 3.4000 \mathrm{e}- \\ 003 \end{gathered}$	0.2061	$\begin{gathered} 5.8800 \mathrm{e}- \\ 003 \end{gathered}$	0.2120	0.0555	$\begin{gathered} 5.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.0611		349.2317	349.2317	0.0170		349.6560

3.4 Building Construction-2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127		$\begin{aligned} & 2,591.580 \\ & 2 \end{aligned}$	$\begin{gathered} 2,591.580 \\ 2 \end{gathered}$	0.6313		$\begin{gathered} 2,607.363 \\ 5 \end{gathered}$
Total	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127		$\begin{array}{\|c\|} \hline 2,591.580 \\ 2 \end{array}$	$\underset{2}{2,591.580}$	0.6313		$\underset{5}{2,607.363}$

3.4 Building Construction-2019

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1870	5.2078	1.3819	0.0118	0.2881	0.0332	0.3213	0.0829	0.0318	0.1147		:1,254.665	1,254.665	0.0804		$\underset{9}{1,256.675}$
Worker	0.5695	0.4186	5.4967	0.0139	1.2743	0.0110	1.2852	0.3379	0.0101	0.3481		1,382.766	${ }_{3}^{1,382.766}$	0.0475		$\underset{7}{1,383.953}$
Total	0.7565	5.6264	6.8785	0.0257	1.5623	0.0442	1.6065	0.4209	0.0419	0.4628		$\begin{array}{\|c} \hline 2,637.432 \\ 1 \end{array}$	$\begin{array}{\|c\|} \hline 2,637.432 \\ 1 \end{array}$	0.1279		$\begin{gathered} 2,640.629 \\ 5 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										Ib/day					
Off-Road	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127	0.0000	$\begin{gathered} 2,591.580 \\ 2 \end{gathered}$	2,591.580	0.6313		$\begin{array}{\|c} 2,607.363 \\ 5 \end{array}$
Total	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127	0.0000	$\begin{array}{\|c\|} \hline 2,591.580 \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline 2,591.580 \\ 2 \end{array}$	0.6313		$\begin{array}{\|c\|} \hline 2,607.363 \\ 5 \end{array}$

3.4 Building Construction-2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503		$\begin{gathered} 2,553.063 \\ 1 \end{gathered}$	$\underset{1}{2,553.063}$	0.6229		$\begin{gathered} 2,568.634 \\ 5 \end{gathered}$
Total	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503		$\begin{array}{\|c\|} \hline 2,553.063 \\ 1 \end{array}$	$\begin{array}{\|c} 2,553.063 \\ 1 \end{array}$	0.6229		$\begin{gathered} 2,568.634 \\ 5 \end{gathered}$

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1601	4.7868	1.2542	0.0117	0.2881	0.0225	0.3106	0.0830	0.0216	0.1045		1,246.6111	1,246.6111	0.0761		$\underset{9}{1,248.512}$
Worker	0.5246	0.3732	4.9914	0.0135	1.2743	0.0107	1.2849	0.3379	$\begin{gathered} 9.8100 \mathrm{e} \\ 003 \end{gathered}$	0.3478		1,340.768	${ }_{7}^{1,340.768}$	0.0423		$\begin{gathered} 1,341.825 \\ 5 \end{gathered}$
Total	0.6847	5.1600	6.2456	0.0251	1.5623	0.0332	1.5955	0.4209	0.0314	0.4523		$\begin{array}{\|c\|} \hline 2,587.379 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 2,587.379 \\ 8 \end{array}$	0.1183		$\begin{gathered} 2,590.338 \\ \hline \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503	0.0000	$\begin{gathered} 2,553.063 \\ 1 \end{gathered}$	$\underset{1}{2,553.063}$	0.6229		$\begin{gathered} 2,568.634 \\ 5 \end{gathered}$
Total	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503	0.0000	$\begin{array}{\|c\|} \hline 2,553.063 \\ 1 \end{array}$	$\begin{array}{\|c} 2,553.063 \\ 1 \end{array}$	0.6229		$\begin{gathered} 2,568.634 \\ 5 \end{gathered}$

3.5 Paving - 2020

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road				0.0228		0.7528	0.7528		0.6926	0.6926		${ }_{4}^{2,207.733}$	2,207.733	0.7140		$\underset{1}{2,225.584}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	${ }^{1.3566}$	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926		$\underset{4}{2,207.733}$	$\begin{array}{\|c\|} \hline 2,207.733 \\ 4 \end{array}$	0.7140		$\underset{1}{2,225.584}$

3.5 Paving - 2020

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.3566	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926	0.0000	${ }^{2,207.733}$	${ }^{2,207.733}$	0.7140		${ }_{1}^{2,225.584}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	${ }^{1.3566}$	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926	0.0000	$\underset{4}{2,207.733}$	$\underset{4}{2,207.733}$	0.7140		${ }_{1}^{2,225.584}$

3.5 Paving - 2020

Mitigated Construction Off-Site
3.6 Architectural Coating - 2019

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										Ib/day					
Archit. Coating	9.4104					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Oif-Road	0.2664	1.8354	1.8413	${ }^{2.97000-}$		0.1288	0.1288		0.1288	0.1288		281.4481	281.4481	0.0238		282.0423
Total	9.6769	1.8354	1.8413	$\overline{2.9700 \mathrm{e}-} 003$		0.1288	0.1288		0.1288	0.1288		281.4481	281.4481	0.0238		282.0423

3.6 Architectural Coating - 2019

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	9.4104					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Oif-Road	0.2664	1.8354	1.8413	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.1288	0.1288		0.1288	0.1288	0.0000	281.4481	281.4481	0.0238		282.0423
Total	9.6769	1.8354	1.8413	$\overline{2.9700 \mathrm{e}-} 003$		0.1288	0.1288		0.1288	0.1288	0.0000	281.4481	281.4481	0.0238		282.0423

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1149	0.0845	1.1090	$\begin{aligned} & 2.8000 \mathrm{e}- \\ & 003 \end{aligned}$	0.2571	$\begin{gathered} 2.2200 \mathrm{e}- \\ 003 \end{gathered}$	0.2593	0.0682	$\begin{gathered} 2.0400 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		278.9792	278.9792	$\begin{gathered} 9.5800 \mathrm{e}- \\ 003 \end{gathered}$		279.2187
Total	0.1149	0.0845	1.1090	$\begin{aligned} & 2.80000 \mathrm{e}- \\ & 003 \end{aligned}$	0.2571	$\begin{gathered} 2.2200 \mathrm{e}- \\ 003 \end{gathered}$	0.2593	0.0682	$\begin{gathered} 2.0400 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		278.9792	278.9792	$\begin{gathered} 9.5800 \mathrm{e}- \\ 003 \end{gathered}$		279.2187

3.6 Architectural Coating - 2020
 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Archit. Coating	9.4104					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2422	1.6838	1.8314	$2.9700 \mathrm{e}-$		0.1109	0.1109		0.1109	0.1109		281.4481	281.4481	0.0218		281.9928
Total	9.6526	1.6838	1.8314	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.1109	0.1109		0.1109	0.1109		281.4481	281.4481	0.0218		281.9928

3.6 Architectural Coating - 2020

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1059	0.0753	1.0070	$\begin{gathered} 2.7200 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$\begin{gathered} 2.1500 \mathrm{e} \\ 003 \end{gathered}$	0.2592	0.0682	$\begin{gathered} 1.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		270.5060	270.5060	$8.53000-$ 003		270.7192
Total	0.1059	0.0753	1.0070	$\begin{gathered} 2.7200 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$\begin{gathered} 2.1500 \mathrm{e}- \\ 003 \end{gathered}$	0.2592	0.0682	$\begin{gathered} 1.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		270.5060	270.5060	$\begin{gathered} 8.5300 \mathrm{e}- \\ 003 \end{gathered}$		270.7192

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	9.4104					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2422	1.6838	1.8314	$2.97000-$ 003		0.1109	0.1109		0.1109	0.1109	0.0000	281.4481	281.4481	0.0218		281.9928
Total	9.6526	1.6838	1.8314	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.1109	0.1109		0.1109	0.1109	0.0000	281.4481	281.4481	0.0218		281.9928

3.6 Architectural Coating - 2020
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										1b/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1059	0.0753	1.0070	$\begin{gathered} 2.7200 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$\begin{gathered} 2.1500 \mathrm{e}- \\ 003 \end{gathered}$	0.2592	0.0682	$\begin{gathered} 1.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		270.5060	270.5060	$\begin{gathered} 8.5300 \mathrm{e}- \\ 003 \end{gathered}$		270.7192
Total	0.1059	0.0753	1.0070	$\begin{gathered} 2.7200 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$\begin{gathered} 2.1500 \mathrm{e}- \\ 003 \end{gathered}$	0.2592	0.0682	$\begin{gathered} 1.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		270.5060	270.5060	$\begin{gathered} 8.5300 \mathrm{e}- \\ 003 \end{gathered}$		270.7192

4.0 Operational Detail - Mobile

[^3]
4.2 Trip Summary Information

4.3 Trip Type Information
4.4 Fleet Mix

and Use	LDA	T1	T2	DV	HD1	HD2	MHD	HHD	OBUS	JBUS	MCY	SBUS	MH
Junior College (2Yr)	0.5	0.045	0.20148	0.122768	0.016614	0.00	0.0193	0.0291	0.002438	0.002359	0.005005	0.000677	0.00090
OTher Non-Asphalt Surfaces	0.547726	--0.0-7547	0.201480	--122768	-0.016614	0.00609	0.01932	0.0291	0.00243	0.0023	0.0050	0.00067	0.0009
Recreational Swimming Pool	0.547726:	0.045437	0.201480	0.122768	0.016614	0.006090	0.019326	0.029174	0.002438	0.002359	0.005005	0.000677	0000

5.0 Energy Detail

Historical Energy Use: N
5.1 Mitigation Measures Energy

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
$\begin{aligned} & \text { NaturalGas } \\ & \text { Mitigated } \end{aligned}$	0.1439	1.3085	1.0992	$\begin{aligned} & 7.85000- \\ & \hline 003 \end{aligned}$			0.0995		0.0995	0.0995		${ }^{1,570.229}$	$\begin{gathered} 1,570.229 \\ 8 \end{gathered}$	0.0301	0.0288	$\begin{gathered} 1,579.560 \\ 9 \end{gathered}$
- $\begin{aligned} & \text { NaturalGas } \\ & \text { Unmitigated }\end{aligned}$	0.1439	1.3085	1.0992	${ }^{7.85000}$		0.0995	0.0995		0.0995	0.0995		${ }_{\text {¢ }}$	${ }_{8}^{1,570.229}$	0.0301	0.0288	${ }_{9}^{1,579.560}$

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Summer

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	lb/day										1b/day					
Junior College (2Yr)	13.347	0.1439	1.3085	1.0992	$\begin{gathered} 7.8500 \mathrm{e}- \\ 003 \end{gathered}$		0.0995	0.0995		0.0995	0.0995		$\begin{gathered} 1,570.229 \\ 8 \end{gathered}$	$\begin{array}{\|c} \hline 1,570.229 \\ 8 \end{array}$	0.0301	0.0288	$\begin{gathered} 1,579.560 \\ 9 \end{gathered}$
Other NonAsphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Recreational Swimming Pool		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1439	1.3085	1.0992	$\begin{gathered} 7.8500 \mathrm{e}- \\ 003 \end{gathered}$		0.0995	0.0995		0.0995	0.0995		$\begin{array}{\|c} \hline 1,570.229 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 1,570.229 \\ 8 \end{array}$	0.0301	0.0288	$\begin{array}{\|c\|} \hline 1,579.560 \\ 9 \end{array}$

6.0 Area Detail

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2. 5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH 4	N2O	CO2e
Land Use	kBTU/yr	lb/day										lb/day					
Junior College (2Yr)	13347	0.1439	1.3085	1.0992	$\begin{gathered} 7.8500 \mathrm{e}- \\ 003 \end{gathered}$		0.0995	0.0995		0.0995	0.0995		1,570.229	1,570.229	0.0301	0.0288	$\begin{gathered} 1,579.560 \\ 9 \end{gathered}$
Other NonAsphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Recreational Swimming Pool		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1439	1.3085	1.0992	$\begin{gathered} 7.8500 \mathrm{e}- \\ 003 \end{gathered}$		0.0995	0.0995		0.0995	0.0995		$\begin{gathered} 1,570.229 \\ 8 \end{gathered}$	$\begin{array}{\|c\|} \hline 1,570.229 \\ 8 \end{array}$	0.0301	0.0288	$\begin{gathered} 1,579.560 \\ 9 \end{gathered}$

-

Unmitigated
6.1 Mitigation Measures Area

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Mitigated	5.2022	$\begin{gathered} 7.70000 \mathrm{e} \\ 004 \end{gathered}$	0.0832	$\begin{array}{\|c} \hline \begin{array}{c} 1.00000- \\ 005 \end{array} \\ \hline \end{array}$		$\begin{aligned} & 3.0000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 3.0000 \mathrm{e} \\ & 004 \end{aligned}$		$\begin{aligned} & 3.00000- \\ & 004 \end{aligned}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		0.1772	0.1772	4.80000		0.1891
Ünmitigated	5.2022	$: \begin{gathered} 7.7000 \mathrm{e} \\ 004 \end{gathered}$	0.0832	$\begin{gathered} 1.00000- \\ 005 \end{gathered}$		3.0000e004	$\begin{aligned} & 3.00000 \\ & 004 \end{aligned}$		$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} -0000 \mathrm{e} \\ 004 \end{gathered}$		0.1772	${ }^{-0.1772}$	$\begin{aligned} & 4.8000 \mathrm{e} \\ & \hline 004 \end{aligned}$		0.1891

6.2 Area by SubCategory
Unmitigated

	ROG	NOx	CO	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day										lb/day					
Architectural Coating	0.5930					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	4.6014					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	$7.8300 \mathrm{e}-$ 003	$\begin{gathered} 7.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0832	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 3.0000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 3.0000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		0.1772	0.1772	$\begin{aligned} & 4.8000 \mathrm{e}- \\ & 004 \end{aligned}$		0.1891
Total	5.2022	$\begin{gathered} 7.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0832	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 3.0000 \mathrm{e}- \\ & 004 \end{aligned}$		$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		0.1772	0.1772	$\begin{gathered} 4.8000 \mathrm{e}- \\ 004 \end{gathered}$		0.1891

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail
8.1 Mitigation Measures Waste

9.0 Operational Offroad

10.0 Stationary Equipment

Fire Pumps and Emergency Generators
Date: 11/25/2018 9:39 PM
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Summer

11.0 Vegetation
Page 1 of 27
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Winter

LBCC LAC Interim Year 2020

Los Angeles-South Coast County, Winter

1.0 Project Characteristics

Land Uses		Size		Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)		806.00		Student	2.18	179,898.00	0
Other Non-Asphalt Suraces		2.07		Acre	2.07	90,169.20	0
Recreational Swimming Pool		1.50		1000sqft	2.00	1,500.00	0
1.2 Other Project Characteristics							
Urbanization Climate Zone	Urban	Wind Speed (m / s)	2.2	Precipitation Freq (Days)	33		
	9			Operational Year	2020		
Utility Company	Southern California Edison						
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006		

1.3 User Entered Comments \& Non-Default Data
CalEEMod Version: CalEEMod.2016.3.2

Project Characteristics - Interim Year 2020

Land Use - 806 student Junior College on 2.18 acres and 179,898 sq ft of building, 50,881 SF Recreational Swimming Pool, and 2.07-acres Other Non-Asphalt Surfaces. Construction Phase - 20 days Demo, 20 days Grading, 230 days Bulding Construction to occur
Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.

Demolition - Demolition of 48,768 SF of building space

Grading

Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsit and connecting offsite
Mobile Commute Mitigation -
Vehicle Emission Factors -
Vehicle Emission Factors -
Vehicle Emission Factors

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	230.00
tbiconstructionPhase	PhaseEndDate	877/2020	6/12/2020
tbiConstructionPhase	PhaseStartDate	7/11/2020	7/27/2019
tbilanduse	LanduseSquareFeet	35,183.70	-179,898.00
tbilanduse	Lotacreage	0.81	2.18
tblLandUse	LotAcreage	0.03	2.00
	VendorTripNüumer	0.00	6.00
tbiTripsAndVMT	VendorTripNumber	0.00	6.00
tolvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary
CalEEMod Version: CalEEMod.2016.3.2 LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Winter 2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										1b/day					
2019	12.9917	39.9844	26.5902		2.7615	1.8136	4.1648	1.3689	1.6875	2.6601	0.0000	5,658.494	$\begin{gathered} 5,658.494 \\ 4 \end{gathered}$	1.1478	0.0000	$\begin{gathered} 5,678.361 \\ 7 \end{gathered}$
	12.6399	26.1522	25.5570	0.0565	1.8194	1.2637	3.0831	0.4891	1.1950	1.6840	0.0000	$\begin{gathered} 5,564.197 \\ 8 \end{gathered}$	$\begin{gathered} 5,564.197 \\ 8 \end{gathered}$	0.7736	0.0000	$\begin{gathered} 5,583.536 \\ 5 \end{gathered}$
Maximum	12.9917	39.9844	26.5902	0.0571	2.7615	1.8136	4.1648	1.3689	1.6875	2.6601	0.0000	$\begin{array}{\|c} \hline 5,658.494 \\ 4 \end{array}$	$\begin{array}{\|c\|} \hline 5,658.494 \\ 4 \end{array}$	1.1478	0.0000	$\begin{array}{\|c\|} \hline 5,678.361 \\ 7 \end{array}$

\|oั̃	-
꿀	\bigcirc
\|ָ̦	O-
	\bigcirc
$\begin{array}{\|l} \hline \stackrel{N}{O} \\ \dot{O} \\ \dot{o} \\ \underline{z} \\ \hline \end{array}$	O-0.
	O-
	$\underset{\text { ָ̈ju }}{\stackrel{\rightharpoonup}{\dot{N}}}$
	$\stackrel{\circ}{\circ}$
	\|
오슬	\|r
	O-
	$\mid \stackrel{\circ}{\circ}$
\%	O-
\bigcirc	O-
을	-
\|o	Ọ-

(1)

2.2 Overall Operational

Unmitigated Operational
Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Tota	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										1b/day					
Area	5.2022	$\begin{gathered} 7.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0832	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 3.0000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		0.1772	0.1772	$\begin{gathered} 4.8000 \mathrm{e}- \\ 004 \end{gathered}$		0.1891
Energy	0.1439	1.3085	1.0992	$\begin{gathered} 7.8500 \mathrm{e} \\ 003 \end{gathered}$		0.0995	0.0995		0.0995	0.0995		${ }^{1,570.229}$	1,570.229	0.0301	0.0288	$\begin{gathered} 1,579.560 \\ 9 \end{gathered}$
Mobile	1.7024	7.8523	19.7223	0.0605	4.7979	0.0644	4.8623	1.2841	0.0604	1.3445		$: \begin{gathered}6,150.530 \\ 0\end{gathered}$	6,150.530	0.3663		$\begin{gathered} 6,159.688 \\ 6 \end{gathered}$
Total	7.0485	9.1616	20.9046	0.0684	4.7979	0.1642	4.9620	1.2841	0.1601	1.4443		$\begin{array}{\|c\|} \hline 7,720.937 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline 7,720.937 \\ 0 \end{array}$	0.3969	0.0288	$\begin{gathered} 7,739.438 \\ 5 \end{gathered}$

CaIEEMod Version: CalEEMod.2016.3.2

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	;Demolition	6/1/2019	6/28/2019	5	20	
2	Grading	;Grading	6/29/2019	17/26/2019	5	20	
3	Building Construction	Building Construction	7/27/2019	6/12/2020	5	230	
4	Paving	Paving	6/13/2020	17/10/2020	5	20	
5	Architectural Coating	Architectural Coating	:7/27/2019	:6/12/2020	5	230:	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

 (Architectural Coating - sqft)OffRoad Equipment
CalEEMod Version: CaIEEMod.2016.3.2

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition		15.00	6.00	222.00	14.70	6.90	20.00	D_Mix	!HDT_Mix	HHDT
Grading		15.00	6.00	0.0	14.70	6.90	20.00	_Mix	HDT_Mix	HHDT
Building Construct		114.	45.0	0.0	14.70	6.9	20.00	_Mix	HDT_Mix	HHDT
Architectural Coatin		23.00	0.00	0.0	14.70	6.90	20.00	D_Mix	, HDT_Mix	HHDT
Paving	- 6	15.00	0.00	0.00	14.70	6.90	20.00	D_Mix	:HDT_Mix	HHDT

3.1 Mitigation Measures Construction
CalEEMod Version: CalEEMod.2016.3.2
Water Exposed Area
3.2 Demolition - 2019
Unmitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \begin{array}{c} \text { Total } \end{array} \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					2.4003	0.0000	2.4003	0.3634	0.0000	0.3634			0.0000			0.0000
Off-Road	3.5134	35.7830	22.0600	0.0388		1.7949	1.7949		1.6697	1.6697		${ }^{3,816.899}$	3,866.899	1.0618		3,843.445
Total	${ }^{3.5134}$	35.7830	22.0600	0.0388	2.4003	1.7949	4.1952	0.3634	1.6697	2.0331		$\underset{4}{3,816.899}$	$\underset{4}{3,816.899}$	1.0618		${ }^{3,843.445}$

Page 8 of 27
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Winter
CalEEMod Version: CaIEEMod.2016.3.2

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										Ib/day					
Fugitive Dust					0.9361	0.0000	0.9361	0.1417	0.0000	0.1417			0.0000			0.0000
Ofi-Road	3.5134	35.7830	22.0600	0.0388		1.7949	1.7949		1.6697	1.6697	0.0000	\% ${ }^{3,816.899}$	${ }_{3,816.899}^{4}$	1.0618		3,843.445
Total	${ }^{3.5134}$	35.7830	22.0600	0.0388	0.9361	1.7949	2.7310	0.1417	1.6697	1.8114	0.0000	${ }_{4}^{3,816.899}$	${ }^{3,816.899}$	1.0618		${ }_{1}^{3,843.445}$

Mitigated Construction Off-Site
3.3 Grading - 2019

Unmitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Oift-Road	2.5805	28.3480	16.2934	0.0297		1.3974	1.3974		1.2856	1.2856		${ }^{2,9368806}$	$\begin{gathered} 2,936.806 \\ 8 \end{gathered}$	0.9292		$2,960.036$
Total	2.5805	28.3480	16.2934	0.0297	6.5523	1.3974	7.9497	3.3675	1.2856	4.6531		${ }_{8}^{2,936.806}$	${ }_{8}^{2,936.806}$	0.9292		${ }_{\substack{2,960.036 \\ 1}}$

3.3 Grading - 2019

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust					2.5554	0.0000	2.5554	1.3133	0.0000	${ }^{1.3133}$			0.0000			0.0000
Oift-Road	2.5805	28.3480	16.2934	0.0297		1.3974	1.3974		1.2856	1.2856	0.0000	${ }^{2,938.806}$	$\begin{gathered} 2,936.806 \\ 8 \end{gathered}$	0.9292		$2,960.036$
Total	2.5805	28.3480	16.2934	0.0297	2.5554	1.3974	3.9528	1.3133	1.2856	2.5989	0.0000	${ }^{2,936.806}$	$\underset{8}{2,936.806}$	0.9292		$\underset{1}{2,960.036}$

LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Winter

CalEEMod Version: CaIEEMod.2016.3.2
3.3 Grading - 2019

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0260	0.6953	0.2031	$\begin{gathered} 1.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.0384	$\begin{gathered} 4.5000 \mathrm{e} \\ 003 \end{gathered}$	0.0429	0.0111	$\begin{gathered} 4.3000 \mathrm{e}- \\ 003 \end{gathered}$	0.0154		162.7663	162.7663	0.0114		163.0521
Worker	0.0831	0.0610	0.6637	$\begin{gathered} 1.7200 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.4500 \mathrm{e} \\ 003 \end{gathered}$	0.1691	0.0445	$\begin{gathered} 1.3300 \mathrm{e}- \\ 003 \end{gathered}$	0.0458		171.3196	171.3196	$\begin{gathered} 5.8900 \mathrm{e} \\ 003 \end{gathered}$		171.4670
Total	0.1091	0.7563	0.8668	$\begin{gathered} 3.2500 \mathrm{e}- \\ 003 \end{gathered}$	0.2061	$\begin{gathered} 5.9500 \mathrm{e}- \\ 003 \end{gathered}$	0.2120	0.0555	$\begin{gathered} 5.6300 \mathrm{e}- \\ 003 \end{gathered}$	0.0612		334.0859	334.0859	0.0173		334.5191

3.4 Building Construction-2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127		${ }_{\substack{2,591.580 \\ 2}}$	$\begin{gathered} 2,591.580 \\ 2 \end{gathered}$	0.6313		$\begin{gathered} 2,607.363 \\ 5 \end{gathered}$
Total	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127		$\underset{2}{2,591.580}$	$\begin{array}{\|c} 2,591.580 \\ 2 \end{array}$	0.6313		$\underset{5}{2,607.363}$

3.4 Building Construction-2019

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1950	5.2148	1.5232	0.0115	0.2881	0.0338	0.3218	0.0829	0.0323	0.1152		1,220.747	$1,220.747$ 0	0.0858		$\underset{9}{1,222.890}$
Worker	0.6313	0.4635	5.0442	0.0131	1.2743	0.0110	1.2852	0.3379	0.0101	0.3481		1,302.029	${ }_{1}^{1,302.029}$	0.0448		$\begin{gathered} 1,303.148 \\ 9 \end{gathered}$
Total	0.8263	5.6783	6.5674	0.0245	1.5623	0.0447	1.6071	0.4209	0.0424	0.4633		${ }_{1}^{2,522.776}$	$\begin{array}{\|c\|} \hline 2,522.776 \\ 1 \end{array}$	0.1306		$\begin{gathered} 2,526.039 \\ 8 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127	0.0000	$\begin{gathered} 2,591.580 \\ 2 \end{gathered}$	$\begin{gathered} 2,591.580 \\ 2 \end{gathered}$	0.6313		$\begin{array}{\|c\|c\|} \hline 2,607.363 \\ 5 \end{array}$
Total	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127	0.0000	$\begin{array}{\|c} \hline 2,591.580 \\ 2 \end{array}$	$\underset{2}{2,591.580}$	0.6313		$\begin{array}{\|c} 2,607.363 \\ 5 \end{array}$

3.4 Building Construction - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503		$2,553.063$ 1	2,553.063	0.6229		$2,568.634$ 5
Total	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503		$2,553.063$ 1	$\begin{array}{\|c} 2,553.063 \\ 1 \end{array}$	0.6229		$\begin{gathered} 2,568.634 \\ 5 \end{gathered}$

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1673	4.7858	1.3832	0.0114	0.2881	0.0229	0.3110	0.0830	0.0219	0.1048		:1,212.520	${ }_{8}^{1,212.520}$	0.0811		$1,214.547$ 8
Worker	0.5826	0.4132	4.5715	0.0127	1.2743	0.0107	1.2849	0.3379	$\begin{gathered} 9.8100 \mathrm{e} \\ 003 \end{gathered}$	0.3478		1,262.459	$\underset{2}{1,262.459}$	0.0398		$\begin{gathered} 1,263.454 \\ 0 \end{gathered}$
Total	0.7499	5.1990	5.9548	0.0240	1.5623	0.0335	1.5959	0.4209	0.0317	0.4526		$\begin{array}{\|c} \hline 2,474.980 \\ 0 \end{array}$	$\begin{array}{\|c} 2,474.980 \\ 0 \end{array}$	0.1209		$\begin{gathered} 2,478.001 \\ 8 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503	0.0000	${ }^{2,553.063}$	$\begin{gathered} 2,553.063 \\ 1 \end{gathered}$	0.6229		$\begin{gathered} 2,568.634 \\ 5 \end{gathered}$
Total	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503	0.0000	$\begin{array}{\|c\|} \hline 2,553.063 \\ 1 \end{array}$	$\begin{gathered} 2,553.063 \\ 1 \end{gathered}$	0.6229		$\begin{gathered} 2,568.634 \\ 5 \end{gathered}$

3.5 Paving - 2020

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road				0.0228		0.7528	0.7528		0.6926	0.6926		${ }_{4}^{2,207.733}$	2,207.733	0.7140		$\underset{1}{2,225.584}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	${ }^{1.3566}$	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926		$\underset{4}{2,207.733}$	$\begin{array}{\|c\|} \hline 2,207.733 \\ 4 \end{array}$	0.7140		$\underset{1}{2,225.584}$

LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Winter

CalEEMod Version: CaIEEMod.2016.3.2

3.5 Paving - 2020

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.3566			0.0228		0.7528	0.7528		0.6926	0.6926	0.0000	${ }_{4}^{2,207.733}$	2,207.733	0.7140		$\underset{1}{2,225.584}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	${ }^{1.3566}$	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926	0.0000	$\underset{4}{2,207.733}$	$\underset{4}{2,207.733}$	0.7140		$\underset{1}{2,225.584}$

3.5 Paving - 2020

Mitigated Construction Off-Site
3.6 Architectural Coating - 2019

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										Ib/day					
Archit. Coating	9.4104					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Oif-Road	0.2664	1.8354	1.8413	${ }^{2.97000-}$		0.1288	0.1288		0.1288	0.1288		281.4481	281.4481	0.0238		282.0423
Total	9.6769	1.8354	1.8413	$\overline{2.9700 \mathrm{e}-} 003$		0.1288	0.1288		0.1288	0.1288		281.4481	281.4481	0.0238		282.0423

3.6 Architectural Coating - 2019

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Archit. Coating	9.4104					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2664	1.8354	1.8413			0.1288	0.1288		0.1288	0.1288	0.0000	281.4481	281.4481	0.0238		282.0423
Total	9.6769	1.8354	1.8413	$\begin{aligned} & 2.9700 \mathrm{e}- \\ & 003 \end{aligned}$		0.1288	0.1288		0.1288	0.1288	0.0000	28.4481	281.4481	0.0238		282.0423

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1274	0.0935	1.0177	$\begin{gathered} 2.6400 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$2.2200 e-$ 003	0.2593	0.0682	$\begin{gathered} 2.0400 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		262.6901	262.6901	${ }^{9.04000-}$		262.9160
Total	0.1274	0.0935	1.0177	$\begin{gathered} 2.6400 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$\begin{gathered} 2.2200 \mathrm{e}- \\ 003 \end{gathered}$	0.2593	0.0682	$\begin{gathered} 2.0400 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		262.6901	262.6901	$\begin{gathered} 9.0400 \mathrm{e}- \\ 003 \end{gathered}$		262.9160

3.6 Architectural Coating - 2020
 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	9.4104					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2422	1.6838	1.8314	$\begin{aligned} & 2.9700 \mathrm{e}- \\ & 003 \end{aligned}$		0.1109	0.1109		0.1109	0.1109		281.4481	281.4481	0.0218		281.9928
Total	9.6526	1.6838	1.8314	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.1109	0.1109		0.1109	0.1109		281.4481	281.4481	0.0218		281.9928

3.6 Architectural Coating - 2020

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1175	0.0834	0.9223	$\begin{gathered} 2.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$\begin{gathered} 2.1500 \mathrm{e} \\ 003 \end{gathered}$	0.2592	0.0682	$\begin{gathered} 1.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		254.7067	254.7067	$\begin{gathered} 8.0300 \mathrm{e}- \\ 003 \end{gathered}$		254.9074
Total	0.1175	0.0834	0.9223	$\begin{gathered} 2.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$\begin{gathered} 2.1500 \mathrm{e}- \\ 003 \end{gathered}$	0.2592	0.0682	$\begin{gathered} 1.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		254.7067	254.7067	$\begin{gathered} 8.0300 \mathrm{e}- \\ 003 \end{gathered}$		254.9074

Mitigated Construction On-Site

	ROG	NOX	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	9.4104						0.0000		0.0000	0.0000			0.0000			
Off-Road		1.6838	1.8314	${ }^{2.97000-}$		0.1109	0.1109		0.1109	0.1109	0.0000	281.4481	281.4481	0.0218		281.9928
Total	9.6526	1.6838	1.8314	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.1109	0.1109		0.1109	0.1109	0.0000	281.4481	281.4481	0.0218		281.9928

3.6 Architectural Coating-2020
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										1b/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1175	0.0834	0.9223	$\begin{gathered} 2.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$\begin{gathered} 2.1500 \mathrm{e}- \\ 003 \end{gathered}$	0.2592	0.0682	$\begin{gathered} 1.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		254.7067	254.7067	$\begin{gathered} 8.0300 \mathrm{e}- \\ 003 \end{gathered}$		254.9074
Total	0.1175	0.0834	0.9223	$\begin{gathered} 2.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.2571	$\begin{gathered} 2.1500 \mathrm{e}- \\ 003 \end{gathered}$	0.2592	0.0682	$\begin{gathered} 1.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.0702		254.7067	254.7067	$\begin{gathered} 8.0300 \mathrm{e}- \\ 003 \end{gathered}$		254.9074

4.0 Operational Detail - Mobile

[^4]
4.2 Trip Summary Information

4.3 Trip Type Information
4.4 Fleet Mix

$$
\text { LBCC LAC Interim Year } 2020 \text { - Los Angeles-South Coast County, Winter }
$$

Land Use	DA	LDT1	DT2	MDV	HD1	HD2	MHD	HD	BUS	BU	MC	SUUS	MH
Junior College (2Yr)	0.547726	0.045437	0.201480	0.122768	0.016614	0.006090	0.01932	0.02917	0.00243	0.002359	0.005005	0.0006	0.0009
Other Non-Asphalt Surfac	547726	0.04543	0.201480	0.12276	0.016614	0.0060	0.0193	0.02917	0.00243	0.00235	0.0050	0.00067	
Recreational Swimming Pool	0.547726	0.045437:	0.201480	0.122768:	0.016614:	0.006090:	0.019326 '	0.029174	0.002438:	0.002359	0.005005	0.000677	0.00

5.0 Energy Detail

Historical Energy Use: N
5.1 Mitigation Measures Energy

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
$\begin{aligned} & \text { NaturalGas } \\ & \text { Mitigated } \end{aligned}$	0.1439	1.3085	1.0992	$\begin{aligned} & 7.85000- \\ & \hline 003 \end{aligned}$			0.0995		0.0995	0.0995		${ }^{1,570.229}$	$\begin{gathered} 1,570.229 \\ 8 \end{gathered}$	0.0301	0.0288	$\begin{gathered} 1,579.560 \\ 9 \end{gathered}$
- $\begin{aligned} & \text { NaturalGas } \\ & \text { Unmitigated }\end{aligned}$	0.1439	1.3085	1.0992	${ }^{7.85000}$		0.0995	0.0995		0.0995	0.0995		${ }_{\text {¢ }}$	${ }_{8}^{1,570.229}$	0.0301	0.0288	${ }_{9}^{1,579.560}$

Land Use
Junior College (2Yr)
Asther Non- Asphat S Suraces Reacreational Swimming Pool Total

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	lb/day										1b/day					
Junior College (2Yr)	13.347	0.1439	1.3085	1.0992	$\begin{gathered} 7.8500 \mathrm{e}- \\ 003 \end{gathered}$		0.0995	0.0995		0.0995	0.0995		$\begin{gathered} 1,570.229 \\ 8 \end{gathered}$	$\begin{array}{\|c} \hline 1,570.229 \\ 8 \end{array}$	0.0301	0.0288	$\begin{gathered} 1,579.560 \\ 9 \end{gathered}$
Other NonAsphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Recreational Swimming Pool		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1439	1.3085	1.0992	$\begin{gathered} 7.8500 \mathrm{e}- \\ 003 \end{gathered}$		0.0995	0.0995		0.0995	0.0995		$\begin{array}{\|c} \hline 1,570.229 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 1,570.229 \\ 8 \end{array}$	0.0301	0.0288	$\begin{array}{\|c\|} \hline 1,579.560 \\ 9 \end{array}$

6.0 Area Detail
,

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Mitigated	5.2022	$\begin{gathered} 7.7000 \mathrm{e} \\ 004 \end{gathered}$	0.0832	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$		$\begin{gathered} 3.00000- \\ 004 \end{gathered}$	$\begin{gathered} 3.00000 \mathrm{e} \\ 004 \end{gathered}$		$\begin{aligned} & 3.0000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		0.1772	0.1772	$\begin{gathered} 4.8000 \mathrm{e}- \\ 004 \end{gathered}$		0.1891
Uninitigated	5.2022	$\begin{array}{r} 7.7000- \\ 004 \end{array}$	0.0832	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$		$\begin{gathered} 3.00000 \\ 004 \end{gathered}$	$\begin{aligned} & 3.00000- \\ & 004 \end{aligned}$		$\begin{gathered} 3.0000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{aligned} & 3.0000 \mathrm{e} \\ & 004 \end{aligned}$		0.1772	0.1772	$\begin{gathered} 7.8000 \mathrm{e} \\ 004 \end{gathered}$		0.1891

6.2 Area by SubCategory
Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day										lb/day					
Architectural Coating	0.5930					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	4.6014					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	$7.8300 \mathrm{e}-$ 003	$\begin{gathered} 7.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0832	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 3.0000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 3.0000-- \\ 004 \end{gathered}$		$\begin{aligned} & 3.0000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 3.0000 \mathrm{e}- \\ & 004 \end{aligned}$		0.1772	0.1772	$\begin{aligned} & 4.8000 \mathrm{e}- \\ & 004 \end{aligned}$		0.1891
Total	5.2022	$\begin{gathered} 7.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0832	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		0.1772	0.1772	$\begin{gathered} 4.8000 \mathrm{e}- \\ 004 \end{gathered}$		0.1891

6.2 Area by SubCategory

Mitigated

7.0 Water Detail
7.1 Mitigation Measures Water
8.1 Mitigation Measures Waste

9.0 Operational Offroad

10.0 Stationary Equipment
Fire Pumps and Emergency Generators
Date: 11/25/2018 9:38 PM

$$
\text { LBCC LAC Interim Year } 2020 \text { - Los Angeles-South Coast County, Winter }
$$

11.0 Vegetation
Date: 11/25/2018 9:39 PM
Page 1 of 33
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual

LBCC LAC Interim Year 2020

Los Angeles-South Coast County, Annual
1.0 Project Characteristics
1.1 Land Usage

1.2 Other Project Characteristics
33
2020
0.006
Precipitation Freq (Days)
Operational Year
N2O Intensity
(Ib/MWhr)
0.029
2.2
Wind Speed (m/s)
CH4 Intensity
(Ib/MWhr)
Utility Company Southern California Edison

Urban
9
$\begin{array}{ll}\text { CO2 Intensity } & 702.44 \\ \text { (lb/MWhr) } & \end{array}$
CO2 Intensity
(Ib/MWhr) $\quad 702.44$
1.3 User Entered Comments \& Non-Default Data
CalEEMod Version: CalEEMod.2016.3.2

Project Characteristics - Interim Year 2020

Land Use - 806 student Junior College on 2.18 acres and $179,898 \mathrm{sq} \mathrm{ft}$ of building, 50,881 SF Recreational Swimming Pool, and 2.07-acres Other Non-Asphalt Surfaces. Construction Phase 20 days Demo, 20 days Grading, 230 days Building Construction to occur
Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.

Demolition - Demolition of 48,768 SF of building space

Grading

Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsit and connecting offsite
Mobile Commute Mitigation -
Vehicle Emission Factors -
Vehicle Emission Factors -
Vehicle Emission Factors

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	230.00
tbiConstructionPhase	PhaseEndDate	877/2020	6/12/2020
tbiConstructionPhase	PhaseStartorate	7/11/2020	7/27/2019
tbilanduse	LandUseSquareFeet	35,183.70	179,898.00
tbiLandUse	LotAcreage	0.81	2.18
tbilanduse	LotAcreage	0.03	2.00
toiTripsAndVıT	VendorTripNumber	0.00	6.00
	VendorTrip ${ }^{\text {ajumber }}$	0.00	6.00
tblvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary
CalEEMod Version: CalEEMod.2016.3.2

LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual

Unmitigated Construction
Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr										MT/yr					
2019	0.7872	2.3048	1.9025	$\begin{gathered} 4.0600 \mathrm{e}- \\ 003 \end{gathered}$	0.1408	0.1142	0.2550	0.0431	0.1074	0.1505	0.0000	365.8590	365.8590	0.0593	0.0000	
2020	0.7558	1.6903	1.6654	$\begin{gathered} 3.6000 \mathrm{e} \\ 003 \end{gathered}$	0.1069	0.0821	0.1890	0.0288	0.0774	0.1062	0.0000	321.7871	321.7871	0.0478	0.0000	322.9826
Maximum	0.7872	2.3048	1.9025	$\begin{gathered} 4.0600 \mathrm{e}- \\ 003 \end{gathered}$	0.1408	0.1142	0.2550	0.0431	0.1074	0.1505	0.0000	365.8590	365.8590	0.0593	0.0000	367.3402

©	응
\%	\bigcirc
佼	응
	8
$\begin{array}{\|l\|} \hline \stackrel{O}{O} \\ \dot{O} \\ \dot{\omega} \\ \hline \underline{z} \\ \hline \end{array}$	8
$\begin{aligned} & \text { O} \\ & 0 \\ & \text { O } \\ & \dot{\omega} \end{aligned}$	O-
	$\underset{\infty}{ \pm}$
	\%
$\left\lvert\, \begin{array}{l\|} 0 \\ \sum_{n}^{n} \\ \sum_{3}^{n} \\ \sum_{0}^{0} \end{array}\right.$	$\underset{\text { İ }}{\substack{\text { di }}}$
\|오숭흔	央
	\%
	$\left\lvert\, \begin{aligned} & \circ \\ & \stackrel{\circ}{\infty} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}\right.$
Oio	\%
\bigcirc	\%
or	응
\|	$\stackrel{\circ}{\circ}$

Migated Construction
CalEEMod Version: CalEEMod.2016.3.2
Date: 11/25/2018 9:39 PM
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
$\mathbf{1}$	$\mathbf{6 - 1 - 2 0 1 9}$	$\mathbf{8 - 3 1 - 2 0 1 9}$	1.2883	1.2883
$\mathbf{2}$	$\mathbf{9 - 1 - 2 0 1 9}$	$\mathbf{1 1 - 3 0 - 2 0 1 9}$	1.3530	1.3530
$\mathbf{3}$	$\mathbf{1 2 - 1 - 2 0 1 9}$	$\mathbf{2 - 2 9 - 2 0 2 0}$	1.2927	1.2927
$\mathbf{4}$	$\mathbf{3 - 1 - 2 0 2 0}$	$\mathbf{5 - 3 1 - 2 0 2 0}$	1.2719	1.2719
$\mathbf{5}$	$\mathbf{6 - 1 - 2 0 2 0}$	$\mathbf{8 - 3 1 - 2 0 2 0}$	0.3211	0.3211
		Highest	1.3530	1.3530

2.2 Overall Operational
Unmitigated Operational

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \begin{array}{c} \text { Potal } \end{array} \end{aligned}$	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Area	0.9490	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0104	0.0000		$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 4.00000 \mathrm{e} \\ & \hline 005 \end{aligned}$		$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	0.0201	0.0201	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	0.0214
Energy	0.0263	0.2388	0.2006	$\begin{aligned} & 1.4300 \mathrm{e}- \\ & 003 \end{aligned}$		0.0182	0.0182		0.0182	0.0182	0.0000	834.3091	834.3091	0.0287	$\begin{aligned} & 9.6700 \mathrm{e} \\ & 003 \end{aligned}$	837.9087
Mobile	0.2589	1.3098	3.4382	0.0110	0.8577	0.0114	0.8691	0.2299	0.0107	0.2406	0.0000	${ }^{1-1015}$	${ }_{2}^{1,015.046}$	0.0574	0.0000	$1,016.480$
Waste						0.0000	0.0000		0.0000	0.0000	31.5935	0.0000	31.5935	1.8671	0.0000	78.2716
						0.0000	0.0000		0.0000	0.0000	0.5756	17.2751	17.8507	0.0598	$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$	19.8066
Total	1.2341	1.5487	3.6492	0.0124	0.8577	0.0296	0.8873	0.2299	0.0289	${ }^{0.2588}$	32.1692	$\begin{array}{\|c} \hline 1,866.650 \\ 4 \end{array}$	$\underset{6}{1,898.819}$	2.0131	0.0112	$\underset{4}{1,952.488}$

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
2.2 Overall Operational
Mitigated Operational

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.	Exhaust PM2 5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total $\mathrm{CO2}$	CH4	N20	CO2e
$\begin{gathered} \text { Percent } \\ \text { Reduction } \end{gathered}$	2.11	11.90	17.41	19.05	22.81	8.11	22.32	${ }^{22.82}$	7.79	21.13	0.00	11.69	11.49	0.54	0.00	11.1

3.0 Construction Detail
Construction Phase
Date: 11/25/2018 9:39 PM
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual

$\begin{aligned} & \text { Phase } \\ & \text { Number } \end{aligned}$	Phase Name	Phase Type	Start Date	End Date	$\begin{aligned} & \text { Num Days } \\ & \text { Week } \end{aligned}$	Num Days	Phase Description
1	:Demolition	:Demolition	;6/1/2019	6/28/2019	5	20	
2	Grading	:Grading	6/29/2019	7/26/2019	5	20	
3	Building Construction	:Building Construction	7/27/2019	6/12/2020	5	230	
4	Paving	P----7	,6/13/2020	17/10/2020	5	20	
5	Architectural Coating	Architectural Coating	:7/27/2019	6/12/2020	5	230	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Acres of Paving: 2.07

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 346,169; Non-Residential Outdoor: 115,390; Striped Parking Area: 5,410 (Architectural Coating - sqft)
OffRoad Equipment
CalEEMod Version: CalEEMod.2016.3.2

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	:Concrete/Industrial Saws	1	8.00	81'	0.73
Demolition	Excavators	3	8.00	158!	0.38
Demolition	Rubber Tired Dozers	2	8.00	247:	0.40
Grading	Excavators	1	8.00	158!	0.38
Grading	:Graders	1	8.00	187!	0.41
Grading	Rubber Tired Dozers	1	8.00	247:	0.40
Grading	Tractors/Loaders/Backhoes	3	8.00	971	--37
Building Construction	Cranes	1	7.00	231:	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	971	0.37
Building Construction	Welders	1	8.00	46	0.45
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Pavers	2	8.00	130!	0.42
Paving	Paving Equipment	2	8.00	132:	0.36
Paving	Rollers	2	8.00	80:	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition		15.00	6.00	222.00	14.70	6.90	20.00	D_Mix	!HDT_Mix	HHDT
Grading		15.00	6.00	0.0	14.70	6.90	20.00	_Mix	HDT_Mix	HHDT
Building Construct		114.	45.0	0.0	14.70	6.9	20.00	_Mix	HDT_Mix	HHDT
Architectural Coatin		23.00	0.00	0.0	14.70	6.90	20.00	D_Mix	, HDT_Mix	HHDT
Paving	- 6	15.00	0.00	0.00	14.70	6.90	20.00	D_Mix	:HDT_Mix	HHDT

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
3.1 Mitigation Measures Construction
Water Exposed Area
3.2 Demolition - 2019
Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Potal } \end{aligned}$	Fugitive PM2.5	Exxaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tonslyr										MT/yr					
Fugitive Dust					0.0240	0.0000	0.0240	$\begin{gathered} 3.6300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	${ }^{3.63000-}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-Road	0.0351	0.3578	0.2206	$\begin{aligned} & 3.9000 \mathrm{e} \\ & 004 \end{aligned}$		0.0180	0.0180		0.0167	0.0167	0.0000	34.6263	34.6263	$9.6300 \mathrm{e}-$	0.0000	34.8672
Total	0.0351	0.3578	0.2206	$\begin{aligned} & 3.90000- \\ & 004 \end{aligned}$	0.0240	0.0180	0.0420	$\begin{gathered} 3.6300 \mathrm{e}- \\ 003 \end{gathered}$	0.0167	0.0203	0.0000	34.6263	34.6263	$\begin{aligned} & 9.6300 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	34.8672

CaIEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
3.2 Demolition - 2019
Unmitigated Construction Off-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	$\begin{gathered} 1.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.0351	$\begin{aligned} & 7.4600 e- \\ & \hline 003 \end{aligned}$	$\begin{gathered} 9.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 1.9100 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.3000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 2.0300 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 5.2000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.2000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 6.4000 \mathrm{e} \\ & \hline 004 \end{aligned}$	0.0000	8.643	8.6434	$\begin{gathered} 6.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.000	8.6587
vendor	$\begin{aligned} & 2.5000 \mathrm{e}- \\ & 004 \end{aligned}$	$7.0900 \mathrm{e}$	$\begin{gathered} 1.9400 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 3.800 \mathrm{e}-\mathrm{e} \\ & 004 \end{aligned}$	$\begin{aligned} & 4.0000-1 \\ & 005 \end{aligned}$	$\begin{gathered} -2.2000- \\ 004 \end{gathered}$	$\begin{gathered} 1.1000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.5000 \mathrm{e} \\ 004 \end{gathered}$	0.0000	1.5004	1.5004	$\begin{gathered} 1.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.5029
Worker	$\begin{aligned} & 7.5000 \mathrm{e}- \\ & 004 \end{aligned}$	$6.3000 \mathrm{e}-$	$\begin{gathered} 6.8100 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} -\overline{1.6400-} \\ 003 \end{gathered}$	$\begin{aligned} & 1.0000 \mathrm{e} \\ & 005 \end{aligned}$	$\begin{gathered} 1.6600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 4.4000 \mathrm{e} \\ & 004 \end{aligned}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.5000 \mathrm{e}-- \\ 004 \end{gathered}$ 004	0.0000	1.5800	1.5800	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	814
Total	$\begin{aligned} & 2.0500 \mathrm{e}- \\ & 003 \end{aligned}$	0.0429	0.0162	$\begin{aligned} & 1.3000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 3.9300 e- \\ & 003 \end{aligned}$	$\begin{gathered} 1.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.2400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	${ }^{11.7238}$	11.7238	$\begin{gathered} 7.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	11.7429

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dus					$\begin{gathered} 9.36000- \\ 003 \end{gathered}$	0.0000	$\begin{gathered} 9.3600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.4200 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	$\begin{aligned} & 1.42000- \\ & 003 \end{aligned}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0351	0.3578	0.2206	$\begin{gathered} 3.9000 \mathrm{e}- \\ 004 \end{gathered}$		0.0180	0.0180		0.0167	0.0167	0.0000	34.6263	34.6263	${ }^{9.63003}$	0.0000	34.8671
Total	${ }^{0.0351}$	${ }^{0.3578}$	0.2206	$3.9000 \mathrm{e}-$ 004	$\begin{gathered} 9.3600 \mathrm{e}- \\ 003 \end{gathered}$	0.0180	0.0273	$\begin{aligned} & 1.4200 \mathrm{e}- \\ & 003 \end{aligned}$	0.0167	0.0181	0.0000	34.6263	34.6263	$\begin{aligned} & 9.6300 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	34.8671

Mitigated Construction Off-Site
3.3 Grading - 2019

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0655	0.0000	0.0655	0.0337	0.0000	0.0337	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-Road	0.0258	0.2835	0.1629	$3.0000 \mathrm{e}-$		0.0140	0.0140		0.0129	0.0129	0.0000	26.6423	26.6423	${ }^{8.4300 e-}$	0.0000	26.8530
Total	0.0258	0.2835	0.1629	$3.0000 \mathrm{e}-$ 004	0.0655	0.0140	0.0795	0.0337	0.0129	0.0465	0.0000	26.6423	26.6423	$\begin{gathered} 8.4300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	26.8530

CaIEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
3.3 Grading - 2019
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{gathered} 2.5000-\mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 7.0900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 3.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 4.2000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.5004	1.5004	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	1.5029
Worker	$\begin{gathered} 7.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 6.3000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 6.8100 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e} \\ 005 \end{gathered}$	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.5800	1.5800	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.5814
Total	$\begin{gathered} 1.0000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.7200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.7500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.0200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.0800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	3.0804	3.0804	$\begin{gathered} 1.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	3.0843

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0256	0.0000	0.0256	0.0131	0.0000	0.0131	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0258	0.2835	0.1629	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$		0.0140	0.0140		0.0129	0.0129	0.0000	26.6422	26.6422	$\begin{gathered} 8.4300 \mathrm{e} \\ 003 \end{gathered}$	0.0000	26.8530
Total	0.0258	0.2835	0.1629	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0256	0.0140	0.0395	0.0131	0.0129	0.0260	0.0000	26.6422	26.6422	$\begin{gathered} 8.4300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	26.8530

CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
3.3 Grading - 2019
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$2.5000 e^{-}$ 004	$\begin{gathered} 7.0900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 3.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.2000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.1000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.5004	1.5004	$\begin{gathered} 1.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.5029
Worker	$\begin{gathered} 7.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 6.3000-- \\ 004 \end{gathered}$	$\begin{gathered} 6.8100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6400 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e} \\ 005 \end{gathered}$	$\begin{gathered} 1.6600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.5800	1.5800	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.5814
Total	$\begin{gathered} 1.0000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.7200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.7500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.0200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.0800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	3.0804	3.0804	$\begin{gathered} 1.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	3.0843

3.4 Building Construction-2019
Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.1322	1.1804	0.9612	$\begin{gathered} 1.5100 \mathrm{e}- \\ 003 \end{gathered}$		0.0722	0.0722		0.0679	0.0679	0.0000	131.6584	131.6584	0.0321	0.0000	132.4602
Total	0.1322	1.1804	0.9612	$\begin{gathered} 1.5100 \mathrm{e}- \\ 003 \end{gathered}$		0.0722	0.0722		0.0679	0.0679	0.0000	131.6584	131.6584	0.0321	0.0000	132.4602

CaIEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
3.4 Building Construction - 2019
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0107	0.2977	0.0814	$\begin{gathered} 6.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0159	$\begin{gathered} 1.8700 \mathrm{e}- \\ 003 \end{gathered}$	0.0178	$\begin{gathered} 4.5800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.7900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} .0 .3700 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	63.0163	63.0163	$4.2100 \mathrm{e}-$ 003	0.0000	63.1214
Worker	0.0320	0.0267	0.2898	$\begin{aligned} & 7.4000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0700	$\begin{aligned} & 6.2000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0706	0.0186	$\begin{gathered} 5.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0192	0.0000	67.2463	67.2463	$\begin{gathered} 2.3100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	67.3041
Total	0.0427	0.3243	0.3712	$\begin{gathered} 1.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.0858	$\begin{gathered} 2.4900 \mathrm{e}- \\ 003 \end{gathered}$	0.0883	0.0232	$\begin{gathered} 2.3600 \mathrm{e}- \\ 003 \end{gathered}$	0.0255	0.0000	130.2626	130.2626	$\begin{aligned} & 6.5200 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	130.4256

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.1322	1.1804	0.9612	$\begin{gathered} 1.5100 \mathrm{e}- \\ 003 \end{gathered}$		0.0722	0.0722		0.0679	0.0679	0.0000	131.6582	131.6582	0.0321	0.0000	132.4600
Total	0.1322	1.1804	0.9612	$\begin{gathered} 1.5100 \mathrm{e}- \\ 003 \end{gathered}$		0.0722	0.0722		0.0679	0.0679	0.0000	131.6582	131.6582	0.0321	0.0000	132.4600

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
3.4 Building Construction-2019
Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0107	0.2977	0.0814	${ }^{6.5000-}$	0.0159	$\begin{aligned} & 1.8700 \mathrm{e}- \\ & 003 \end{aligned}$	0.0178	$4.5800 \mathrm{e}-$	$1.7900 \mathrm{e}-$	$6.3700 \mathrm{e}-$	0.0000	63.0163	63.0163	${ }^{4.21000}$	0.0000	63.1214
Worker	0.0320	0.0267	0.2898	$\begin{aligned} & 7.40000- \\ & 004 \end{aligned}$	0.0700	$6.2000 \mathrm{e}-$	0.0706	0.0186	$\begin{gathered} 5.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0192	0.0000	67.2463	67.2463	$\begin{aligned} & 2.3100 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	67.3041
Total	0.0427	0.3243	0.3712	$\begin{aligned} & 1.39000 e^{1.0} \\ & \hline 003 \end{aligned}$	0.0858	${ }_{2003}^{2.4900 e_{-}}$	0.0883	0.0232	$\begin{aligned} & 2.3600 e_{-} \\ & 003 \end{aligned}$	0.0255	0.0000	130.2626	130.2626	${ }_{\text {c }}^{6.52000}$	0.0000	130.4256

3.4 Building Construction-2020
Unmitigated Construction On-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.1251	1.1320	0.9941	$1.5900 \mathrm{e}-$		0.0659	0.0659		0.0620	0.0620	0.0000	: 136.6499	136.6499	${ }^{0.0333}$	0.0000	137.4833
Total	${ }^{0.1251}$	1.1320	0.9941	$\begin{gathered} 1.5900 \mathrm{e}- \\ 003 \end{gathered}$		0.0659	0.0659		0.0620	0.0620	0.0000	136.6499	136.6499	0.0333	0.0000	137.4833

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2 5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.1251	1.1320	0.9941	$\begin{gathered} 1.5900 \mathrm{e}- \\ 003 \end{gathered}$		0.0659	0.0659		0.0620	0.0620	0.0000	! 136.6497	136.6497	0.0333	0.0000	137.4832
Total	0.1251	1.1320	0.9941	$\begin{gathered} 1.5900 \mathrm{e}- \\ 003 \end{gathered}$		0.0659	0.0659		0.0620	0.0620	0.0000	136.6497	136.6497	${ }^{0.0333}$	0.0000	137.4832

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Potal } \end{aligned}$	Fugitive	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	C02e
Category	tonslyr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{gathered} 9.6300 \mathrm{e}- \\ 003 \end{gathered}$	0.2877	0.0779	$6.8000 \mathrm{e}-$	0.0167	$\begin{array}{r} 1.3400 \mathrm{e}- \\ 003 \end{array}$	0.0181	$\begin{gathered} 4.8300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.2800 \mathrm{e-} \\ 003 \end{gathered}$	$\begin{gathered} -7.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	65.9572	65.9572	${ }^{4.19000}$	0.0000	66.0619
Worker	0.0311	0.0250	0.2769	$\begin{gathered} 7.6000 \mathrm{e}-\mathrm{C} \\ 004 \end{gathered}$	0.0737	$6.3000 \mathrm{e}-$ 004	0.0743	0.0196	$5.8000 \mathrm{e}-$ 004	0.0202	0.0000	68.6960	68.6960	$\begin{gathered} 2.1600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	68.7502
Total	0.0407	0.3128	0.3547	$\begin{gathered} 1.4400 \mathrm{e}- \\ 003 \end{gathered}$	0.0904	$\begin{gathered} 1.9700 \mathrm{e}- \\ 003 \end{gathered}$	0.0924	0.0244	$1.8600 \mathrm{e}-$ 003	0.0263	0.0000	134.6532	134.6532	$\begin{gathered} 6.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	134.8121

3.5 Paving-2020

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	co2e
Category	tons/yr										MT/yr					
Off-Road	0.0136	0.1407	0.1465	$\begin{gathered} 2.3000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 7.5300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.5300 \mathrm{e}- \\ 003 \end{gathered}$		$6.9300 \mathrm{e}-$ 003	$\begin{gathered} 6.93000 \mathrm{e} \\ 003 \end{gathered}$	0.0000	20.0282	20.0282	$\begin{gathered} 6.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	20.1902
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	${ }^{-0.0000}$
Total	${ }^{0.0136}$	0.1407	0.1465	$\begin{gathered} 2.3000 \mathrm{e}- \\ \hline 0 \cap 4 \end{gathered}$ 004		$\begin{aligned} & 7.53000- \\ & 003 \end{aligned}$	7.5300e- 003		$6.9300 \mathrm{e}-$ 003	$6.9300 \mathrm{e}-$ 003	0.0000	20.0282	20.0282	$\begin{gathered} 6.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	20.1902

CaIEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
3.5 Paving - 2020
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} -7.9000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 5.6000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 6.1700 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 2.0000 \mathrm{e} \\ 005 \end{gathered}$	$\begin{gathered} 1.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 1.0000 \mathrm{e} \\ & 005 \end{aligned}$	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.5320	1.5320	$\begin{aligned} & 5.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0000	1.5332
Total	$\begin{gathered} 6.9000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 5.6000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 6.1700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.5320	1.5320	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.5332

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0136	0.1407	0.1465	$\begin{aligned} & 2.3000 \mathrm{e}- \\ & 004 \end{aligned}$		$\begin{gathered} 7.5300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.5300 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 6.9300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 6.9300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	20.0282	20.0282	$\begin{gathered} 6.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	20.1901
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0136	0.1407	0.1465	$\begin{gathered} 2.3000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 7.5300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.5300 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 6.9300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 6.9300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	20.0282	20.0282	$\begin{gathered} 6.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	20.1901

Mitigated Construction Off-Site
3.6 Architectural Coating - 2019

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Archit. Coating	0.5270					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-Road	0.0149	0.1028	0.1031	$1.7000 \mathrm{e}-$		$7.2100 \mathrm{e}-$	$7.2100 \mathrm{e}-$		$7.2100 \mathrm{e}-$	$7.2100 \mathrm{e}-$	0.0000	14.2982	14.2982	$1.2100 \mathrm{e}-$	0.0000	14.3284
Total	0.5419	0.1028	0.1031	$1.7000 \mathrm{e}-$ 004		$\begin{gathered} 7.2100 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 7.2100 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 7.2100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.21000- \\ 003 \end{gathered}$	0.0000	14.2982	14.2982	$\begin{aligned} & 1.2100 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	14.3284

CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
3.6 Architectural Coating - 2019
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{aligned} & 6.4500 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 5.3800 \mathrm{e} \\ 003 \end{gathered}$	0.0585	$\begin{aligned} & 1.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0141	$\begin{gathered} 1.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0142	$\begin{gathered} 3.7500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 3.8600 \mathrm{e} \\ 003 \end{gathered}$	0.0000	13.5672	13.5672	$\begin{gathered} 4.7000- \\ 004 \end{gathered}$	0.0000	13.5789
Total	$\begin{gathered} 6.4500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.3800 \mathrm{e}- \\ 003 \end{gathered}$	0.0585	$\begin{aligned} & 1.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0141	$\begin{gathered} 1.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0142	$\begin{gathered} 3.7500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.1000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.8600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	13.5672	13.5672	$\begin{aligned} & 4.7000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	13.5789

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coatin	0.5270					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oif-Road	0.0149	0.1028	0.1031	${ }_{1}^{1.70000-}$		7.2100 e 003	$\begin{array}{r} 7.21000- \\ 003 \end{array}$		$\begin{aligned} & 7.2100 \mathrm{e}- \\ & 003 \end{aligned}$	$7.2000-$ 003	0.0000	14.2982	14.2982	$1.2100 e-$ 003	0.0000	14.3284
Total	0.5419	0.1028	0.1031	$1.7000 \mathrm{e}-$ 004		$\begin{gathered} 7.2100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.2100 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 7.2100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.21000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	14.2982	14.2982	$\begin{gathered} 1.2100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	14.3284

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$6.4500 \mathrm{e}-$ 003	$\begin{gathered} 5.3800-- \\ 003 \end{gathered}$	0.0585	$\begin{gathered} 1.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0141	$\begin{gathered} 1.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0142	$\begin{gathered} 3.7500 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 1.1000-- \\ 004 \end{gathered}$	$\begin{gathered} 3.8600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	13.5672	13.5672	$\begin{gathered} 4.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	13.5789
Total	$\begin{aligned} & 6.4500 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 5.3800 \mathrm{e}- \\ 003 \end{gathered}$	0.0585	$\begin{gathered} 1.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0141	$\begin{gathered} 1.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0142	$\begin{gathered} 3.7500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.1000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.8600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	13.5672	13.5672	$\begin{gathered} 4.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	13.5789

3.6 Architectural Coating - 2020

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coating	0.5552					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0143	0.099	0.1081	$1.8000 \mathrm{e}-$		$6.5500 \mathrm{e}-$	$6.5500 \mathrm{e}-$		$6.5500 \mathrm{e}-$	$6.5500 \mathrm{e}-$	0.0000	15.0642	15.0642	1.1700e-	0.0000	15.0934
Total	0.5695	0.0994	0.1081	$1.8000 \mathrm{e}-$ 004		$\begin{gathered} 6.5500 \mathrm{e} \\ 003 \end{gathered}$	$6.5500 \mathrm{e}-$ 003		$6.5500 \mathrm{e}-$ 003	$6.5500 \mathrm{e}-$ 003	0.0000	15.0642	15.0642	$\begin{gathered} 1.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	15.0934

CaIEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
3.6 Architectural Coating - 2020
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 6.2600- \\ 003 \end{gathered}$	$\begin{gathered} -0.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.0559	$\begin{gathered} 1.5000 \mathrm{e} \\ 004 \end{gathered}$	0.0149	$\begin{gathered} 1.3000 \mathrm{e}- \\ 004 \end{gathered}$	0.0150	$\begin{gathered} 3.9500 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 1.2000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 4.0700 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	13.8597	13.8597	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	13.8707
Total	$\begin{gathered} 6.2600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.0559	$\begin{gathered} 1.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0149	$\begin{gathered} 1.3000 \mathrm{e}- \\ 004 \end{gathered}$	0.0150	$\begin{gathered} 3.9500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.2000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.0700 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	13.8597	13.8597	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	13.8707

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coatin	0.5552					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oif-Road	0.0143	0.099	0.1081	${ }^{1.8000-}$		$6.5500 \mathrm{e}-$	$6.5500 \mathrm{e}-$		$6.5500 \mathrm{e}-$	${ }^{6.55000-}$	0.0000	15.0642	15.0642	$1.1700 \mathrm{e}-$	0.0000	15.093
Total	0.5695	0.0994	0.1081	$\begin{gathered} 1.8000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{aligned} & 6.5500 \mathrm{e}- \\ & \hline 003 \end{aligned}$	$\begin{gathered} 6.5500 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 6.5500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 6.5500 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	15.0642	15.0642	$\begin{aligned} & 1.1700 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	15.0933

3.6 Architectural Coating - 2020
3.6 Architectural Coating-2020
Mitigated Construction Off-Site
CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
Migated Construction Oft

4.0 Operational Detail - Mobile

[^5]| | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | $\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$ | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Category | tons/yr | | | | | | | | | | MT/yr | | | | | |
| Mitigated | 0.2328 | | 2.8028 | $\begin{gathered} 8.6400 \mathrm{e}- \\ 003 \end{gathered}$ | 0.6620 | $\begin{gathered} 9.0200 \mathrm{e}- \\ 003 \end{gathered}$ | 0.6710 | 0.1775 | $\begin{gathered} 8.4500 \mathrm{e}- \\ 003 \end{gathered}$ | 0.1859 | 0.0000 | : 796.8389 | 796.8389 | 0.0465 | 0.0000 | 798.0006 |
| Unmitigated | 0.2589 | 1.3098 | 3.4382 | 0.0110 | 0.8577 | 0.0114 | 0.8691 | 0.2299 | 0.0107 | 0.2406 | 0.0000 | $:$ | $: \begin{gathered} 1,015.046 \\ \hline \end{gathered}$ | 0.0574 | 0.0000 | $1,016.480$ |

4.2 Trip Summary Information
4.3 Trip Type Information

	Miles			Trip \%			Trip Purpose \%		
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Junior College (2Yr)	16.60	8.40	6.90	6.40	88.60	5.00	92	7	1
Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
"Recreational Swimming pool	16.60	8.40	6.90	33.00	48.00	19.00	52	39	9

4.4 Fleet Mix

LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Junior College (2Yr)	0.547726	0.045437	0.201480	0.122768	0.016614	0.006090	0.019326	0.029174	0.002438	0.002359	0.005005	0.000677	0.000907
Other Non-Asphalt Suraces	0.547726	-0.045437	0.201480	0.122768	0.016614	-0.006090	-0.019326	0.029174	0.002438	-0.002359	0.005005	0.000677	0.000907
Recreational Swimming Pool	0.547726	0.045437:	0.201480	0.122768	0.016614	0.006090	0.019326	0.029174	0.002438	0.002359	0.005005	0.000677	0.000907

CaIEEMod Version: CalEEMod.2016.3.2
5.1 Mitigation Measures Energy

	ROG	NOx	co	SO2	$\begin{gathered} \text { Fugitive } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Electricity Mitigated							0.0000		0.0000	0.0000	0.0000	: 574.3400	574.3400	0.0237	$\begin{aligned} & 4.9100 e- \\ & 003 \end{aligned}$	576.3947
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	574.3400	574.3400	0.0237	${ }^{4.91000}$	576.3947
$\begin{aligned} & \text { NaturalGas } \\ & \text { Mitigated } \end{aligned}$	0.0263	0.2388	0.2006	${ }^{1.73000 e}$		0.0182	0.0182		0.0182	0.0182	0.0000	259.9692	259.9692	$\begin{gathered} 4.9800 e- \\ 003 \end{gathered}$	$\begin{gathered} 4.7700- \\ 003 \end{gathered}$	261.5140
NaturalGas Unmitigated	0.0263	0.2388	0.2006	$\begin{aligned} & 1.43000- \\ & \hline 003 \end{aligned}$			0.0182		0.0182	0.0182	0.0000	: 259.9692	259.9692	${ }^{4.98000}$	$\begin{gathered} 4.7700 \mathrm{e} \\ 003 \end{gathered}$	261.5140

CaIEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual

Mitigated

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	tons/yr										MT/yr					
Junior College (2Yr)	$\begin{aligned} & 4.87164 \mathrm{e} \\ & +006 \end{aligned}$	0.0263	0.2388	0.2006	$\begin{gathered} 1.4300 \mathrm{e}- \\ 003 \end{gathered}$		0.0182	0.0182		0.0182	0.0182	0.0000	259.9692	259.9692	$\begin{gathered} 4.9800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.7700 \mathrm{e}- \\ 003 \end{gathered}$	261.5140
Other NonAsphalt Surface	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Recreational Swimming Pool			0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0263	0.2388	0.2006	$\begin{gathered} 1.4300 \mathrm{e}- \\ 003 \end{gathered}$		0.0182	0.0182		0.0182	0.0182	0.0000	259.9692	259.9692	$\begin{gathered} 4.9800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.7700 \mathrm{e}- \\ 003 \end{gathered}$	261.5140

Page 26 of 33
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
5.3 Energy by Land Use - Electricity
Unmitigated

Mitigated

	Electricity	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr	MT/yr			
Junior College $(2 \mathrm{Yr})$	$\begin{aligned} & 1.80258 \mathrm{e} \\ & +006 \end{aligned}$	574.3400	0.0237	$\begin{aligned} & 4.9100 \mathrm{e}- \\ & 003 \end{aligned}$	576.3947
Other Non Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Recreational Swimming Poo		0.0000	0.0000	0.0000	0.0000
Total		574.3400	0.0237	$\begin{aligned} & 4.91000 e_{-}^{-} \\ & 003 \end{aligned}$	576.3947

6.0 Area Detail
CaIEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual

6.1 Mitigation Measures Area

6.2 Area by SubCategory
Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr										MT/yr					
Architectural Coating	0.1082					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.8398					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	$\begin{gathered} 9.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0104	0.0000		$\begin{aligned} & 4.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 4.0000- \\ 005 \end{gathered}$		$\begin{gathered} 4.0000 \mathrm{e} \\ 005 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	0.0201	0.0201	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	0.0214
Total	0.9490	$\begin{gathered} 1.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0104	0.0000		$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	0.0201	0.0201	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	0.0214

LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
CaIEEMod Version: CalEEMod.2016.3.2
6.2 Area by SubCategory
Mitigated

7.0 Water Detail
7.1 Mitigation Measures Water
Page 29 of 33
LBCC LAC Interim Year 2020 －Los Angeles－South Coast County，Annual
CaIEEMod Version：CalEEMod．2016．3．2

	Total CO2	CH4	N2O	CO2e
Category	MT／yr			
Mitigated	17.8507		${ }^{1.54000-}$	19.8066
Ünititigated	${ }^{17.8507}$	0.0598	1.5400 e 003	19.8066

7．2 Water by Land Use
Unmitigated

oั̃	気		¢
\％			帝
款			\|啻
$\begin{array}{\|l\|} \hline \stackrel{\mathrm{O}}{0} \\ \frac{0}{\mathrm{x}} \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{array}$			$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\rightharpoonup}{\circ}} \stackrel{\rightharpoonup}{\stackrel{1}{c}}$
	$\stackrel{\text { T，}}{\text { ¢ }}$		
	－		－

7.2 Water by Land Use
Mitigated

8.0 Waste Detail
8.1 Mitigation Measures Waste
Page 31 of 33
LBCC LAC Interim Year 2020 －Los Angeles－South Coast County，Annual
CalEEMod Version：CalEEMod．2016．3．2

8．2 Waste by Land Use
Unmitigated

Oัّ		$\begin{aligned} & \infty \\ & \\ & \\ & \end{aligned}$	家安	霖	¢
\％${ }^{\text {z }}$		O8	Oo	:o	\％
枵		$\begin{aligned} & \text { 星 } \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$	Oo	:\%	$\mid \stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$
		－	io	$:$	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{o n} \\ & \stackrel{\sim}{m} \end{aligned}\right.$
	$\stackrel{\text { ® }}{\text { ¢ }}$	\％			
	$\left\lvert\, \begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{J}{0} \end{aligned}\right.$: 言		产

8.2 Waste by Land Use
Mitigated

CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2020 - Los Angeles-South Coast County, Annual
9.0 Operational Offroad

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

User Defined Equipment

Equipment Type	Number

CaIEEMod Version: CalEEMod.2016.3.2
11.0 Vegetation

APPENDIX C

CalEEMod Model Interim Year 2025 Printouts

Date: 11/26/2018 10:22 AM
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer

LBCC LAC Interim Year 2025 (2021-2025 Construction)

 Los Angeles-South Coast County, Summer33
2025

0.029
2.2

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	2,211.00	Student	1.23	101,578.00	0
Other Non-Asphalt Surfaces	2.0	Acre	2.07	90,169.20	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)
Climate Zone	9	
Utility Company	Southern California Edison	
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity $(\mathrm{Ib} / \mathrm{MWhr})$

(b/MWhr)
1.3 User Entered Comments \& Non-Default Data

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer

Project Characteristics - Interim Year 2025

Land Use - 2,211 student Junior College on 1.23 acres and $101,578 \mathrm{sq} \mathrm{ft}$ of building and 2.07-acres Other Non-Asphalt Surfaces.

Construction Phase - 20 days Demo, 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving. Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.

Demolition - Demolition of 50276 SF of building space
Grading -
Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA. Swimming pool is not anticipated to generate any trips. Vehicle Emission Factors Vehicle Emission Factors Vehicle Emission Factors -

Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsit and connecting offsite
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	8.00	20.00
tbiConstructionPhase	NumDays	18.00	230.00
tbiConstructionPhase	NumDays	18.00	20.00
tbiconstructionPhase	PhaseEndDate	7/8/2021	7/26/2021
tbiconstructionPhase	PhaseEndDate	5/26/2022	6/13/2022
tbiConstructionPhase	PhaseEndDate	7/15/2022	6/13/2022
tbiConstructionPhase	PhaseEndDate	6/21/2022	7/11/2022
tbiconstructionPhase	PhaseStartDate	799/2021	7/27/2021
tbiconstructionPhase	PhaseStarto-ate	6/22/2022	7127/2021
tbiConstructionPhase	PhaseStartDate	5/27/2022	6/14/2022
tbilanduse	LanduseSquareFeet	96,515.10	101,578.00
tbilanduse	LotAcreage	2.22	1.23
tbiTripsAndVMT	VendorTripNumber	0.00	6.00
tbiTTripsAndVM'	VendorTripNumber	0.00	6.00
tolvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary

Unmitigated Construction

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										1b/day					
2021	6.8329	35.1388	23.0865	0.0510	2.7615	1.5633	3.9239	1.3689	1.4525	2.4384	0.0000	:5,052.869	[${ }^{5,052.869}$ 8	1.1354	0.0000	$\begin{gathered} 5,081.255 \\ 2 \end{gathered}$
$\because 2$	6.5918	20.1445	22.5260	--0485	1.2827	0.9046	2.1873	0.3447	0.8558	1.2005	0.0000	$\begin{gathered} 4,746.238 \\ 8 \end{gathered}$	4,746.238	0.7082	0.0000	$\begin{gathered} 4,763.942 \\ 8 \end{gathered}$
Maximum	6.8329	35.1388	23.0865	0.0510	2.7615	1.5633	3.9239	1.3689	1.4525	2.4384	0.0000	$\begin{gathered} 5,052.869 \\ 8 \end{gathered}$	$\underset{8}{5,052.869}$	1.1354	0.0000	$\begin{array}{\|c} \hline 5,081.255 \\ 2 \end{array}$
	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	49.71	0.00	39.54	54.52	0.00	36.08	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Area	2.3288	$\begin{gathered} 2.0400 \mathrm{e}- \\ 003 \end{gathered}$	0.2254	$\begin{aligned} & 2.0000 \mathrm{e}- \\ & 005 \end{aligned}$		$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$	$8.0000 \mathrm{e}-$ 004		0.4843	0.4843	$\begin{gathered} 1.2600 \mathrm{e}- \\ 003 \end{gathered}$		0.5158
Energy	0.0813	0.7389	0.6206	$4.4300 \mathrm{e}-$ 003		0.0562	0.0562		0.0562	0.0562		886.6180	886.6180	0.0170	0.0163	891.8867
Mobile	3.5780	15.4004	45.9714	0.1850	16.3268	0.1367	16.4634	4.3684	0.1269	4.4953		$\begin{gathered} 18,879.64 \\ 78 \end{gathered}$	$\begin{gathered} 18,879.64 \\ 78 \end{gathered}$	0.8600		$\begin{gathered} 18,901.14 \\ 69 \end{gathered}$
Total	5.9881	16.1412	46.8174	0.1895	16.3268	0.1936	16.5204	4.3684	0.1839	4.5522		$\begin{array}{\|c\|} \hline 19,766.75 \\ 01 \end{array}$	$\begin{array}{\|c\|} \hline 19,766.75 \\ 01 \end{array}$	0.8782	0.0163	$\begin{gathered} 19,793.54 \\ 94 \end{gathered}$

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Tota	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										1b/day					
Area	2.3288	$\begin{gathered} 2.0400 \mathrm{e}- \\ 003 \end{gathered}$	0.2254	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 8.0000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$		0.4843	0.4843	$\begin{gathered} 1.2600 \mathrm{e}- \\ 003 \end{gathered}$		0.5158
Energy	0.0813	0.7389	0.6206	$\begin{gathered} 4.4300 \mathrm{e}- \\ 003 \end{gathered}$		0.0562	0.0562		0.0562	0.0562		886.6180	886.6180	0.0170	0.0163	891.8867
Mobile	3.2284	13.7082	37.0383	0.1454	12.6020	0.1086	12.7105	3.3718	0.1008	3.4726		${ }^{14,843.18}$	$14,843.18$ 44	0.6926		$\begin{gathered} 14,860.49 \\ 85 \end{gathered}$
Total	5.6385	14.4491	37.8843	0.1498	12.6020	0.1655	12.7675	3.3718	0.1578	3.5295		$\begin{array}{\|c\|} \hline 15,730.28 \\ 67 \end{array}$	$\begin{array}{\|c\|} \hline 15,730.28 \\ 67 \end{array}$	0.7108	0.0163	$\begin{gathered} 15,752.90 \\ 10 \end{gathered}$

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer																
	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH 4	N20	CO2e
$\begin{gathered} \text { Percent } \\ \text { Reduction } \end{gathered}$	5.84	10.48	19.08	20.92	22.81	14.50	22.72	22.81	14.19	22.47	0.00	20.42	20.42	19.06	0.00	20.41

3.0 Construction Detail

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	:Concrete/Industrial Saws	1	8.00	81'	0.73
Demolition	Excavators	3	8.00	158	0.38
Demolition	:Rubber Tired Dozers	2	8.00	247!	0.40
Grading	-Excavators	1	8.00	158	0.38
Grading	: Graders	1	8.00	187!	0.41
Grading	:Rubber Tired Dozers	1	8.00	247!	0.40
Grading	-Tractors/Loaders/Backhoes	3	8.00	97!	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	891	0.20
Building Construction	-Generator Sets	1	8.00	841	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	971	0.37
Building Construction	-Welders	1	8.00	461	0.45
Paving	Pavers	1	8.00	130	0.42
Paving	Paving Equipment	2	6.00	132	0.36
Paving	Rollers	2	6.00	801	0.38
Architectural Coating	:Air Compressors	1	6.00	781	0.48
Paving	-Cement and Mortar Mixers	2	6.00	9	0.56
Paving	-Tractors/Loaders/Backhoes	1	8.00	97:	0.37

Trips and VMT

$$
\text { LBCC LAC Interim Year } 2025 \text { (2021-2025 Construction) - Los Angeles-South Coast County, Summer }
$$

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	$\begin{gathered} \text { Worker Trip } \\ \text { Length } \end{gathered}$	$\begin{aligned} & \hline \text { Vendor Trip } \\ & \text { Length } \end{aligned}$	$\begin{array}{\|l} \text { Hauling Trip } \\ \text { Length } \end{array}$	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	6.00	229.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	6	15.00	6.00	0.00	14.70	6.9	20.00	D_-Mix	HDT_Mix	†HEDT
Building Construction	9	81.00	31.00	0.00	14.70	6.9	20.00	D_Mix	HDT_Mix	HHDT
Paving	8	20.00	0.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Architectural Coating		16.00	0.00	0.00	14.70	6.9	20.00	LD_Mix	:HDT_Mix	:HEDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Demolition-2021
Unmitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Potal } \end{aligned}$	Fugitive PM2.5	Exhaust PM2 5	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					2.4745	0.0000	2.4745	0.3747	0.0000	0.3747			0.0000			0.0000
off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411		, ${ }_{9}^{3,747.944}$	$\begin{array}{r} 3,747.944 \\ 9 \end{array}$	1.0549		$\begin{array}{r} 3,774.317 \\ 4 \end{array}$
Total	${ }^{3.1651}$	31.4407	21.5650	0.0388	2.4745	1.5513	4.0258	0.3747	1.4411	1.8158		$\underset{9}{3,747.944}$	$\underset{9}{3,747.944}$	1.0549		$\underset{4}{3,774.317}$

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										Ib/day					
Fugitive Dust					0.9650	0.0000	0.9650	0.1461	0.0000	0.1461			0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411	0.0000	${ }^{3,747.944}$	3,747.944	1.0549		$\underset{4}{3,774.317}$
Total	${ }^{3.1651}$	31.4407	21.5650	0.0388	0.9650	1.5513	2.5164	0.1461	1.4411	1.5872	0.0000	$\underset{9}{3,747.944}$	$\underset{9}{3,747.944}$	1.0549		$3,774.317$ 4

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { PMoal } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling		3.0714	0.7202	$\begin{gathered} 8.9300 \mathrm{e}- \\ 003 \end{gathered}$	0.2002	$\begin{aligned} & 9.4300 \mathrm{e}- \\ & 003 \end{aligned}$	0.2096	0.0549	$\begin{gathered} 9.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0639		! 969.1810	969.1810	0.0658		970.8253
Vendor	0.0182	0.5825	0.1523	1.54000	0.0384	$\begin{aligned} & 1.1900 \mathrm{e}- \\ & 003 \end{aligned}$	0.0396	0.0111	$\begin{aligned} & 1.1400 \mathrm{e}- \\ & 003 \end{aligned}$	0.0122		164.9284	164.9284	$9.7200 \mathrm{e}$		165.1713
Worker	0.0643	0.0442	0.6042	$\begin{gathered} 1.7100 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.1690	0.0445	$\begin{gathered} 1.2500 \mathrm{e}- \\ 003 \end{gathered}$	0.0457		170.8155	170.8155	$\begin{array}{r} 5.0300 \mathrm{e} \\ 003 \end{array}$		170.9413
Total	0.1780	3.6981	1.4766	0.0122	0.4063	0.0120	0.4183	0.1104	0.0114	0.1218		${ }_{8}^{1,304.924}$	$\begin{array}{\|c\|} \hline 1,304.924 \\ 8 \end{array}$	0.0805		$\xrightarrow[9]{1,306.937}$

3.3 Grading - 2021

Unmitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Off-Road	2.2903	24.7367	15.8575	0.0296		1.1599	1.1599		1.0671	1.0671		${ }_{5}^{2,87}$	${ }_{5}^{2,871.928}$	0.9288		$2,895.149$
Total	${ }^{2.2903}$	24.7367	15.8575	0.0296	6.5523	1.1599	${ }^{7.7123}$	3.3675	1.0671	4.4346		${ }_{5}^{2,871.928}$	$\underset{5}{2,871.928}$	0.9288		${ }_{5}^{2,895.149}$

Unmitigated Construction Off-Site

Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \hline \text { Total } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust					2.5554	0.0000	2.5554	1.3133	0.0000	1.3133			0.0000			0.0000
Off-Road	2.2903	24.7367	15.8575	0.0296		1.1599	1.1599		1.0671	1.0671	0.0000	$\underbrace{2,871.928}_{5}$	2,87-928	0.9288		$\underset{5}{2,895.149}$
Total	${ }^{2.2903}$	24.7367	15.8575	0.0296	2.5554	1.1599	3.7153	${ }^{1.3133}$	1.0671	2.3804	0.0000	$\underset{5}{2,871.928}$	${ }_{5}^{2,871.928}$	0.9288		${ }_{5}^{2,895.149}$

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PMi10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2 5	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0182	0.5825	0.1523	$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$	0.0384	${ }^{1.19000}$	0.0396	0.0111	$\begin{gathered} 1.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.0122		164.9284	164.9284	${ }^{9.72000}$		165.1713
Worker	0.0643	0.0442	0.6042	$\begin{gathered} -7.710-0 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$1.35000-$	0.1690	0.0445	$\begin{gathered} 1.2500 \mathrm{e}- \\ 003 \end{gathered}$	0.0457		70.8155	170.8155	$\begin{gathered} 5.0 \text { ou00-- } \\ 003 \end{gathered}$		170.9413^{-1}
Total	0.0825	0.6267	0.7565	$\begin{gathered} 3.2500 \mathrm{e}- \\ \hline 003 \end{gathered}$	0.2061	$\begin{aligned} & 2.5400 \mathrm{e}- \\ & 003 \end{aligned}$	0.2086	0.0555	$\begin{gathered} 2.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.0579		335.7439	335.7439	0.0148		336.1126

3.4 Building Construction-2021

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.9009	17.4321	16.5752	0.0269		0.9586	0.9586		0.9013	0.9013		${ }^{2,553.363}$	2,553.363	0.6160		${ }_{3}^{2,568.764}$
Total	1.9009	17.4321	16.5752	0.0269		0.9586	0.9586		0.9013	0.9013		${ }_{9}^{2,553.363}$	$\begin{array}{\|c\|} \hline 2,553.363 \\ \hline \end{array}$	0.6160		$\begin{gathered} 2,568.764 \\ 3 \end{gathered}$

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer
3.4 Building Construction-2021

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0942	3.0098	0.7868	$\begin{gathered} 7.9700 \mathrm{e}- \\ 003 \end{gathered}$	0.1985	$\begin{gathered} 6.1500- \\ 003 \end{gathered}$	0.2046	0.0571	$\begin{gathered} 5.8900 \mathrm{e}- \\ 003 \end{gathered}$	0.0630		852.1300	852.1300	0.0502		853.3850
Worker	0.3472	0.2387	3.2625	$\begin{gathered} --.260-\mathrm{e}- \\ 003 \end{gathered}$	0.9054	$\begin{gathered} 7.3200 \mathrm{e}- \\ 003 \end{gathered}$	0.9127	0.2401	$\begin{aligned} & 6.7400 \mathrm{e}- \\ & 003 \end{aligned}$	0.2469		922.4036	922.4036	0.0272		923.0830
Total	0.4414	3.2484	4.0493	0.0172	1.1039	0.0135	1.1173	0.2973	0.0126	0.3099		$\begin{array}{\|c\|} \hline 1,774.533 \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline 1,774.533 \\ 5 \end{array}$	0.0774		$\begin{gathered} 1,776.468 \\ 0 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.9009	17.4321	16.5752	0.0269		0.9586	0.9586		0.9013	0.9013	0.0000	$\begin{gathered} 2,553.363 \\ 9 \end{gathered}$	$\begin{gathered} 2,553.363 \\ 9 \end{gathered}$	0.6160		$\begin{gathered} 2,568.764 \\ 3 \end{gathered}$
Total	1.9009	17.4321	16.5752	0.0269		0.9586	0.9586		0.9013	0.9013	0.0000	$\begin{array}{\|c\|} \hline 2,553.363 \\ 9 \end{array}$	$\begin{array}{\|c} 2,553.363 \\ 9 \end{array}$	0.6160		$\begin{array}{\|c} 2,568.764 \\ 3 \end{array}$

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer
3.4 Building Construction-2021

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0942	3.0098	0.7868	$\begin{gathered} 7.9700 \mathrm{e}- \\ 003 \end{gathered}$	0.1985	6.1500 e 003	0.2046	0.0571	$\begin{gathered} 5.8900 \mathrm{e}- \\ 003 \end{gathered}$	0.0630		852.1300	852.1300	0.0502		853.3850
Worker	0.3472	0.2387	3.2625	$\begin{gathered} 9.2600 \mathrm{e}- \\ 003 \end{gathered}$	0.9054	$\begin{gathered} 7.3200 \mathrm{e}- \\ 003 \end{gathered}$	0.9127	0.2401	$\begin{gathered} 6.7400 \mathrm{e}- \\ 003 \end{gathered}$	0.2469		922.4036	922.4036	0.0272		923.0830
Total	0.4414	3.2484	4.0493	0.0172	1.1039	0.0135	1.1173	0.2973	0.0126	0.3099		$\begin{array}{\|c} 1,774.533 \\ 5 \end{array}$	$\begin{array}{\|c} 1,774.533 \\ 5 \end{array}$	0.0774		$\begin{gathered} 1,776.468 \\ 0 \end{gathered}$

3.4 Building Construction-2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		$\begin{gathered} 2,554.333 \\ 6 \end{gathered}$	2,554.333	0.6120		$\begin{gathered} 2,569.632 \\ 2 \end{gathered}$
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		$\begin{array}{\|c} 2,554.333 \\ 6 \end{array}$	$\begin{array}{\|c\|} \hline 2,554.333 \\ 6 \end{array}$	0.6120		$\underset{2}{2,569.632}$

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer
3.4 Building Construction-2022

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling		0.0000	0.0000	0.0000				0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0884	2.8622	0.7445	$\begin{gathered} 7.9000 \mathrm{e}- \\ 003 \end{gathered}$	0.1985	$\begin{gathered} 5.3800 \mathrm{e}- \\ 003 \end{gathered}$	0.2039	0.0571	$\begin{gathered} 5.1500-- \\ 003 \end{gathered}$	0.0623		844.7063	844.7063	0.0485		845.9181
Worker		0.2156	3.0100	$\begin{gathered} 8.9300 \mathrm{e}- \\ 003 \end{gathered}$	0.9054	$\begin{gathered} 7.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.9125	0.2401	$\begin{gathered} 6.5300 \mathrm{e} \\ 003 \end{gathered}$	0.2466		889.9570	889.9570	0.0246		890.5711
Total	0.4137	3.0778	3.7544	0.0168	1.1039	0.0125	1.1163	0.2973	0.0117	0.3089		$\begin{array}{\|c\|} \hline 1,734.663 \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline 1,734.663 \\ 2 \end{array}$	0.0730		$\begin{gathered} 1,736.489 \\ 2 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	$\begin{gathered} 2,554.333 \\ 6 \end{gathered}$	2,554.333	0.6120		$\begin{gathered} 2,569.632 \\ 2 \end{gathered}$
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	$\begin{array}{\|c} 2,554.333 \\ 6 \end{array}$	$\begin{array}{\|c\|} \hline 2,554.333 \\ 6 \end{array}$	0.6120		$\underset{2}{2,569.632}$

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer
3.4 Building Construction-2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0884	2.8622	0.7445	$\begin{gathered} 7.9000 \mathrm{e}- \\ 003 \end{gathered}$	0.1985	$\begin{gathered} 5.3800 \mathrm{e}- \\ 003 \end{gathered}$	0.2039	0.0571	$\begin{aligned} & 5.1500 \mathrm{e}- \\ & 003 \end{aligned}$	0.0623		844.7063	844.7063	0.0485		845.9181
Worker	0.3252	0.2156	3.0100	$\begin{gathered} 8.9300 \mathrm{e}- \\ 003 \end{gathered}$	0.9054	$\begin{gathered} 7.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.9125	0.2401	$\begin{gathered} 6.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.2466		889.9570	889.9570	0.0246		890.5711
Total	0.4137	3.0778	3.7544	0.0168	1.1039	0.0125	1.1163	0.2973	0.0117	0.3089		$\begin{array}{\|c} 1,734.663 \\ 2 \end{array}$	$\begin{array}{\|c} 1,734.663 \\ 2 \end{array}$	0.0730		$\begin{gathered} 1,736.489 \\ 2 \end{gathered}$

3.5 Paving-2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.9765	9.5221	12.1940	0.0189		0.4877	0.4877		0.4504	0.4504		${ }_{\substack{1,805.129 \\ 7}}$	1,805.129	0.5672		$\begin{gathered} 1,819.309 \\ 1 \end{gathered}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9765	9.5221	12.1940	0.0189		0.4877	0.4877		0.4504	0.4504		$\begin{array}{\|c\|} \hline 1,805.129 \\ 7 \end{array}$	$\begin{array}{\|c\|} \hline 1,805.129 \\ 7 \end{array}$	0.5672		$\begin{gathered} 1,819.309 \\ \hline \end{gathered}$

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer

3.5 Paving - 2022

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.9765	9.5221	12.1940	0.0189		0.4877	0.4877		0.4504	0.4504	0.0000	${ }_{7}^{1,805.129}$	${ }^{1,805.129}$	0.5672		$\begin{gathered} 1,819.309 \\ 1 \end{gathered}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	${ }^{0.9765}$	${ }^{9.5221}$	12.1940	0.0189		0.4877	0.4877		0.4504	0.4504	0.0000	$\begin{array}{\|l\|l\|} \hline 1,805.129 \\ 7 \end{array}$	$\begin{array}{\|l\|} \hline 1,805.129 \\ \hline \end{array}$	0.5672		$\underset{1}{1,819.309}$

Mitigated Construction Off-Site
3.6 Architectural Coating - 2021

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	4.2031					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2189	1.5268	1.8176	2.97000		0.0941	0.0941		0.0941	0.0941		281.4481	281.4481	0.0193		281.9309
Total	4.4220	1.5268	1.8176	$\begin{aligned} & 2.9700 \mathrm{e}- \\ & 003 \end{aligned}$		0.0941	0.0941		0.0941	0.0941		281.4481	281.4481	0.0193		281.9309

3.6 Architectural Coating - 2021

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	4.2031					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Oif-Road	0.2189	1.5268	1.8176	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0941	0.0941		0.0941	0.0941	0.0000	281.4481	281.4481	0.0193		281.9309
Total	4.4220	1.5268	1.8176	$\overline{2.9700 \mathrm{e}-} 003$		0.0941	0.0941		0.0941	0.0941	0.0000	281.4481	281.4481	0.0193		281.9309

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0686	0.0471	0.6444	$\begin{gathered} 1.8300 \mathrm{e}- \\ 003 \end{gathered}$	0.1788	$\begin{gathered} 1.4500 \mathrm{e}- \\ 003 \end{gathered}$	0.1803	0.0474	$\begin{gathered} 1.3300 \mathrm{e}- \\ 003 \end{gathered}$	0.0488		182.2032	182.2032	$\begin{gathered} 5.3700 \mathrm{e}- \\ 003 \end{gathered}$		182.3374
Total	0.0686	0.0471	0.6444	$\begin{gathered} 1.8300 \mathrm{e}- \\ 003 \end{gathered}$	0.1788	$\begin{gathered} 1.4500 \mathrm{e}- \\ 003 \end{gathered}$	0.1803	0.0474	$\begin{gathered} 1.3300 \mathrm{e}- \\ 003 \end{gathered}$	0.0488		182.2032	182.2032	$\begin{gathered} 5.3700 \mathrm{e}- \\ 003 \end{gathered}$		182.3374

3.6 Architectural Coating - 2022

Unmitigated Construction On-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	4.2031					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Oif-Road	0.2045	1.4085	1.8136	2.9700e-		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062
Total	4.4076	1.4085	1.8136	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062

3.6 Architectural Coating-2022

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0642	0.0426	0.5946	$\begin{gathered} 1.7600 \mathrm{e}- \\ 003 \end{gathered}$	0.1788	$\begin{gathered} 1.4000 \mathrm{e}- \\ 003 \end{gathered}$	0.1802	0.0474	$\begin{gathered} 1.2900 \mathrm{e}- \\ 003 \end{gathered}$	0.0487		175.7940	175.7940	$\begin{gathered} 4.8500 \mathrm{e}- \\ 003 \end{gathered}$		175.9153
Total	0.0642	0.0426	0.5946	$\begin{gathered} 1.7600 \mathrm{e}- \\ 003 \end{gathered}$	0.1788	$\begin{gathered} 1.4000 \mathrm{e}- \\ 003 \end{gathered}$	0.1802	0.0474	$\begin{gathered} 1.2900 \mathrm{e}- \\ 003 \end{gathered}$	0.0487		175.7940	175.7940	$\begin{gathered} 4.8500 \mathrm{e}- \\ 003 \end{gathered}$		175.9153

Mitigated Construction On-Site

	ROG	NOX	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Archit. Coating	4.2031					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2045	1.4085	1.8136	$2.9700 \mathrm{e}-$ 003		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062
Total	4.4076	1.4085	1.8136	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of $28 \quad$ Date: 11/26/2018 10:22 AM
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer
3.6 Architectural Coating - 2022

Mitigated Construction Off-Site

4.0 Operational Detail - Mobile

[^6]
4.2 Trip Summary Information
4.3 Trip Type Information
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer
5.0 Energy Detail
Historical Energy Use: N
5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										1b/day					
NaturalGas Mitigated	0.0813	0.7389	0.6206	$\begin{gathered} 4.4300 \mathrm{e}- \\ 003 \end{gathered}$		0.0562	0.0562		0.0562	0.0562		886.6180	886.6180	0.0170	0.0163	891.8867
NaturalGas Unmitigated	0.0813	0.7389	0.6206	4.4300 e 003		0.0562	0.0562		0.0562	0.0562		886.6180	886.6180	0.0170	0.0163	891.8867

Unmitigated

Land Use
Junior Colle $(2 \mathrm{Y})$; $\quad 003$

4300e-
${ }^{4.4300} 0$ 206
0.6206

-
\&
0.

ROG

Land Use	kBTU/yr
Junior College (2Yr)	7536.25
Other NonAsphalt Surface	0
Total	

Mitigated
Land Use
Land Use

\section*{| $\begin{array}{l}\text { NaturalGa } \\ \text { s Use }\end{array}$ |
| :---: |}

kBTU/yr

Land Use
Junior College (2Yr)
$\left.$Osphalt Son- Surfaces Aspal Total${ }^{2} \right\rvert\,$

6.0 Area Detail
6.1 Mitigation Measures Area

	ROG	NOX	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM2.5 } \end{gathered}$	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Mitigated		$\begin{aligned} & \hline 2.0400 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{aligned} & 2.00000- \\ & 005 \end{aligned}$		$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 8.00000- \\ & 004 \end{aligned}$		$\begin{aligned} & 8.0000 \mathrm{e}- \\ & 0044 \end{aligned}$	$\begin{aligned} & 8.00000- \\ & 004 \end{aligned}$		0.4843	0.4843	$\begin{aligned} & 1.2600 \mathrm{e}- \\ & 003 \end{aligned}$		0.5158
Ünitigated	2.3288	20400e-	0.2254	$\begin{aligned} & 2.00000-9 \\ & 2005 \end{aligned}$		8.00000 004	$\begin{aligned} & 8.00000-9 \\ & 004 \end{aligned}$		$\begin{aligned} & 8.0000-\overline{-} \\ & 004 \end{aligned}$	${ }^{8.00000-}$		0.4843	0.4843	$\begin{aligned} & 1.2600 \mathrm{e} \\ & 003 \end{aligned}$		0.5158

6.2 Area by SubCategory

Unmitigated

7.0 Water Detail
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer
6.2 Area by SubCategory
7.1 Mitigation Measures Water
8.1 Mitigation Measures Waste
9.0 Operational Offroad
8.0 Waste Detail
10.0 Stationary Equipment
Fire Pumps and Emergency Generators
Date: 11/26/2018 10:22 AM
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Summer

11.0 Vegetation
CalEEMod Version: CalEEMod.2016.3.2

\[\)| LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter |
| :---: |

\]

$$
\text { LBCC LAC Interim Year 2025 (2021-2025 Construction) }
$$

Los Angeles-South Coast County, Winter
1.0 Project Characteristics

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	2,211.00	Student	1.23	101,578.00	0
Other Non-Asphalt Surfaces	2.07	Acre	2.07	90,169.20	0

[^7]1.1 Land Usage
Date: 11/26/2018 10:21 AM LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter
Demolition - Demolition of 50276 SF of building space
CalEEMod Version: CaIEEMod.2016.3.2

Project Characteristics - Interim Year 2025
 Land Use-2,211 student Junior College on 1.23 acres and $101,578 \mathrm{sq} \mathrm{ft}$ of building and 2.07-acres Other Non-Asphalt Surfaces.
 Construction Phase - 20 days Demo, 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving. Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.

Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure 3x per day selected.

[^8]Mobile Commute Mitigation -

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	8.00	20.00
tbiConstructionPhase	NumDays	18.00	230.00
tbiConstructionPhase	NumDays	18.00	20.00
tbiconstructionPhase	PhaseEndDate	7/8/2021	7/26/2021
tbiconstructionPhase	PhaseEndDate	5/26/2022	6/13/2022
tbiconstructionPhase	PhaseEndDate	7/15/2022	6/13/2022
tbiconstructionPhase	PhaseEndDate	6/21/2022	7/11/2022
tbiconstructionPhase	PhaseStartorate	79/2021	7127/2021
tbiConstructionPhase	PhaseStarto--	6/22/2022	7127/2021
tblConstructionPhase	PhaseStartDate	5/27/2022	6/14/2022
tbilanduse	LandUseSquareFeet	96,515.10	101,578.00
tblLandUse	LotAcreage	2.22	1.23
toiTripsAndVMT	VendorTripNumber	0.00	6.00
	VendoröripNüuber	0.00	6.00
tblVehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary

Unmitigated Construction

Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2021	6.8843	35.1799	23.0495	0.0507	2.7615	1.5635	3.9240	1.3689	1.4527	2.4384	0.0000	: $5,021.581$	${ }_{6}^{5,021.581}$	1.1381	0.0000	$\underset{5}{5,050.033}$
		20.1643	22.2909	0.0477	1.2827	0.9048	2.1875	0.3447	0.8560	1.2007	0.0000	: $\begin{gathered}4,660.721 \\ 9\end{gathered}$	$4,660.721$ 9	0.7095	0.0000	$4,678.460$ 0
Maximum	6.8843	35.1799	23.0495	0.0507	2.7615	1.5635	3.9240	1.3689	1.4527	2.4384	0.0000	[${ }^{5,021.581} \underset{6}{ }$	$\underset{6}{5,021.581}$	1.1381	0.0000	$\underset{5}{5,050.033}$

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{array}{r} \text { PM2.5 } \\ \text { Total } \end{array}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	49.71	0.00	39.54	54.52	0.00	36.08	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Area	2.3288	$\begin{gathered} 2.0400 \mathrm{e}- \\ 003 \end{gathered}$	0.2254	$\begin{aligned} & 2.0000 \mathrm{e}- \\ & 005 \end{aligned}$		$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$	$8.0000 \mathrm{e}-$ 004		0.4843	0.4843	$\begin{gathered} 1.2600 \mathrm{e}- \\ 003 \end{gathered}$		0.5158
Energy	0.0813	0.7389	0.6206	$4.4300 \mathrm{e}-$ 003		0.0562	0.0562		0.0562	0.0562		886.6180	886.6180	0.0170	0.0163	891.8867
Mobile	3.4635	15.7104	43.6704	0.1761	16.3268	0.1372	16.4640	4.3684	0.1275	4.4958		$\begin{gathered} 17,981.07 \\ 35 \end{gathered}$	$\begin{gathered} 17,981.07 \\ 35 \end{gathered}$	0.8595		$\begin{gathered} 18,002.56 \\ 13 \end{gathered}$
Total	5.8736	16.4513	44.5164	0.1806	16.3268	0.1942	16.5209	4.3684	0.1844	4.5528		$\begin{array}{\|c\|} \hline 18,868.17 \\ 59 \end{array}$	$\begin{array}{\|c} 18,868.17 \\ 59 \end{array}$	0.8778	0.0163	$\begin{array}{\|c\|} \hline 18,894.96 \\ 38 \end{array}$

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										1b/day					
Area	2.3288	$\begin{gathered} 2.0400 \mathrm{e}- \\ 003 \end{gathered}$	0.2254	$\begin{gathered} 2.0000 \mathrm{e} \\ 005 \end{gathered}$		$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 004 \end{gathered}$		0.4843	0.4843	$\begin{gathered} 1.2600 \mathrm{e}- \\ 003 \end{gathered}$		0.5158
Energy	0.0813	0.7389	0.6206	$\begin{gathered} 4.4300 \mathrm{e} \\ 003 \end{gathered}$		0.0562	0.0562		0.0562	0.0562		886.6180	886.6180	0.0170	0.0163	891.8867
Mobile	3.1215	13.9135	35.5662	0.1383	12.6020	0.1091	12.7111	3.3718	0.1014	3.4731		$\begin{gathered} 14,123.59 \\ 42 \end{gathered}$	14,123.59	0.6959		$\left[\begin{array}{c} 14,140.99 \\ 23 \end{array}\right.$
Total	5.5315	14.6544	36.4122	0.1427	12.6020	0.1661	12.7680	3.3718	0.1583	3.5301		$\begin{array}{\|c} \hline 15,010.69 \\ 65 \end{array}$	$\begin{array}{\|c\|} \hline 15,010.69 \\ 65 \end{array}$	0.7142	0.0163	$\begin{gathered} 15,033.39 \\ 48 \end{gathered}$

Page 6 of 28 Date: 11/26/2018 10:21 AM

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	5.82	10.92	18.21	20.95	22.81	14.46	22.72	22.81	14.15	22.46	0.00	20.44	20.44	18.64	0.00	20.44

3.0 Construction Detail

Trips and VMT
CaIEEMod Version: CalEEMod.2016.3.2
Date: 11/26/2018 10:21 AM
Page 8 of 28
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	$\begin{aligned} & \text { Vendor Trip } \\ & \text { Length } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Hauling Trip } \\ \text { Length } \end{array}$	Worker Vehicle Class	$\begin{array}{\|c\|} \hline \text { Vendor } \\ \text { Vehicle Class } \\ \hline \end{array}$	Hauling Vehicle Class
Demolition	6	15.00	6.00	229.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Grading	6	15.00	6.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Building Construction	9	81.00	31.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Paving	8	20.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating		16.00	0.00 :	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \begin{array}{l} \text { Total } \end{array} \end{aligned}$	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust					0.9650	0.0000	0.9650	0.1461	0.0000	0.1461			0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411	0.0000	${ }^{3,747.944}$	${ }_{9} \mathbf{3} 7479$	1.0549		$3,774.317$ 4
Total	3.1651	31.4407	21.5650	0.0388	0.9650	1.5513	2.5164	0.1461	1.4411	1.5872	0.0000	$\underset{9}{3,747.944}$	$\underset{9}{3,747.944}$	1.0549		$3,774.317$ 4

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0978	3.1090	0.7636	$\begin{gathered} 8.7800 \mathrm{e}- \\ 003 \end{gathered}$	0.2002	$\begin{gathered} 9.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.2098	0.0549	$\begin{gathered} 9.1600 \mathrm{e}- \\ 003 \end{gathered}$	0.0640		952.3917	952.3917	0.0681		954.0939
Vendor	0.0192	0.5813	0.1685	$\begin{gathered} 1.5000 \mathrm{e}- \\ 003 \end{gathered}$	0.0384	$1.2300 \mathrm{e}-$ 003	0.0396	0.0111	$\begin{gathered} 1.1800 \mathrm{e}- \\ 003 \end{gathered}$	0.0122		160.4073	160.4073	0.0104		160.6662
Worker	0.0715	0.0489	0.5524	$\begin{gathered} 1.6100 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.1690	0.0445	$\begin{gathered} 1.2500 \mathrm{e}- \\ 003 \end{gathered}$	0.0457		160.8377	160.8377	$\begin{gathered} 4.7300 \mathrm{e}- \\ 003 \end{gathered}$		160.9560
Total	0.1884	3.7393	1.4845	0.0119	0.4063	0.0122	0.4184	0.1104	0.0116	0.1220		$\begin{array}{\|c\|} \hline 1,273.636 \\ 6 \end{array}$	$\begin{array}{\|c\|} \hline 1,273.636 \\ 6 \end{array}$	0.0832		$\begin{gathered} 1,275.716 \\ \hline \end{gathered}$

3.3 Grading - 2021

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										Ib/day					
Fugitive Dust					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Ofi-Road	2.2903	24.7367	15.8575	0.0296		1.1599	1.1599		1.0671	1.0671		${ }_{5}^{2,871.928}$	$\begin{gathered} 2,871.928 \\ 5 \end{gathered}$	0.9288		$2,855.149$
Total	${ }^{2.2903}$	24.7367	15.8575	0.0296	6.5523	1.1599	${ }^{7.7123}$	3.3675	1.0671	4.4346		${ }_{5}^{2,871.928}$	$\underset{5}{2,871.928}$	0.9288		$\underset{5}{2,895.149}$

Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2. 5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										Ib/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0192	0.5813	0.1685	${ }^{1.50000} 0$	0.0384	${ }^{1.23000}$	0.0396	0.0111	$\begin{aligned} & 1.1800 \mathrm{e}- \\ & 003 \end{aligned}$	0.0122		160.4073	160.4073	0.0104		160.6662
Worker	0.0715	0.0489	0.5524	$1.6100 \mathrm{e}-$	0.1677	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.1690	0.044	$\begin{gathered} -2500 \mathrm{e} \\ \substack{1.203} \end{gathered}$	0.0457		160.8377	160.8377	$\begin{gathered} 4.7300 \mathrm{e} \\ 003 \end{gathered}$		160.9560
Total	0.0907	0.6303	0.7208	$\begin{aligned} & \hline 3.11000 \mathrm{e}- \\ & 003 \end{aligned}$	0.2061	$\begin{aligned} & \hline 2.5800 \mathrm{e}- \\ & 003 \end{aligned}$	0.2087	0.0555	$\begin{aligned} & 2.4300 \mathrm{e}- \\ & 003 \end{aligned}$	0.0580		321.2450	321.2450	0.0151		321.6222

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \begin{array}{l} \text { Total } \end{array} \end{aligned}$	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM2.5 } \end{gathered}$	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					2.5554	0.0000	2.5554	1.3133	0.0000	${ }^{1.3133}$			0.0000			0.0000
Ofi-Road	2.2903	24.7367	15.8575	0.0296		1.1599	1.1599		1.0671	1.0671	0.0000	${ }_{5}^{2,871.928}$	$\begin{gathered} 2,871.928 \\ 5 \end{gathered}$	0.9288		${ }_{5}^{2,895.149}$
Total	2.2903	24.7367	15.8575	0.0296	2.5554	1.1599	${ }^{3.7153}$	1.3133	1.0671	2.3804	0.0000	$\underset{5}{2,871.928}$	$\underset{5}{2,871.928}$	0.9288		$\underset{5}{2,895.149}$

CalEEMod Version: CaIEEMod.2016.3.2

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter

3.3 Grading - 2021

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0192	0.5813	0.1685	$\begin{gathered} 1.5000 \mathrm{e}- \\ 003 \end{gathered}$	0.0384	$\begin{gathered} 1.2300 \mathrm{e}- \\ 003 \end{gathered}$	0.0396	0.0111	$\begin{gathered} 1.1800 \mathrm{e}- \\ 003 \end{gathered}$	0.0122		160.4073	160.4073	0.0104		160.6662
Worker	0.0715	0.0489	0.5524	$\begin{gathered} 1.6100 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.3500 \mathrm{e} \\ 003 \end{gathered}$	0.1690	0.0445	$\begin{gathered} 1.2500 \mathrm{e}- \\ 003 \end{gathered}$	0.0457		160.8377	160.8377	$\begin{gathered} 4.7300 \mathrm{e}- \\ 003 \end{gathered}$		160.9560
Total	0.0907	0.6303	0.7208	$\begin{gathered} 3.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.2061	$\begin{gathered} 2.5800 \mathrm{e}- \\ 003 \end{gathered}$	0.2087	0.0555	$\begin{gathered} 2.4300 \mathrm{e}- \\ 003 \end{gathered}$	0.0580		321.2450	321.2450	0.0151		321.6222

3.4 Building Construction-2021
 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.9009	17.4321	16.5752	0.0269		0.9586	0.9586		0.9013	0.9013		$\begin{gathered} 2,553.363 \\ 9 \end{gathered}$	$\begin{gathered} 2,553.363 \\ 9 \end{gathered}$	0.6160		$\begin{gathered} 2,568.764 \\ 3 \end{gathered}$
Total	1.9009	17.4321	16.5752	0.0269		0.9586	0.9586		0.9013	0.9013		$\begin{array}{\|c\|} \hline 2,553.363 \\ 9 \end{array}$	$\begin{array}{\|c} 2,553.363 \\ 9 \end{array}$	0.6160		$\underset{3}{2,568.764}$

CalEEMod Version: CalEEMod.2016.3.2

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter
3.4 Building Construction-2021

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0989	3.0036	0.8704	$7.7600 \mathrm{e}-$ 003	0.1985	6.3500 e 003	0.2048	0.0571	$\begin{gathered} 6.0700 \mathrm{e}- \\ 003 \end{gathered}$	0.0632		828.7711	828.7711	0.0535		830.1087
Worker	0.3862	0.2642	2.9829	$\begin{gathered} 8.7200 \mathrm{e} \\ 003 \end{gathered}$	0.9054	$\begin{gathered} 7.3200 \mathrm{e}- \\ 003 \end{gathered}$	0.9127	0.2401	$\begin{gathered} 6.7400 \mathrm{e} \\ 003 \end{gathered}$	0.2469		868.5234	868.5234	0.0256		869.1623
Total	0.4851	3.2677	3.8533	0.0165	1.1039	0.0137	1.1175	0.2973	0.0128	0.3101		$\begin{array}{\|c\|} \hline 1,697.294 \\ 5 \end{array}$	$\begin{array}{\|c} 1,697.294 \\ 5 \end{array}$	0.0791		$\overline{0} 1,699.271$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.9009	17.4321	16.5752	0.0269		0.9586	0.9586		0.9013	0.9013	0.0000	$\begin{gathered} 2,553.363 \\ 9 \end{gathered}$	$\begin{gathered} 2,553.363 \\ 9 \end{gathered}$	0.6160		$\begin{gathered} 2,568.764 \\ 3 \end{gathered}$
Total	1.9009	17.4321	16.5752	0.0269		0.9586	0.9586		0.9013	0.9013	0.0000	$\begin{array}{\|c\|} \hline 2,553.363 \\ 9 \end{array}$	$\begin{array}{\|c} 2,553.363 \\ 9 \end{array}$	0.6160		$\begin{array}{\|c} 2,568.764 \\ 3 \end{array}$

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter
3.4 Building Construction-2021

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0989	3.0036	0.8704	$\begin{gathered} 7.7600 \mathrm{e} \\ 003 \end{gathered}$	0.1985	6.3500 e 003	0.2048	0.0571	$\begin{gathered} 6.0700 \mathrm{e}- \\ 003 \end{gathered}$	0.0632		828.7711	828.7711	0.0535		830.1087
Worker	0.3862	0.2642	2.9829	$\begin{gathered} 8.7200 \mathrm{e} \\ 003 \end{gathered}$	0.9054	$\begin{gathered} 7.3200 \mathrm{e}- \\ 003 \end{gathered}$	0.9127	0.2401	$\begin{gathered} 6.7400 \mathrm{e}- \\ 003 \end{gathered}$	0.2469		868.5234	868.5234	0.0256		869.1623
Total	0.4851	3.2677	3.8533	0.0165	1.1039	0.0137	1.1175	0.2973	0.0128	0.3101		$\begin{array}{\|c} \hline 1,697.294 \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline 1,697.294 \\ 5 \end{array}$	0.0791		$\begin{gathered} 1,699.271 \\ 0 \end{gathered}$

3.4 Building Construction-2022
Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		$\begin{gathered} 2,554.333 \\ 6 \end{gathered}$	2,554.333	0.6120		$\begin{gathered} 2,569.632 \\ 2 \end{gathered}$
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		$\begin{array}{\|c} 2,554.333 \\ 6 \end{array}$	$\begin{array}{\|c\|} \hline 2,554.333 \\ 6 \end{array}$	0.6120		$\underset{2}{2,569.632}$

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter

3.4 Building Construction-2022

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0929	2.8545	0.8239	$\begin{gathered} 7.6800 \mathrm{e}- \\ 003 \end{gathered}$	0.1985	$5.5600 \mathrm{e}-$ 003	0.2040	0.0571	$\begin{gathered} 5.3100 \mathrm{e}- \\ 003 \end{gathered}$	0.0625		821.4079	821.4079	0.0516		822.6984
Worker	0.3628	0.2386	2.7473	$\begin{gathered} 8.4100 \mathrm{e} \\ 003 \end{gathered}$	0.9054	$\begin{gathered} 7.0900 \mathrm{e} \\ 003 \end{gathered}$	0.9125	0.2401	$\begin{gathered} 6.5300 \mathrm{e} \\ 003 \end{gathered}$	0.2466		838.0013	838.0013	0.0231		838.5781
Total	0.4556	3.0930	3.5712	0.0161	1.1039	0.0127	1.1165	0.2973	0.0118	0.3091		$\begin{array}{\|c\|} \hline 1,659.409 \\ 1 \end{array}$	$\begin{array}{\|c\|} \hline 1,659.409 \\ 1 \end{array}$	0.0747		$\begin{gathered} 1,661.276 \\ 6 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	$\begin{gathered} 2,554.333 \\ 6 \end{gathered}$	2,554.333	0.6120		$\begin{gathered} 2,569.632 \\ 2 \end{gathered}$
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	$\begin{array}{\|c} 2,554.333 \\ 6 \end{array}$	$\begin{array}{\|c\|} \hline 2,554.333 \\ 6 \end{array}$	0.6120		$\underset{2}{2,569.632}$

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter
3.4 Building Construction-2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH 4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0929	2.8545	0.8239	$\begin{gathered} 7.6800 \mathrm{e}- \\ 003 \end{gathered}$	0.1985	$5.5600 \mathrm{e}-$ 003	0.2040	0.0571	$\begin{gathered} 5.3100-- \\ 003 \end{gathered}$	0.0625		821.4079	821.4079	0.0516		822.6984
Worker	0.3628	0.2386	2.7473	$\begin{gathered} 8.4100 \mathrm{e}- \\ 003 \end{gathered}$	0.9054	$\begin{gathered} 7.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.9125	0.2401	$\begin{gathered} 6.5300 \mathrm{e} \\ 003 \end{gathered}$	0.2466		838.0013	838.0013	0.0231		838.5781
Total	0.4556	3.0930	3.5712	0.0161	1.1039	0.0127	1.1165	0.2973	0.0118	0.3091		$\begin{array}{\|c\|} \hline 1,659.409 \\ 1 \end{array}$	$\begin{array}{\|c\|} \hline 1,659.409 \\ 1 \end{array}$	0.0747		$\begin{gathered} 1,661.276 \\ 6 \end{gathered}$

3.5 Paving - 2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.9765	9.5221	12.1940	0.0189		0.4877	0.4877		0.4504	0.4504		$\begin{gathered} 1,805.129 \\ 7 \end{gathered}$	$\begin{gathered} 1,805.129 \\ 7 \end{gathered}$	0.5672		$\begin{gathered} 1,819.309 \\ 1 \end{gathered}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9765	9.5221	12.1940	0.0189		0.4877	0.4877		0.4504	0.4504		$\begin{array}{\|c\|} \hline 1,805.129 \\ 7 \end{array}$	$\begin{array}{\|c\|} \hline 1,805.129 \\ 7 \end{array}$	0.5672		$\begin{gathered} 1,819.309 \\ 1 \end{gathered}$

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter

3.5 Paving - 2022

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.9765	9.5221	12.1940	0.0189		0.4877	0.4877		0.4504	0.4504	0.0000	${ }^{1,805.129}$	${ }^{1,805.129}$	0.5672		${ }_{1}^{1,819.309}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9765	9.5221	12.1940	0.0189		0.4877	0.4877		0.4504	0.4504	0.0000	$\underset{7}{1,805.129}$	${ }^{1,805.129}$	0.5672		$\underset{1}{1,819.309}$

Mitigated Construction Off-Site
3.6 Architectural Coating - 2021

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	4.2031					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Oift-Road	0.2189	1.5268	1.8176	${ }^{2.97000-}$		0.0941	0.0941		0.0941	0.0941		281.4481	281.4481	0.0193		281.9309
Total	4.4220	1.5268	1.8176	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0941	0.0941		0.0941	0.0941		281.4481	281.4481	0.0193		281.9309

3.6 Architectural Coating - 2021

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Archit. Coating	4.2031					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
oift-ioad	0.2189	1.5268	1.8176	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0941	0.0941		0.0941	0.0941	0.0000	281.4481	281.4481	0.0193		281.9309
Total	4.4220	1.5268	1.8176	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0941	0.0941		0.0941	0.0941	0.0000	281.4481	281.4481	0.0193		281.9309

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0763	0.0522	0.5892	$\begin{gathered} 1.7200 \mathrm{e}- \\ 003 \end{gathered}$	0.1788	$\begin{gathered} 1.4500 \mathrm{e}- \\ 003 \end{gathered}$	0.1803	0.0474	$\begin{gathered} 1.3300 \mathrm{e}- \\ 003 \end{gathered}$	0.0488		171.5602	171.5602	$\begin{gathered} 5.0500 \mathrm{e}- \\ 003 \end{gathered}$		171.6864
Total	0.0763	0.0522	0.5892	$\begin{gathered} 1.7200 \mathrm{e}- \\ 003 \end{gathered}$	0.1788	$\begin{gathered} 1.4500 \mathrm{e}- \\ 003 \end{gathered}$	0.1803	0.0474	$\begin{gathered} 1.3300 \mathrm{e}- \\ 003 \end{gathered}$	0.0488		171.5602	171.5602	$\begin{gathered} 5.0500 \mathrm{e}- \\ 003 \end{gathered}$		171.6864

3.6 Architectural Coating - 2022

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	$\begin{aligned} & \text { PM2.5 } \\ & \text { Total } \end{aligned}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										1b/day					
Archit. Coating	4.2031					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2045	1.4085	1.8136	2.97000		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062
Total	4.4076	1.4085	1.8136	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062

3.6 Architectural Coating-2022

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0717	0.0471	0.5427	$\begin{gathered} 1.6600 \mathrm{e}- \\ 003 \end{gathered}$	0.1788	$\begin{gathered} 1.4000 \mathrm{e}- \\ 003 \end{gathered}$	0.1802	0.0474	$\begin{gathered} 1.2900 \mathrm{e} \\ 003 \end{gathered}$	0.0487		165.5311	165.5311	$\begin{gathered} 4.5600 \mathrm{e}- \\ 003 \end{gathered}$		165.6451
Total	0.0717	0.0471	0.5427	$\begin{gathered} 1.6600 \mathrm{e}- \\ 003 \end{gathered}$	0.1788	$\begin{gathered} 1.4000 \mathrm{e}- \\ 003 \end{gathered}$	0.1802	0.0474	$\begin{gathered} 1.2900 \mathrm{e}- \\ 003 \end{gathered}$	0.0487		165.5311	165.5311	$\begin{gathered} 4.5600 \mathrm{e}- \\ 003 \end{gathered}$		165.6451

Mitigated Construction On-Site

	ROG	NOX	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Archit. Coating	4.2031					0.0000	0.0000		0.0000	0.0000			0.0000			
Off-Road	0.2045	1.4085	1.8136	$2.9700 \mathrm{e}-$ 003		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062
Total	4.4076	1.4085	1.8136	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062

Mitigated Construction Off-Site

4.0 Operational Detail - Mobile

[^9]| | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Category | lb/day | | | | | | | | | | lb/day | | | | | |
| Mitigated | 3.1215 | 13.9135 | 35.5662 | 0.1383 | 12.6020 | 0.1091 | 12.7111 | 3.3718 | 0.1014 | 3.4731 | | 14,123.59 | $14,123.59$ 42 | 0.6959 | | $14,140.99$ 23 |
| Unmitigated | 3.4635 | 15.7104 | 43.6704 | 0.1761 | 16.3268 | 0.1372 | 16.4640 | 4.3684 | 0.1275 | 4.4958 | | $\begin{gathered} 17,981.07 \\ \hline \end{gathered}$ | $\begin{gathered} 17,981.07 \\ 35 \end{gathered}$ | 0.8595 | | $\begin{gathered} 18,002.56 \\ 13 \end{gathered}$ |

4.2 Trip Summary Information

4.3 Trip Type Information

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of $28 \quad$ Date: 11/26/2018 10:21 AM
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter
5.0 Energy Detail
Historical Energy Use: N
5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										1b/day					
NaturalGas Mitigated	0.0813	0.7389	0.6206	$\begin{gathered} 4.4300 \mathrm{e}- \\ 003 \end{gathered}$		0.0562	0.0562		0.0562	0.0562		: 886.6180	886.6180	0.0170	0.0163	891.8867
NaturalGas Unmitigated	0.0813	0.7389	0.6206	$\begin{gathered} 4.4300 \mathrm{e}- \\ 003 \end{gathered}$		0.0562	0.0562		0.0562	0.0562		886.6180	886.6180	0.0170	0.0163	891.8867

Unmitigated

Mitigated

Land Use
Junior College

Land Use
Junior College

\section*{| $\begin{array}{l}\text { NaturalGa } \\ \text { s Use }\end{array}$ |
| :---: |}

kBTU/yr
$\underset{(2 \mathrm{Yr})}{\mathrm{Junior}}$
-Other Non- -
Asphalt Surfaces
Total
"
6.0 Area Detail
6.1 Mitigation Measures Area

Оั๊		员
\％		
哭	㐅	硷
	－	
을		
	旁	
Ǒ		
\bigcirc		
¢		
－		
	彦	

6．2 Area by SubCategory
Unmitigated
Date: 11/26/2018 10:21 AM
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Winter
6.2 Area by SubCategory
Mitigated

70 Water Detail
7.1 Mitigation Measures Water
8.1 Mitigation Measures Waste
9.0 Operational Offroad
10.0 Stationary Equipment
Fire Pumps and Emergency Generators
CalEEMod Version: CalEEMod.2016.3.2 Page 28 of $28 \quad$ Date: 11/26/2018 10:21 AM
LBCC LAC

11.0 Vegetation
1.0 Project Characteristics
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual
LBCC LAC Interim Year 2025 (2021-2025 Construction)
Los Angeles-South Coast County, Annual
1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	2,211.00	Student	1.23	101,578.00	0
Other Non-Asphalt Surfaces	2.07	Acre	2.07	90,169.20	0

[^10]Project Characteristics - Interim Year 2025
CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual
Construction Phase - 20 days Demo, 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving. Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.
Demolition - Demolition of 50276 SF of building space
Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA. Swimming pool is not anticipated to generate any trips. Vehicle Emission Factors Vehicle Emission Factors Vehicle Emission Factors -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.

[^11]Mobile Commute Mitigation -
Date: 11/26/2018 10:23 AM

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	8.00	20.00
tbiConstructionPhase	NumDays	18.00	230.00
tbiConstructionPhase	NumDays	18.00	20.00
tbiConstructionPhase	PhaseEndDate	7/8/2021	7/26/2021
tbiConstructionPhase	PhaseEndDate	5/26/2022	6/13/2022
tblConstructionPhase	PhaseEndDate	7/15/2022	6/13/2022
tbiConstructionPhase	PhaseEndDate	6/21/2022	7/11/2022
tbiConstructionPhase	PhaseStartorate	799020-21	7/27/2021
tbiConstructionPhase	PhaseStartorate	6/22/2022	7/27/2021
tbiConstructionPhase	PhaseStartDate	5/27/2022	6/4/2022
tbilanduse	LandUseSquareFeet	96,515.10	101,578.00
tbilanduse	LotAcreage	2.22	1.23
tbīTripsAndivic	VendorTrip ${ }^{\text {arumber }}$	0.00	6.00
	VendorTripNumber	0.00	6.00
tblvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary

Unmitigated Construction
Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr										MT/yr					
2021	0.4469	1.8799	1.7009	$\begin{gathered} 3.5900 \mathrm{e}- \\ 003 \end{gathered}$	0.1129	0.0881	0.2011	0.0355	0.0828	0.1183	0.0000	319.5272	319.5272	0.0560	0.0000	
2022	0.3931	1.2688	1.4247	$\begin{gathered} 2.9900 \mathrm{e}- \\ 003 \end{gathered}$	0.0752	0.0574	0.1325	0.0202	0.0542	0.0744	0.0000	265.1050	265.1050	0.0425	0.0000	266.1666
Maximum	0.4469	1.8799	1.7009	$\begin{gathered} 3.5900 \mathrm{e}- \\ 003 \end{gathered}$	0.1129	0.0881	0.2011	0.0355	0.0828	0.1183	0.0000	319.5272	319.5272	0.0560	0.0000	320.9273

\|ัָ	O-
\%	\bigcirc
\|	O-
$\begin{array}{\|l\|} \hline \mathrm{O} \\ \mathrm{O} \\ \hline \mathrm{O} \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{array}$	¢0.
$\begin{array}{\|l} \hline \stackrel{O}{O} \\ \dot{O} \\ \dot{o} \\ \underline{z} \\ \hline \end{array}$	\%
$\begin{aligned} & \text { O} \\ & \hline \mathrm{O} \\ & \dot{\circ} \\ & \hline \mathrm{o} \end{aligned}$	O-
	$\begin{array}{\|l} \stackrel{\circ}{\circ} \\ \stackrel{\circ}{\circ} \end{array}$
	\%
$\left\lvert\, \begin{aligned} & 0 \\ & \sum_{n}^{0} \sum_{0}^{n} \\ & \sum_{i}^{2} \end{aligned}\right.$	\|
\|을 등	
	¢
	$\mid \stackrel{\stackrel{\circ}{\circ}}{\stackrel{\sim}{\mathrm{N}}}$
©	\bigcirc
\bigcirc	\%
츨	응
\|O	\bigcirc

CalEEMod Version: CalEEMod.2016.3.2
Date: 11/26/2018 10:23 AM
Page 5 of 33
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	6-1-2021	8-31-2021	1.0362	1.0362
2	9-1-2021	11-30-2021	0.9470	0.9470
3	12-1-2021	2-28-2022	0.8877	0.8877
4	3-1-2022	5-31-2022	0.8792	0.8792
5	6-1-2022	8-31-2022	0.2305	0.2305
		Highest	1.0362	1.0362

2.2 Overall Operational
Unmitigated Operational

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PM11 } \end{aligned}$	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM2. } \end{aligned}$	$\begin{gathered} \text { PM2.5 } \\ \hline \text { Total } \end{gathered}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Area	0.4238	$\begin{gathered} 2.60000- \\ 004 \end{gathered}$	0.0282	0.0000		$\begin{gathered} 1.0000 \mathrm{e} \\ 004 \end{gathered}$	$1.0000 \mathrm{e}-$ 004		$\begin{gathered} 1.0000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{aligned} & 1.00000- \\ & 004 \end{aligned}$	0.0000	0.0549	0.0549	$\begin{aligned} & 1.4000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	0.0585
Energy	0.0148	0.1348	0.1133	$8.1000 \mathrm{e}-$ 004		0.0103	0.0103		0.0103	0.00103	0.0000	:471.0861	471.0861	0.0162	${ }^{5.76000}$	473.1186
Mobile	0.4745	2.2427	6.2178	0.0251	2.2480	0.0192	2.2672	0.6025	0.0178	0.7220	0.0000	${ }^{2}$	5	0.1090	0.0000	$2,355.416$
Waste						0.0000	0.0000		0.0000	0.00000	81.9089	0.0000	81.9089	4.8407	0.0000	202.9258
Water						0.0000	0.0000		0.0000	0.0000	1.5019	45.8509	47.3528	0.1562	$\begin{aligned} & 4.03000- \\ & 003 \end{aligned}$	52.4587
Total	0.9131	2.3778	6.3593	0.0259	2.2480	0.0295	2.2776	0.6025	0.0282	0.6306	83.4108	$\begin{array}{\|c\|} \hline 2,839.684 \\ \hline \end{array}$	$\underset{2}{2,923.095}$	5.1221	$\begin{gathered} 9.4900 \mathrm{e}- \\ 003 \end{gathered}$	$\underset{8}{3,053.977}$

2.2 Overall Operational
Mitigated Operational
2.2 Overall Operational
Mitigated Operational

	ROG	NOX	co	SO2	Fugitive PM10	Exhaust	$\begin{gathered} \text { PM10 } \\ \text { Potal } \end{gathered}$	Fugitive	Exhaust	$\begin{array}{\|c} \text { PM2.5 } \\ \text { Total } \end{array}$	Bio- CO^{2}	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	5.30	10.84	18.37	20.74	22.81	13.30	22.69	22.81	12.99	22.38	0.00	17.50	17.00	0.41	0.00	16.29

3.0 Construction Detail
Construction Phase
oral
Date: 11/26/2018 10:23 AM
Page 7 of 33
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual

$\begin{aligned} & \text { Phase } \\ & \text { Number } \end{aligned}$	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	:Demolition	;6/1/2021	6/28/2021		20	
2	Grading	:Grading	6/29/2021	7/26/2021	5	20	
3	Building Construction	Building Construction	7/27/2021	6-13/2022	5	230	
4	Paving	:Paving	6/14/2022	17/11/2022	5	20	
5	Architectural Coating	Architectural Coating	:7/27/2021	6/13/2022	5	230	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 152,367; Non-Residential Outdoor: 50,789; Striped Parking Area: 5,410 (Architectural Coating - sqft)
OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	:Concrete/Industrial Saws		8.00	81	0.73
Demolition	: Excavators		8.00	158	0.38
Demolition	RubberTired Dozers		8.00	247	0.40
Grading	:Excavators		8.00	158	0.38
Grading	:Graders		8.00	1871	0.41
Grading	:Rubber Tired Dozers		8.00	247	0.40
Grading			8.00	97	0.37
Building Construction	Cranes		7.00	231	0.29
Building Construction	:Forklifts		8.00	89	0.20
Building Construction	:---7enerator Sets		8.00	84,	0.74
Building Construction	Tractors/Loaders/Backhoes		7.00	97	0.37
Building Construction	W-Welders		8.00	46	0.45
Paving	P-----		8.00	130	0.42
Paving	PPaving Equipment		6.00	132	0.36
Paving	R--7lers		6.00	80	0.38
Architectural Coating	Air Compressors		6.00	78	0.48
Paving	Cement and Mortar Mixers		6.00	9	0.56
Paving	:Tractors/Loaders/Backhoes		8.00	97:	0.37

Trips and VMT
CaIEEMod Version: CaIEEMod.2016.3.2
Date: 11/26/2018 10:23 AM
Page 9 of 33
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	$\begin{gathered} \text { Worker Trip } \\ \text { Length } \end{gathered}$	Vendor Trip Length	Length Hauling Trip Length	Worker Vehicle Class	$\begin{array}{\|c\|} \hline \text { Vendor } \\ \text { Vehicle Class } \end{array}$	Hauling Vehicle Class
Demolition	6	15.00	6.00	229.00	14.70	6.90	20.00	D_Mix	\|HDT_Mix	HHDT
Grading	6	15.00	6.00	0.00	14.70	6.9	20.00	D_-Mix	HDT_Mix	†НС̈
Building Constructio	9	81.00	31.00	0.00 ?	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Paving	8	20.00	0.00	0.00	14.70	6.90	20.00	D_Mix	,HDT_Mix	HHDT
Architectural Coating	1	16.00	0.00:	0.00:	14.70	6.90	20.00	D_Mix	;HDT_Mix	: H F FT

3.1 Mitigation Measures Construction
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual

Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust	$\begin{aligned} & \hline \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	$9.6000 \mathrm{e}-$ 004	0.0317	$\begin{gathered} 7.3900 \mathrm{e} \\ 003 \end{gathered}$	$\begin{aligned} & 9.00000- \\ & 005 \\ & \hline \end{aligned}$	$\begin{gathered} 1.9700 \mathrm{e} \\ 003 \end{gathered}$	$\begin{aligned} & 9.00000- \\ & 005 \end{aligned}$	$\begin{aligned} & 2.0600 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 5.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 9.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 6.3000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	8.7283	8.7283	$\begin{gathered} 6.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	8.7434
Vendor	${ }^{1.90000}$	$\begin{gathered} 5.9200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.6100 \mathrm{e} \\ 003 \end{gathered}$	$\begin{aligned} & 2.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & 3.8000 \mathrm{e} \\ & 004 \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{e} \\ & 005 \end{aligned}$	$\begin{aligned} & 3.9000 \mathrm{e}- \\ & 004 \end{aligned}$	$1.1000 \mathrm{e}-$	$\begin{aligned} & 1.0000 \mathrm{e} \\ & 005 \end{aligned}$	$\begin{gathered} 1.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.4790	1.4790	${ }^{9.00000}$	0.0000	1.4813
Worker	$6.5000 \mathrm{e}-$ 004	$\begin{aligned} & 5.0000 \mathrm{e} \\ & 004 \end{aligned}$	$\begin{gathered} 5.6700 \mathrm{e} \\ 003 \end{gathered}$	$\begin{aligned} & 2.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{array}{r} 1.6400 \mathrm{e} \\ 003 \end{array}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & 1.6600 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 4.4000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	004 $4.5000 \mathrm{e}-$	0.0000	1.4834	1.4834	$\begin{aligned} & -0.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0000	1.7845
Total	$\begin{gathered} 1.8000 \mathrm{e}- \\ 003 \end{gathered}$	0.0381	0.0147	$\begin{gathered} 1.3000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.9900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.1000 \mathrm{e}- \\ 004 \end{gathered}$ 004	$\begin{gathered} 4.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.10000- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.2000 \mathrm{e}- \\ & 0 n 3 \end{aligned}$ 003	0.0000	11.6907	11.6907	$7.4000 \mathrm{e}-$ 004	0.0000	11.7092

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { FM10 } \\ & \text { PM10 } \end{aligned}$	Exhaust	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2. 5	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					$\begin{array}{\|c} 9.6500 \mathrm{e} \\ 003 \end{array}$	0.0000	$\begin{aligned} & 9.6500 \mathrm{e} \\ & 003 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.4600 \mathrm{e} \\ 003 \\ \hline \end{array}$	0.0000	$\begin{aligned} & 1.4600 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ofi-Road	0.0317	0.3144	0.2157	$\begin{aligned} & 3.9000 \mathrm{e}- \\ & 004 \end{aligned}$		0.015	0.0155		0.0144	0.0144	0.0000	34.0007	34.0007	$\begin{gathered} 9.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	34.2400
Total	0.0317	0.3144	0.2157	$\begin{aligned} & \hline 3.9000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 9.6500 \mathrm{e}- \\ 003 \end{gathered}$	0.0155	0.0252	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$	0.0144	0.0159	0.0000	34.0007	34.0007	$\begin{gathered} 9.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	34.2400

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	${ }^{9.60000-}$	0.0317	$\begin{aligned} & 7.3900 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 9.00000 \mathrm{e} \\ & 005 \end{aligned}$	$\begin{aligned} & 1.9700 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 9.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & 2.0600 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 5.4000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 9.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$6.30000-$	0.0000	8.7283	8.7283	$\begin{gathered} 6.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	8.7434
Vendor	$\begin{gathered} 1.9000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 5.9200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.6100 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 3.8000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{e}-1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.9000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$1.2000 \mathrm{e}-$	0.0000	1.4790	1.4790	$\begin{gathered} 9.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.4813
Worker	$6.5000 \mathrm{e}-$ 004	$5.0000 \mathrm{e}-$ 004	$5.6700 \mathrm{e}-$ 003	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 1.6400 \mathrm{e}- \\ & \hline 003 \end{aligned}$	$1.0000 \mathrm{e}-$	$\begin{aligned} & 1.6600 \mathrm{e}- \\ & 003 \end{aligned}$	$4.4000 \mathrm{e}-$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.4834	1.4834	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.4845
Total	$\begin{gathered} 1.8000 \mathrm{e}- \\ 003 \end{gathered}$	0.0381	0.0147	$\begin{gathered} 1.3000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 3.9900 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 4.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.10000- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.20000 e^{-} \\ & 003 \end{aligned}$	0.0000	11.6907	11.6907	$\begin{gathered} 7.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	11.7092

3.3 Grading - 2021

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { PMoal } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dus					0.0655	0.0000	0.0655	0.0337	0.0000	0.0337	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oif-Road	0.0229	0.2474	0.1586	${ }^{3.00000-}$		0.0116	0.0116		0.0107	0.0107	0.0000	26.0537	26.0537	$8.4300 \mathrm{e}-$	0.0000	26.2644
Total	${ }^{0.0229}$	0.2474	0.1586	$\begin{aligned} & 3.00000- \\ & \hline 004 \end{aligned}$	0.0655	0.0116	0.0771	0.0337	0.0107	0.0443	0.0000	26.0537	26.0537	$\begin{aligned} & 8.43000- \\ & 003 \end{aligned}$	0.0000	26.2644

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0256	0.0000	0.0256	0.0131	0.0000	0.0131	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-Road	0.0229	0.2474	0.1586	$3.0000 \mathrm{e}-$		0.0116	0.0116		0.0107	0.0107	0.0000	26.0537	26.0537	$8.4300 \mathrm{e}-$	0.0000	26.2643
Total	0.0229	0.2474	0.1586	$3.0000 \mathrm{e}-$	0.0256	0.0116	0.0372	0.0131	0.0107	0.0238	0.0000	26.0537	26.0537	${ }^{8.43000} 00$	0.0000	26.2643

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	co2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	${ }^{1.90000} 0$	$\begin{aligned} & 5.9200 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 1.6100 \mathrm{e}- \\ & 003 \end{aligned}$	$\frac{2.0000 e-}{005}$	$\begin{array}{r} 3.80000- \\ 004 \end{array}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & 3.90000- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & 1.20000- \\ & 004 \end{aligned}$	0.0000	1.4790	1.4790	$\begin{aligned} & 9.00000-1 \\ & 005 \end{aligned}$	0.0000	1.4813
Worker	$6.5000 \mathrm{e}-$	$5.0000 \mathrm{e}-$ 004	$\begin{aligned} & 5.6700 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} --0.000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} -2.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$1.6600 \mathrm{e}-$	$4.4000 \mathrm{e}-$	$1.0000 \mathrm{e}-$	$4.5000 \mathrm{e}-$	0.0000	1.4834	1.4834	$\begin{gathered} -0.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.7845
Total	$\begin{gathered} 8.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 6.4200 e^{-} \\ 003 \end{gathered}$	$\underset{003}{7.2800 e^{-}}$	$\begin{aligned} & 4.00000- \\ & 005 \end{aligned}$	$\underset{003}{2.0200 \mathrm{e}}$	$\underset{005}{2.0000-}$	${ }_{200500 \mathrm{e}-}^{2.05}$	$\begin{gathered} 5.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\underset{005}{2.0000 e^{-}}$	$\begin{aligned} & 5.70000- \\ & 004 \end{aligned}$	0.0000	2.96	${ }^{2.9624}$	$\begin{aligned} & 1.30000- \\ & 004 \end{aligned}$	0.0000	2.9657

3.4 Building Construction-2021

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.1084	0.9936	0.9448	$\begin{aligned} & 1.5300 \mathrm{e}- \\ & 003 \end{aligned}$		0.0546	0.0546		0.0514	0.0514	0.0000	${ }^{132.0333}$	132.0333	0.0319	0.0000	132.8296
Total	0.1084	0.9936	0.9448	$\begin{gathered} 1.5300 \mathrm{e}- \\ 003 \end{gathered}$		0.0546	0.0546		0.0514	0.0514	0.0000	132.0333	132.0333	0.0319	0.0000	132.8296

CaIEEMod Version: CalEEMod.2016.3.2

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual
3.4 Building Construction-2021

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$5.4900 \mathrm{e}-$ 003	0.1744	0.0473	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0111	$3.6000 \mathrm{e}-$ 004	0.0115	3.2100 e 003	$\begin{gathered} 3.4000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 3.5500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	43.5559	43.5559	$2.6700 \mathrm{e}-$ 003	0.0000	43.6227
Worker	0.0199	0.0155	0.1746	$\begin{gathered} 5.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0506	$\begin{gathered} 4.2000 \mathrm{e} \\ 004 \end{gathered}$	0.0510	0.0134	$\begin{gathered} 3.8000-- \\ 004 \end{gathered}$	0.0138	0.0000	45.6583	45.6583	$\begin{gathered} 1.3400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	45.6919
Total	0.0254	0.1899	0.2219	$\begin{gathered} 9.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0617	$\begin{gathered} 7.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0625	0.0167	$\begin{gathered} 7.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0174	0.0000	89.2142	89.2142	$\begin{gathered} 4.0100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	89.3146

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.1084	0.9936	0.9448	$\begin{gathered} 1.5300 \mathrm{e}- \\ 003 \end{gathered}$		0.0546	0.0546		0.0514	0.0514	0.0000	132.0331	132.0331	0.0319	0.0000	132.8294
Total	0.1084	0.9936	0.9448	$\begin{gathered} 1.5300 \mathrm{e}- \\ 003 \end{gathered}$		0.0546	0.0546		0.0514	0.0514	0.0000	132.0331	132.0331	0.0319	0.0000	132.8294

CalEEMod Version: CaIEEMod.2016.3.2

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	${ }^{5.4900}$	0.1744	0.0473	${ }^{4.50000} 0$	0.0111	$3.6000 \mathrm{e}-$	0.0115	$\begin{gathered} -3.2100- \\ 003 \end{gathered}$	$\begin{aligned} & 3.4000 \mathrm{e}- \\ & 004 \end{aligned}$	${ }^{3.55000-}$	0.0000	43.5559	43.5559	${ }^{2.67000}$	0.0000	43.6227
Worker	0.0199	0.0155	0.1746	$5.1000 \mathrm{e}-$ 004	0.0506	$\begin{gathered} 4.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0510	0.0134	$\begin{aligned} & 3.8000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0138	0.0000	45.6583	45.6583	$\begin{aligned} & 1.3400 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	45.6919
Total	0.0254	0.1899	0.2219	$9.6000 \mathrm{e}-$ 004	0.0617	7.8000e- 004	0.0625	0.0167	$7.2000 \mathrm{e}-$ 004	0.0174	0.0000	89.2142	89.2142	${ }^{4.01000} 0$	0.0000	89.3146

3.4 Building Construction-2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0990	0.9057	0.9491	$\begin{gathered} 1.5600 \mathrm{e}- \\ 003 \end{gathered}$		0.0469	0.0469		0.0442	0.0442	0.0000	134.4006	134.4006	0.0322	0.0000	135.2056
Total	0.0990	0.9057	0.9491	$\begin{gathered} 1.5600 \mathrm{e}- \\ 003 \end{gathered}$		0.0469	0.0469		0.0442	0.0442	0.0000	134.4006	134.4006	0.0322	0.0000	135.2056

CalEEMod Version: CaIEEMod.2016.3.2

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual
3.4 Building Construction-2022

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$5.2400 \mathrm{e}-$ 003	0.1686	0.0455	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0113	$3.2000 \mathrm{e}-$ 004	0.0116	3.2700 e 003	$\begin{gathered} 3.0000-- \\ 004 \end{gathered}$	$\begin{gathered} 3.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	43.9308	43.9308	${ }^{2.62000-}$	0.0000	43.9964
Worker	0.0190	0.0142	0.1637	$5.0000 \mathrm{e}-$	0.0515	$\begin{gathered} 4.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0519	0.0137	$\begin{gathered} 3.8000-- \\ 004 \end{gathered}$	0.0141	0.0000	44.8262	44.8262	$\begin{gathered} 1.2300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	44.8571
Total	0.0242	0.1828	0.2092	$\begin{gathered} 9.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0628	$\begin{gathered} 7.3000 \mathrm{e}- \\ 004 \end{gathered}$	0.0635	0.0169	$\begin{gathered} 6.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0176	0.0000	88.7570	88.7570	$\begin{gathered} 3.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	88.8535

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0990	0.9057	0.9491	$\begin{gathered} 1.5600 \mathrm{e}- \\ 003 \end{gathered}$		0.0469	0.0469		0.0442	0.0442	0.0000	134.4005	134.4005	0.0322	0.0000	135.2054
Total	0.0990	0.9057	0.9491	$\begin{gathered} 1.5600 \mathrm{e}- \\ 003 \end{gathered}$		0.0469	0.0469		0.0442	0.0442	0.0000	134.4005	134.4005	0.0322	0.0000	135.2054

Mitigated Construction Off-Site
3.5 Paving-2022

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	$\begin{aligned} & 9.7700 \mathrm{e}- \\ & 003 \end{aligned}$	0.0952	0.1219	$\begin{gathered} 1.9000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{aligned} & 4.8800 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & \hline 4.8800 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{aligned} & 4.5000 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 4.5000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	16.3759	16.3759	$\begin{gathered} 5.1500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	16.5045
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	${ }^{0.0000}$
Total	$\begin{gathered} 9.77000- \\ 003 \end{gathered}$	0.0952	0.1219	$1.9000 \mathrm{e}-$ 004		$\begin{gathered} 4.8800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.8800 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 4.5000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.5000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	16.3759	16.3759	$5.1500 \mathrm{e}-$ 003	0.0000	16.5045

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual

3.5 Paving-2022

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Off-Road	${ }^{9.7700 e-}$	0.0952	0.1219	$\begin{gathered} 1.9000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 4.8800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 4.8800 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{gathered} 4.5000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 4.5000 e- \\ & 003 \end{aligned}$	0.0000	16.3758	16.3758	$\begin{aligned} & 5.1500 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	16.5045
Paving	0.0000					0.0000	0.0000		0.0000	0.00000	0.0000	0.0000	0.0000	0.0000	0.0000	${ }^{0.00000}$
Total	$\begin{gathered} 9.7700 \mathrm{e}- \\ 003 \end{gathered}$	0.0952	0.1219	$\begin{gathered} 1.9000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{aligned} & 4.8800 \mathrm{e}- \\ & 003 \end{aligned}$	$4.8800 \mathrm{e}-$		${ }_{003}^{4.5000 e^{-}}$	$4.5000 \mathrm{e}-$	0.0000	16.3758	16.3758	${ }^{5.15000} 00$	0.0000	16.5045

LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual

3.5 Paving - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 8.1000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} \text { 6.1000e- } \\ 004 \end{gathered}$	$\begin{gathered} 6.9700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.190-\mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e} \\ 005 \end{gathered}$	$\begin{gathered} 2.2100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.9083	1.9083	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.9096
Total	$\begin{gathered} 8.1000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 6.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 6.9700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.1900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.2100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.9083	1.9083	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.9096

3.6 Architectural Coating - 2021

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Archit. Coating	0.2396					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-ioad	0.0125	0.0870	0.1036	$1.7000 \mathrm{e}-$		$5.3600 \mathrm{e}-$	$5.3600 \mathrm{e}-$		$5.3600 \mathrm{e}-$	$5.3600 \mathrm{e}-$	0.0000	14.51236	14.5356	$1.0000 \mathrm{e}-$	0.0000	14.5785
Total	${ }^{0.2521}$	0.0870	0.1036	$1.7000 \mathrm{e}-$ 004		$5.3600 \mathrm{e}-$ 003	$5.3600 \mathrm{e}-$ 003		$5.3600 \mathrm{e}-$ 003	$\begin{gathered} 5.3600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	14.5536	14.5536	$1.0000 \mathrm{e}-$ 003	0.0000	14.5785

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Archit. Coating	0.2396					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0125	0.0870	0.1036	$1.7000 \mathrm{e}-$		$5.3600 \mathrm{e}-$	$5.3600 \mathrm{e}-$		$5.3600 \mathrm{e}-$ 003	$5.3600 \mathrm{e}-$	0.0000	14.5335	14.5335	$1.0000 \mathrm{e}-$	0.0000	14.5785
Total	${ }^{0.2521}$	0.0870	0.1036	$\begin{aligned} & 1.7000 \mathrm{e}- \\ & 004 \end{aligned}$		${ }_{0}^{5.36000}{ }^{0}$	$\begin{aligned} & 5.3600 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{aligned} & 5.3600 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 5.3600 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	14.5535	14.5535	$\begin{aligned} & 1.00000- \\ & 003 \end{aligned}$	0.0000	14.5785

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 3.9200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.0600 \mathrm{e}- \\ 003 \end{gathered}$	0.0345	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 9.9900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0101	$\begin{gathered} 2.6500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.7300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	9.0189	9.0189	$\begin{gathered} 2.7000 \mathrm{e}- \\ \hline \end{gathered}$	0.0000	9.0256
Total	$\begin{gathered} 3.9200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.0600 \mathrm{e}- \\ 003 \end{gathered}$	0.0345	$\begin{aligned} & 1.00000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 9.9900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0101	$\begin{gathered} 2.6500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.7300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	9.0189	9.0189	$\begin{gathered} 2.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	9.0256

3.6 Architectural Coating - 2022

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coating	0.2438					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0119	0.0817	0.1052	$1.7000 \mathrm{e}-$		$4.7400 \mathrm{e}-$	$4.7400 \mathrm{e}-$		$4.7400 \mathrm{e}-$	$4.7400 \mathrm{e}-$	0.0000	14.8089	14.8089	$9.6000 \mathrm{e}-$	0.0000	14.8330
Total	0.2556	0.0817	0.1052	$1.7000 \mathrm{e}-$ 004		$\begin{gathered} 4.7400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.7400 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 4.7400 \mathrm{e}- \\ 003 \end{gathered}$	$4.7400 \mathrm{e}-$ 003	0.0000	14.8089	14.8089	$\begin{gathered} 9.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	14.8330

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	PM10 Total	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000		0.0000	0.0000	0.0000				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker		$\begin{gathered} 2.8100 \mathrm{e}- \\ 003 \end{gathered}$	0.0323	$\begin{gathered} 1.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0102	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0103	$\begin{gathered} 2.7000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.7800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	8.8546	8.8546	$\begin{gathered} 2.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	8.8607
Total	$\begin{gathered} 3.7400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.8100 \mathrm{e}- \\ 003 \end{gathered}$	0.0323	$\begin{gathered} 1.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0102	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0103	$\begin{gathered} 2.7000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.7800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	8.8546	8.8546	$\begin{gathered} 2.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	8.8607

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coating	0.2438					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oif-Road	0.0119	0.0817	0.1052	${ }^{1.70000-}$		${ }^{4.74009}$	${ }^{4.74000-}$		$4.74000-$ 003	$4.74000-$ 003	0.0000	14.8089	14.8089	${ }^{9.6000-}$	0.0000	14.8330
Total	0.2556	0.0817	0.1052	$1.7000 \mathrm{e}-$ 004		$\begin{gathered} 4.7400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.74000- \\ 003 \end{gathered}$		$\begin{gathered} 4.7400 \mathrm{e}- \\ 003 \end{gathered}$	$4.7400 \mathrm{e}-$ 003	0.0000	14.8089	14.8089	$\begin{gathered} 9.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	14.8330

3.6 Architectural Coating-2022
Mitigated Construction Off-Site

4.0 Operational Detail - Mobile

[^12]| | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Category | tons/yr | | | | | | | | | | MT/yr | | | | | |
| Mitigated | (1)0.4261 | 1.9850 | 5.0497 | 0.0197 | 1.7352 | 0.0153 | 1.7504 | 0.4650 | 0.0142 | 0.4792 | 0.0000 | 1,825.846 | 1,825.846 | 0.0880 | 0.0000 | $1,828.046$ 5 ..----- |
| Unmitigated | :1 0.4745 | 2.2427 | 6.2178 | 0.0251 | 2.2480 | 0.0192 | 2.2672 | 0.6025 | 0.0178 | 0.6203 | 0.0000 | $\begin{gathered} 2,322.692 \\ \hline \end{gathered}$ | $\begin{gathered} 2,322.692 \\ \hline \end{gathered}$ | 0.1090 | 0.0000 | $\begin{gathered} 2,325.416 \\ \hline \end{gathered}$ |

4.2 Trip Summary Information

4.3 Trip Type Information

5.1 Mitigation Measures Energy

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM2.5 } \end{gathered}$	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	; 324.2966	324.2966	0.0134	$\begin{gathered} 2.77000- \\ 003 \end{gathered}$	325.4568
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	324.2966	324.2966	0.0134	$\begin{gathered} 2.7700 \mathrm{e}- \\ 003 \end{gathered}$	325.4568
$\begin{gathered} \text { NaturalGas } \\ \text { Mitigated } \end{gathered}$	0.0148	0.1348	0.1133	${ }^{8.10000}$		0.0103	0.0103		0.0103	0.0103	0.0000	146.7896	146.7896	${ }^{2.81000}$	$\begin{gathered} 2.6900 \mathrm{e} \\ \hline 0 \end{gathered}$	147.6618
- $\begin{aligned} & \text { Naturala-as } \\ & \text { Unmitigated }\end{aligned}$	0.0148		0.1133	8.1000e					0.0003	0.00103		- 146.7896	146.7896	2.81000 003	${ }_{0}^{2.99000}$	147.6618

CaIEEMod Version: CaIEEMod.2016.3.2 LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual
5.2 Energy by Land Use - NaturalGas
Unmitigated

Mitigated

	$\begin{array}{\|c\|} \hline \text { NaturalGa } \\ \text { s Use } \end{array}$	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	tons/yr										MT/yr					
Junior Colleg (2Yr)	$\begin{aligned} & 2.75073 \mathrm{e} \\ & +006 \end{aligned}$	0.0148	0.1348	0.1133	$\begin{gathered} 8.1000 \mathrm{e}- \\ 004 \end{gathered}$		0.0103	0.0103		0.0103	0.0103	0.0000	146.7896	146.7896	$\begin{gathered} 2.8100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.6900 \mathrm{e}- \\ 003 \end{gathered}$	147.6618
Other NonAsphalt Surfac		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0148	0.1348	0.1133	$\begin{gathered} 8.1000 \mathrm{e}- \\ 004 \end{gathered}$		0.0103	0.0103		0.0103	0.0103	0.0000	146.7896	146.7896	$\begin{gathered} 2.8100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.6900 \mathrm{e}- \\ 003 \end{gathered}$	147.6618

Mitigated

6.0 Area Detail
6.1 Mitigation Measures Area

6.2 Area by SubCategory

Unmitigated

7.0 Water Detail
7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	co2e
Category	MT／yr			
Mitigated	47.3528	0.1562	4．0300e－	52.4587
Uninitigated			4.03000 003	52．4587

7．2 Water by Land Use

\％ัٌ		\|o⿳亠口冋口	$\left\lvert\, \begin{gathered} \hat{0} \\ \substack{4\\ } \end{gathered}\right.$
\％̊	気		宸気
꽁			誓
$\begin{aligned} & \bar{\circ} \mathrm{O} \\ & \frac{\mathrm{O}}{\mathrm{I}} \\ & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \hline \end{aligned}$			
	㐫	硽等：	
	（1）		高

7.2 Water by Land Use
Mitigated

8.0 Waste Detail
8.1 Mitigation Measures Waste
Category/Year

	Total CO2	CH4	N2O	CO2e	
		MT/yr			
Mitigated	81.9089	4.8407	0.0000	202.9258	
Unmitigated	$:$	81.9089	4.8407	0.0000	
			202.9258		

8.2 Waste by Land Use
 Unmitigated

Mitigated

9.0 Operational Offroad

Equipment Type	Number	Hours Day	DaysYear	Horse Power	Load Factor	Fuel Type

CalEEMod Version: CaIEEMod.2016.3.2
Date: 11/26/2018 10:23 AM
LBCC LAC Interim Year 2025 (2021-2025 Construction) - Los Angeles-South Coast County, Annual
10.0 Stationary Equipment
Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Equipment Type	Number

11.0 Vegetation

APPENDIX D

CalEEMod Model Interim Year 2030 Printouts
Date: 11/26/2018 1:06 PM
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

LBCC LAC Interim Year 2030 (2026-2030 Construction)
 Los Angeles-South Coast County, Summer

1.0 Project Characteristics
1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	3,736.00	Student	0.88	72,336.00	0
Other Non-Asphalt Surfaces	2.0	Acre	2.07	90,169.20	0

[^13]LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
Project Characteristics - Interim Year 2030
Land Use - 3,736 student Junior College on 0.88 acres and $72,336 \mathrm{sq} \mathrm{ft}$ of building and 2.07 -acres Other Non-Asphalt Surfaces.
Construction Phase - 20 days Demo, 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving. Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.
Demolition - Demolition of 27,792 SF of building space
Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA. Vehicle Emission Factors Vehicle Emission Factors Vehicle Emission Factors -
Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 x$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsit and connecting offsite
Mobile Commute Mitigation -
Date 11/26/2018 1:06 PM
Page 3 of 28
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	6.00	20.00
tbiConstructionPhase	NumDays	10.00	220.00
tblConstructionPhase	NumDays	10.00	20.00
tbiConstructionPhase	PhaseEndDate	7/6/2026	7/26/2026
tbiconstructionPhase	PhaseEndDate	5/10/2027	5/28/2027
tbiConstructionPhase	PhaseEndDate	6/7/2027	5/28/2027
tbiConstructionPhase	PhaseEndDate	5/24/2027	6/26/2027
tbiconstructionPhase	PhaseStartorate	717/2026	7/27/2026
tbiconstructionPhase	PhaseStarto---	5/25/2027	7/27/2026
tbiConstructionPhase	PhaseStartDate	5/11/2027	5/29/2027
tbilanduse	LanduseSquareFeet	163,084.76	72,336.00
tbilanduse	LotAcreage	3.74	0.88
tbiTripsAndivic	VendororripNumber	0.00	6.00
	VendorTripNüumer	0.00	6.00
tolvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary

Unmitigated Construction

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2026	5.1407	15.1716	18.6304	0.0424	2.7056	0.5485	3.2029	1.3540	0.5122	1.8116	0.0000	: ${ }^{4,053.708}$	${ }^{4,053.708}$	0.6556	0.0000	$\begin{gathered} 4,065.917 \\ 5 \end{gathered}$
2027	5.1273	15.1432	18.4801	0.0421	1.0895	0.5297	1.6191	0.2929	0.5089	0.8018	0.0000	${ }^{4,025.483}$	${ }^{4,025.483}$	0.5449	0.0000	$\begin{gathered} 4,037.644 \\ 2 \end{gathered}$
Maximum	5.1407	15.1716	18.6304	0.0424	2.7056	0.5485	3.2029	1.3540	0.5122	1.8116	0.0000	$4,053.708$	$4,053.708$ 4	0.6556	0.0000	$\begin{array}{\|c} \hline 4,065.917 \\ 5 \end{array}$
	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	51.30	0.00	45.32	55.50	0.00	44.01	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Tota	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Area	1.6895	$\begin{gathered} 3.4200 \mathrm{e}- \\ 003 \end{gathered}$	0.3797	$\begin{aligned} & 3.0000 \mathrm{e}- \\ & 005 \end{aligned}$		$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		0.8181	0.8181	$\begin{gathered} 2.1100 \mathrm{e}- \\ 003 \end{gathered}$		0.8708
Energy	0.0579	0.5262	0.4420	$\begin{gathered} 3.1600 \mathrm{e}- \\ 003 \end{gathered}$		0.0400	0.0400		0.0400	0.0400		631.3808	631.3808	0.0121	0.0116	635.1328
Mobile	4.8694	23.6856	61.3669	0.2811	27.5850	0.1737	27.7588	7.3792	0.1613	7.5404		28,777.55	28,777.55	1.1815		$\begin{gathered} 28,807.09 \\ 33 \end{gathered}$
Total	6.6168	24.2152	62.1886	0.2842	27.5850	0.2151	27.8001	7.3792	0.2026	7.5818		$\begin{array}{\|c} \hline 29,409.75 \\ 43 \end{array}$	$\begin{array}{\|c} 29,409.75 \\ 43 \end{array}$	1.1957	0.0116	$\begin{gathered} 29,443.09 \\ 69 \end{gathered}$

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										1b/day					
Area	1.6895	$\begin{gathered} 3.4200 \mathrm{e}- \\ 003 \end{gathered}$	0.3797	$\begin{gathered} 3.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		0.8181	0.8181	$\begin{gathered} 2.1100 \mathrm{e}- \\ 003 \end{gathered}$		0.8708
Energy	0.0579	0.5262	0.4420	$\begin{gathered} 3.1600 \mathrm{e}- \\ 003 \end{gathered}$		0.0400	0.0400		0.0400	0.0400		631.3808	631.3808	0.0121	0.0116	635.1328
Mobile	4.3737	21.3891	49.3925	0.2212	21.2917	0.1383	21.4300	5.6957	0.1283	5.8240		$\begin{gathered} 22,660.93 \\ : \quad 52 \end{gathered}$	22,660.93:	0.9537		$\begin{gathered} 22,684.77 \\ 81 \end{gathered}$
Total	6.1211	21.9187	50.2142	0.2244	21.2917	0.1796	21.4713	5.6957	0.1697	5.8654		$\begin{array}{\|c\|} \hline 23,293.13 \\ 41 \end{array}$	$\begin{array}{\|c\|} \hline 23,293.13 \\ 41 \end{array}$	0.9679	0.0116	$\begin{aligned} & 23,320.78 \\ & \hline 17 \end{aligned}$

CalEEMod Version: CalEEMod.2016.3.2				Page 6 of 28								Date: 11/26/2018 1:06 PM				
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer																
	ROG	NOX	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM2.5 } \end{gathered}$	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
$\begin{aligned} & \hline \begin{array}{c} \text { Percent } \\ \text { Reduction } \end{array} \end{aligned}$	7.49	9.48	19.25	21.07	22.81	16.48	22.77	22.81	16.25	22.64	0.00	20.80	20.80	19.05	0.00	20.79

3.0 Construction Detail
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81'	0.73
Demolition	Tractors/Loaders/Backhoes	3	8.00	97!	0.37
Demolition	-Rubber Tired Dozers	1	8.00	247	0.40
Grading	-Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247!	0.40
Grading	Tractors/Loaders/Backhoes	2	7.00	971	0.37
Building Construction	Cranes	1	8.00	231	0.29
Building Construction	Forklifts	2	7.00	89	0.20
Building Construction	-Generator Sets	1	8.00	841	0.74
Building Construction	-Tractors/Loaders/Backhoes	1	6.00	971	0.37
Building Construction	Welders	3	8.00	46	0.45
Paving	-Cement and Mortar Mixers	1	8.00	9	0.56
Paving	Pavers	1	8.00	130	0.42
Paving	Paving Equipment	1	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	971	0.37
Architectural Coating	-Air Compressors	1 '	6.00'	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	6.00	126.00	14.70	6.90	20.0	D_Mix	HDT_Mix	HHDT
Grading	4	10.00	6.00	0.00	14.70	6.90	20.00	D_Mix	IHDT_Mix	1HHDT
Building Construction	8	68.00	27.	0.0	14.70	6.90	20.00	D_Mix	, HDT_Mix	1HHDT
Paving		15.00	0.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Architectural Coating	1	14.00	0.00	0.00	14.70	6.90	20.00	D_Mix	:HDT_Mix	: HHDT

CaIEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

3.1 Mitigation Measures Construction
 Water Exposed Area
 3.2 Demolition-2026
 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \begin{array}{l} \text { Total } \end{array} \end{aligned}$	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PM22. } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \end{aligned}$	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	co2e
Category	Ib/day										lb/day					
Fugitive Dus					1.3679	0.0000	1.3679	0.2071	0.0000	0.2071			0.0000			0.0000
Off-Road	1.3396	12.905	13.3316	0.0242		0.5452	0.5452		0.5091	91		${ }_{4}^{2,325.793}$	$\stackrel{2,325.793}{4}$	0.586		$\left[\begin{array}{c} 2,300.458 \\ 4 \end{array}\right.$
Total	1.3396	12.9057	13.3316	0.0242	${ }^{1.3679}$	0.5452	1.9131	0.2071	0.5091	0.7162		$\stackrel{2,325.793}{ }$	${ }_{4}^{2,325.793}$	0.5866		$\stackrel{2,340.458}{4}$

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
3.2 Demolition-2026

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dus					0.5335	0.0000	0.5335	0.0808	0.0000	0.0808			0.0000			0.0000
Off-Road	1.3396	12.905	13.3316	0.0242		0.5452	0.5452		0.5091	0.5091	0.0000	${ }^{2,325.793}$	${ }_{4}^{2,325.793}$	0.586		${ }_{2}^{2,340.458}$
Total	${ }^{1.3396}$	12.9057	13.3316	0.0242	0.5335	0.5452	1.0787	0.0808	0.5091	0.5898	0.0000	2,325.793	$\begin{array}{\|c\|} \hline 2,325.793 \\ \hline \end{array}$	0.5866		${ }^{2,340.458}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
3.2 Demolition - 2026

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2. 5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										Ib/day					
Hauling	0.0325	0.9982	0.3668	$\begin{gathered} 4.5500 \mathrm{e}- \\ 003 \end{gathered}$	0.1102	$\begin{aligned} & 1.8000 \mathrm{e}- \\ & 003 \end{aligned}$	0.1120	0.0302	$\begin{gathered} 1.7200 \mathrm{e}- \\ 003 \end{gathered}$	0.0319		497.1907	497.1907	0.0331		498.0169
Vendor	0.0118	0.4113	0.1205	${ }^{1.4500 e}$	0.0384	$4.6000 \mathrm{e}-$	0.0389	0.0111	$4.4000 \mathrm{e}-$	0.0115		155.9985	155.9985	${ }^{7.97000} 0$		156.1977
Worker	0.0420	0.0241	0.3602	$\begin{aligned} & 1.2400 \mathrm{e}- \\ & 003 \end{aligned}$	0.1453	$1.03000-$ 003	0.1463	0.0385	$9.5000 \mathrm{e}-$ 004	0.0395		123.7184	123.7184	$\begin{gathered} -7.7300 e- \\ 003 \end{gathered}$		123.786
Total	${ }^{0.0863}$	1.4336	0.8475	$\begin{gathered} 7.2400 \mathrm{e}- \\ 003 \end{gathered}$	0.2939	$\begin{gathered} 3.2900 \mathrm{e}- \\ 003 \end{gathered}$	0.2972	0.0798	$\begin{gathered} 3.1100 \mathrm{e} \\ 003 \end{gathered}$	0.0829		776.9076	776.9076	0.0438		778.0011

3.3 Grading - 2026

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Off-Road	1.1904	12.4243	8.4937	0.0206		0.4961	0.4961		0.4564	0.4564		${ }_{\text {1,995.797 }}$	$1,995.797$	0.6455		$2,011.9345$
Total	1.1904	12.4243	8.4937	0.0206	6.5523	0.4961	7.0484	3.3675	0.4564	3.8239		${ }^{1,995.797}$	${ }_{5}^{1,995.797}$	0.6455		$\underset{5}{2,011.934}$

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

3.3 Grading - 2026

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					2.5554	0.0000	2.5554	1.3133	0.0000	${ }^{1.3133}$			0.0000			0.0000
Off-Road	1.1904	12.4243	8.4937	0.0206		0.4961	0.4961		0.4564	0.4564	0.0000	5	$1,995.797$	0.6455		2,011.9345
Total	1.1904	12.4243	8.4937	0.0206	2.5554	0.4961	3.0515	1.3133	0.4564	1.7697	0.0000	${ }_{5}^{1,995.797}$	${ }_{5}^{1,995.797}$	0.6455		$\underset{5}{2,011.934}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

3.3 Grading - 2026

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0118	0.4113	0.1205	$\begin{gathered} 1.4500 \mathrm{e} \\ 003 \end{gathered}$	0.0384	$4.6000 \mathrm{e}-$ 004	0.0389	0.0111	$\begin{gathered} 4.4000-- \\ 004 \end{gathered}$	0.0115		155.9985	155.9985	7.9700e- 003		156.1977
Worker	0.0323	0.0185	0.2771	$\begin{gathered} 9.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1118	$\begin{gathered} 7.9000 \mathrm{e} \\ 004 \end{gathered}$	0.1126	0.0296	$\begin{gathered} 7.3000 \mathrm{e}- \\ 004 \end{gathered}$	0.0304		95.1680	95.1680	${ }^{2.1000 e-}$		95.2204
Total	0.0441	0.4298	0.3975	$\begin{gathered} 2.4000 \mathrm{e}- \\ 003 \end{gathered}$	0.1502	$\begin{gathered} 1.2500 \mathrm{e}- \\ 003 \end{gathered}$	0.1515	0.0407	$\begin{gathered} 1.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.0419		251.1665	251.1665	0.0101		251.4181

3.4 Building Construction-2026

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498		$\begin{aligned} & 2,289.889 \\ & 8 \end{aligned}$	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	0.4200		$\underset{7}{2,300.388}$
Total	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498		$\begin{array}{\|c\|} \hline 2,289.889 \\ \hline \end{array}$	$\begin{array}{\|c} 2,289.889 \\ 8 \end{array}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
3.4 Building Construction-2026

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling			0.0000	0.0000			0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0531	1.8510	0.5420	$\begin{gathered} 6.5400 \mathrm{e}- \\ 003 \end{gathered}$	0.1729	$\begin{gathered} 2.0800 \mathrm{e}- \\ 003 \end{gathered}$	0.1750	0.0498	$\begin{aligned} & 1.9900 \mathrm{e}- \\ & 003 \end{aligned}$	0.0518		701.9932	701.9932	0.0359		702.8894
Worker		0.1259	1.8841	$\begin{gathered} 6.4900 \mathrm{e}- \\ 003 \end{gathered}$	0.7601	$\begin{gathered} 5.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.7655	0.2016	$\begin{gathered} 4.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.2065		647.1422	647.1422	0.0143		647.4989
Total	0.2729	1.9769	2.4261	0.0130	0.9330	$\begin{gathered} 7.4700 \mathrm{e}- \\ 003 \end{gathered}$	0.9404	0.2514	$\begin{gathered} 6.9500 \mathrm{e}- \\ 003 \end{gathered}$	0.2583		$\begin{array}{\|c} \hline 1,349.135 \\ 4 \end{array}$	$\begin{gathered} 1,349.135 \\ \hline \end{gathered}$	0.0501		$\begin{gathered} 1,350.388 \\ 3 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498	0.0000	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$
Total	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498	0.0000	$\begin{array}{\|c\|} \hline 2,289.889 \\ 8 \end{array}$	$\begin{array}{\|c} 2,289.889 \\ 8 \end{array}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
3.4 Building Construction-2026

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0531	1.8510	0.5420	$\begin{gathered} 6.5400 \mathrm{e}- \\ 003 \end{gathered}$	0.1729	$\begin{gathered} 2.0800 \mathrm{e}- \\ 003 \end{gathered}$	0.1750	0.0498	$\begin{gathered} 1.9900 \mathrm{e}- \\ 003 \end{gathered}$	0.0518		701.9932	701.9932	0.0359		702.8894
Worker	0.2198	0.1259	1.8841	$\begin{gathered} 6.490-\mathrm{e}- \\ 003 \end{gathered}$	0.7601	$\begin{gathered} 5.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.7655	0.2016	$\begin{gathered} 4.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.2065		647.1422	647.1422	0.0143		647.4989
Total	0.2729	1.9769	2.4261	0.0130	0.9330	$\begin{gathered} 7.4700 \mathrm{e}- \\ 003 \end{gathered}$	0.9404	0.2514	$\begin{gathered} 6.9500 \mathrm{e}- \\ 003 \end{gathered}$	0.2583		$\begin{array}{\|c} 1,349.135 \\ 4 \end{array}$	$\begin{array}{\|c\|} \hline 1,349.135 \\ 4 \end{array}$	0.0501		$\begin{gathered} 1,350.388 \\ 3 \end{gathered}$

3.4 Building Construction-2027
 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498		$\begin{aligned} & 2,289.889 \\ & 8 \end{aligned}$	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$
Total	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498		$\begin{array}{\|c\|} \hline 2,289.889 \\ \hline \end{array}$	$\begin{array}{\|c} 2,289.889 \\ 8 \end{array}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

3.4 Building Construction-2027
 Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling		0.0000	0.0000	0.0000			0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0521	1.8343	0.5330	-5.5000	0.1729	$\begin{gathered} 2.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.1749	0.0498	$\begin{gathered} 1.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.0517		698.6335	698.6335	0.0353		699.5168
Worker		0.1161	1.7670	$\begin{gathered} 6.2800 \mathrm{e}- \\ 003 \end{gathered}$	0.7601	$\begin{gathered} 5.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.7652	0.2016	$\begin{gathered} 4.6900 \mathrm{e}- \\ 003 \end{gathered}$	0.2063		626.5221	626.5221	0.0131		626.8496
Total	0.2616	1.9505	2.3000	0.0128	0.9330	$\begin{gathered} 7.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.9401	0.2514	$\begin{gathered} 6.6500 \mathrm{e}- \\ 003 \end{gathered}$	0.2580		$\begin{array}{\|c} \hline 1,325.155 \\ 5 \end{array}$	$\begin{gathered} 1,325.155 \\ 5 \end{gathered}$	0.0484		$\begin{gathered} 1,326.366 \\ 4 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498	0.0000	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$
Total	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498	0.0000	$\begin{array}{\|c\|} \hline 2,289.889 \\ 8 \end{array}$	$\begin{array}{\|c} 2,289.889 \\ 8 \end{array}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
3.4 Building Construction-2027
Mitigated Construction Off-Site
3.5 Paving - 2027

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.7854	7.4371	11.6737	0.0179		0.3503	0.3503		0.3234	0.3234		${ }^{1,710.006}$	${ }^{1,710.006}$	0.5420		$\begin{gathered} 1,723.555 \\ 6 \end{gathered}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.7854	7.4371	11.6737	0.0179		${ }^{0.3503}$	0.3503		0.3234	${ }^{0.3234}$		$\begin{array}{\|l\|} \hline 1,710.006 \\ 7 \end{array}$	${ }^{1,710.006}$	0.5420		$\underset{\substack{1,723.555 \\ 6}}{ }$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

3.5 Paving - 2027

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.7854	7.4371	11.6737	0.0179		0.3503	0.3503		0.3234	0.3234	0.0000	${ }^{1,710.006}$	${ }^{1,710.006}$	0.5420		$\begin{gathered} 1,723.555 \\ 6 \end{gathered}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.7854	7.4371	11.6737	0.0179		0.3503	0.3503		0.3234	${ }^{0.3234}$	0.0000	$\begin{array}{\|c\|} 1,710.006 \\ 7 \end{array}$	${ }^{1,710.006}$	0.5420		$\underset{\substack{1,723.555 \\ 6}}{ }$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
3.5 Paving - 2027

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0462	0.0256	0.3898	$\begin{gathered} 1.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.1200 \mathrm{e} \\ 003 \end{gathered}$	0.1688	0.0445	$\begin{gathered} 1.0300 \mathrm{e}- \\ 003 \end{gathered}$	0.0455		138.2034	138.2034	$\begin{gathered} 2.8900 \mathrm{e}- \\ 003 \end{gathered}$		138.2756
Total	0.0462	0.0256	0.3898	$\begin{gathered} 1.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.1200 \mathrm{e}- \\ 003 \end{gathered}$	0.1688	0.0445	$\begin{gathered} 1.0300 \mathrm{e}- \\ 003 \end{gathered}$	0.0455		138.2034	138.2034	$\begin{gathered} 2.8900 \mathrm{e}- \\ 003 \end{gathered}$		138.2756

3.6 Architectural Coating - 2026

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Archit. Coating	3.1620					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1709	1.1455	1.8091	$2.9700 \mathrm{e}-$		0.0515	0.0515		0.0515	0.0515		281.4481	281.4481	0.0154		281.8319
Total	3.3328	1.1455	1.8091	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0515	0.0515		0.0515	0.0515		281.4481	281.4481	0.0154		281.8319

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

3.6 Architectural Coating-2026

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{aligned} & \text { PM2.5 } \\ & \text { Total } \end{aligned}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0453	0.0259	0.3879	$\begin{gathered} 1.3400 \mathrm{e} \\ 003 \end{gathered}$	0.1565	$\begin{gathered} 1.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.1576	0.0415	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0425		133.2352	133.2352	$2.94000-$ 003		133.3086
Total	0.0453	0.0259	0.3879	$\begin{gathered} 1.3400 \mathrm{e}- \\ 003 \end{gathered}$	0.1565	$\begin{gathered} 1.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.1576	0.0415	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0425		133.2352	133.2352	$\begin{gathered} 2.9400 \mathrm{e}- \\ 003 \end{gathered}$		133.3086

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.1620					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1709	1.1455	1.8091	$2.97000-$ 003		0.0515	0.0515		0.0515	0.0515	0.0000	281.4481	281.4481	0.0154		281.8319
Total	3.3328	1.1455	1.8091	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0515	0.0515		0.0515	0.0515	0.0000	281.4481	281.4481	0.0154		281.8319

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
3.6 Architectural Coating-2026

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0453	0.0259	0.3879	$\begin{gathered} 1.3400 \mathrm{e}- \\ 003 \end{gathered}$	0.1565	$\begin{gathered} 1.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.1576	0.0415	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0425		133.2352	133.2352	$2.94000-$ 003		133.3086
Total	0.0453	0.0259	0.3879	$\begin{gathered} 1.3400 \mathrm{e}- \\ 003 \end{gathered}$	0.1565	$\begin{gathered} 1.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.1576	0.0415	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0425		133.2352	133.2352	$\begin{gathered} 2.9400 \mathrm{e}- \\ 003 \end{gathered}$		133.3086

3.6 Architectural Coating - 2027
 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.1620					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1709	1.1455	1.8091	$\begin{aligned} & 2.9700 \mathrm{e}- \\ & 003 \end{aligned}$		0.0515	0.0515		0.0515	0.0515		281.4481	281.4481	0.0154		281.8319
Total	3.3328	1.1455	1.8091	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0515	0.0515		0.0515	0.0515		281.4481	281.4481	0.0154		281.8319

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

3.6 Architectural Coating - 2027

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.1620					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Oif-Road	0.1709	1.1455	1.8091	2.9700e-		0.0515	0.0515		0.0515	0.0515	0.0000	281.4481	281.4481	0.0154		281.8319
Total	${ }^{3.3328}$	1.1455	1.8091	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0515	0.0515		0.0515	0.0515	0.0000	281.4481	281.4481	0.0154		281.8319

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of $28 \quad$ Date: 11/26/2018 1:06 PM
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

3.6 Architectural Coating-2027

Mitigated Construction Off-Site

4.0 Operational Detail - Mobile

[^14]| | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Category | lb/day | | | | | | | | | | lb/day | | | | | |
| Mitigated | 4.3737 | 21.3891 | 49.3925 | 0.2212 | 21.2917 | 0.1383 | 21.4300 | 5.6957 | 0.1283 | 5.8240 | | 22,660.93 | $22,660.93$ 52 | 0.9537 | | $22,684.77$
 81
 ..--2. |
| Unmitigated | - 4.8694 | 23.6856 | 61.3669 | 0.2811 | 27.5850 | 0.1737 | 27.7588 | 7.3792 | 0.1613 | 7.5404 | | $\begin{gathered} 28,777.55 \\ \hline \end{gathered}$ | $\begin{gathered} 28,777.55 \\ 55 \\ \hline \end{gathered}$ | 1.1815 | | $\begin{gathered} 28,807.09 \\ 33 \\ \hline \end{gathered}$ |

4.2 Trip Summary Information
4.3 Trip Type Information

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Junior College (2Yr)	$0.542058:$	0.044057	0.210689	0.115963	0.013736	0.006367	0.021423	0.034509	0.002637	0.001734	0.005297	0.000719	0.000812
Other Non-Asphalt Surfaces	$0.542058:$	0.044057	0.210689	0.115963	0.013736	0.006367	0.021423	0.034509	0.002637	0.001734	0.005297	0.000719	0.000812

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
5.0 Energy Detail
Historical Energy Use: N
5.1 Mitigation Measures Energy

	ROG	NOX	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										1b/day					
NaturalGas Mitigated	0.0579	0.5262	0.4420	$\begin{aligned} & 3.1600 e \\ & 003 \end{aligned}$		0.0400	0.0400		0.0400	0.0400		631.3808	631.3808	0.0121	0.0116	635.1328
NaturalGas Unmitigated	0.0579	0.5262	0.4420	3.1600 e 003		0.0400	0.0400		0.0400	0.0400		631.3808	631.3808	0.0121	0.0116	635.1328

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
5.2 Energy by Land Use - NaturalGas
Unmitigated

Mitigated
Land Use
Junior College
${ }_{(2 \mathrm{Yr})}^{\text {Junior }}$ - - Other Non- - Asphalt Surfaces Total
6.0 Area Detail
6.1 Mitigation Measures Area
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Mitigated	1.6895	$\begin{aligned} & 3.4200 \mathrm{e}- \\ & 003 \end{aligned}$	0.3797	$\begin{gathered} 3.00000- \\ 005 \end{gathered}$		${ }^{1.35000-}$	$\begin{gathered} 1.3500 \mathrm{e} \\ 003 \end{gathered}$		$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		0.8181	0.8181	$\begin{gathered} 2.1100 \mathrm{e}- \\ 003 \end{gathered}$		0.8708
Üninitigated	1.6895	$\begin{gathered} 3.4200 \mathrm{e} \\ 003 \end{gathered}$	0.3797	$\begin{aligned} 3.00000 \\ \hline 005 \end{aligned}$		$\begin{gathered} -7.350-\mathrm{e}- \\ 003 \end{gathered}$	$1.35000-$			$1.3500 \mathrm{e}-$ 003		0.8181	0.8181	$\begin{gathered} 2.110-\mathrm{e}- \\ 003 \end{gathered}$		0.8708

6.2 Area by SubCategory

Unmitigated

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of $28 \quad$ Date: 11/26/2018 1:06 PM
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer
6.2 Area by SubCategory

Mitigated

70 Water Detail
7.1 Mitigation Measures Water
8.1 Mitigation Measures Waste
9.0 Operational Offroad
10.0 Stationary Equipment

Fire Pumps and Emergency Generators
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Summer

11.0 Vegetation
11/26/2018 1:05 PM
Page 1 of 28
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter
LBCC LAC Interim Year 2030 (2026-2030 Construction)
Los Angeles-South Coast County, Winter
1.0 Project Characteristics
1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	3,736.00	Student	0.88	72,336.00	0
	2.07	Acre	2.07	90,169.20	0

1.2 Other Project Characteristics
2.2

Urbanization	Urban	Wind Speed (m/s)
Climate Zone	9	
Utility Company	Southern California Edison	
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (lb/MWhr)

(1b)
1.3 User Entered Comments \& Non-Default Data
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter
Construction Phase - 20 days Demo, 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving. Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.
Demolition - Demolition of 27,792 SF of building space
Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA. Vehicle Emission Factors Vehicle Emission Factors Vehicle Emission Factors -
Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsit and connecting offsite
Mobile Commute Mitigation -
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	6.00	20.00
tbiConstructionPhase	NumDays	10.00	220.00
tbiconstructionPhase	NumDays	10.00	20.00
tbiConstructionPhase	PhaseEndDate	7/6/2026	7/26/2026
tbiConstructionPhase	PhaseEndDate	5/10/2027	5/28/2027
tbiconstructionPhase	PhaseEndDate	6/7/2027	5/28/2027
tbiconstructionPhase	PhaseEndDate	5/24/2027	6/26/2027
tbiConstructionPhase	PhaseStartate	$717 / 2026$	7727/2026
tbiconstructionPhase	PhaseStartate	5/25/2027	7/27/2026
tbiConstructionPhase	PhaseStartDate	5/11/2027	5/29/2027
tbilanduse	LandUseSquareFeet	163,084.76	72,336.00
tbiLanduse	LotAcreage	3.74	0.88
tbiTripsAndVMT	VendorTripNumber	0.00	6.00
	VendorTripNumber	0.00	6.00
tblVehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	1b/day										1b/day					
2026	5.1777	15.1797	18.4698	0.0417	2.7056	0.5486	3.2029	1.3540	0.5122	1.8116	0.0000	3,989.458	3,989.458	0.6558	0.0000	$\begin{gathered} 4,001.688 \\ 6 \end{gathered}$
2027	5.1635	15.1499	18.3298	0.0415	1.0895	0.5297	1.6192	0.2929	0.5090	0.8019	0.0000	$\begin{gathered} 3,962.837 \\ 2 \end{gathered}$	3,962.837	0.5447	0.0000	$\begin{gathered} 5,975.020 \\ 0 \end{gathered}$
Maximum	5.1777	15.1797	18.4698	0.0417	2.7056	0.5486	3.2029	1.3540	0.5122	1.8116	0.0000	$\begin{array}{c\|} \hline 3,989.458 \\ 1 \end{array}$	$\begin{gathered} \hline 3,989.458 \\ 1 \end{gathered}$	0.6558	0.0000	$\begin{array}{\|c\|} \hline 4,001.688 \\ 6 \end{array}$
	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	$\begin{array}{r} \text { PM2.5 } \\ \text { Total } \end{array}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	51.30	0.00	45.32	55.50	0.00	44.01	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational
Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Tota	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										1b/day					
Area	1.6895	$\begin{gathered} 3.4200 \mathrm{e}- \\ 003 \end{gathered}$	0.3797	$\begin{gathered} 3.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 1.3500 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		0.8181	0.8181	$\begin{gathered} 2.1100 \mathrm{e}- \\ 003 \end{gathered}$		0.8708
Energy	0.0579	0.5262	0.4420	$\begin{gathered} 3.1600 \mathrm{e} \\ 003 \end{gathered}$		0.0400	0.0400		0.0400	0.0400		631.3808	631.3808	0.0121	0.0116	635.1328
Mobile	4.2277	21.5760	47.4933	0.2106	21.2917	0.1388	21.4305	5.6957	0.1289	5.8245		${ }^{21,585.67}$	${ }^{21,585.67}$	0.9634		$\begin{gathered} 21,609.75 \\ 76 \end{gathered}$
Total	5.9751	22.1056	48.3150	0.2138	21.2917	0.1802	21.4719	5.6957	0.1702	5.8659		$\begin{array}{\|c} \hline 22,217.87 \\ 05 \end{array}$	$\begin{array}{\|c\|} \hline 22,217.87 \\ 05 \end{array}$	0.9777	0.0116	$\begin{gathered} 22,245.76 \\ 12 \end{gathered}$

CalEEMod Version: CalEEMod.2016.3.2				Page 6 of 28								Date: 11/26/2018 1:05 PM				
CCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter																
	ROG	NOX	co	SO2	$\begin{gathered} \text { Fugitive } \\ \text { PM10 } \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { Exhaust } \\ \text { PM10 } \end{array}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust	$\begin{aligned} & \text { PM2.5 } \\ & \text { Total } \end{aligned}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
$\begin{gathered} \text { Percent } \\ \text { Reduction } \end{gathered}$	7.56	9.91	18.43	21.14	22.81	16.44	22.76	22.81	16.22	22.64	0.00	20.86	20.86	18.63	0.00	20.86

3.0 Construction Detail

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81'	0.73
Demolition	-Tractors/Loaders/Backhoes	3	8.00	97!	0.37
Demolition	Rubber Tired Dozers	1	8.00	247!	0.40
Grading	-Graders	1	8.001	187!	0.41
Grading	:Rubber Tired Dozers	1	8.00	247!	0.40
Grading	Tractors/Loaders/Backhoes	2	7.00	97!	0.37
Building Construction	Cranes	1	8.00	231	0.29
Building Construction	Forklifts	2	7.00	891	0.20
Building Construction	-Generator Sets	1	8.00	84!	0.74
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97!	0.37
Building Construction	-Welders	3	8.00	46!	0.45
Paving	:Cement and Mortar Mixers	1	8.00	9	0.56
Paving	Pavers	1	8.00	130	0.42
Paving	Paving Equipment	1	8.00	132	0.36
Paving	Rollers	2	8.00	801	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	971	0.37
Architectural Coating	-Air Compressors	11	6.00	78'	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition		13.0	6.00	126.00	14.70	6.90	20.0	_Mix	[HDT_Mix	!HHDT
Grading		10.0	6.00	0.00	14.70	6.90	20.00	-Mix	${ }_{1}$ HDT_Mix	HHDT
Building Construction		68.0	27.0	0.0	14.7	6.90	20.0	D_Mix	, HDT_Mix	THEDT
Paving		15.0	0.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	\|HHDT
Architectural Coating		14.0	0.00	0.00	14.70	6.90	20.00	D_Mix	:HDT_Mix	:HHDT

CaIEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter
3.1 Mitigation Measures Construction
Water Exposed Area
3.2 Demolition-2026
Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	${ }_{\text {Exhaust }}^{\text {PM10 }}$	${ }_{\text {PM10 }}$ Total	$\begin{aligned} & \text { Fugitive } \end{aligned}$	Exxaust	${ }_{\text {PM }}^{\text {Potal }}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										Ib/day					
Fugitive Dust					1.3679	0.0000	1.3679	0.2071	0.0000	0.2071			0.0000			0.0000
Off-Road	1.3396	12.9057	13.3316	0.0242		0.5452	0.5452		0.5091	0.5091		${ }_{4}^{2,35293}$	2,354.793	0.5866		$2,340.458$
Total	${ }^{1.3396}$	12.9057	13.3316	0.0242	1.3679	0.5452	1.9131	0.2071	0.5091	0.7162		${ }_{4}^{2,325.793}$	${ }_{4}^{2,325.793}$	0.5866		$\underset{4}{2,340.458}$

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust					0.5335	0.0000	0.5335	0.0808	0.0000	0.0808			0.0000			0.0000
Oift-Road	1.3396	12.905	13.3316	0.0242		0.5452	0.5452		0.5091	0.5091	0.0000	${ }^{2,325.793}$	${ }_{4}^{2,325.793}$	0.586		$2,340.458$
Total	${ }^{1.3396}$	12.9057	13.3316	0.0242	0.5335	0.5452	1.0787	0.0808	0.5091	0.5898	0.0000	$\underset{4}{2,325.793}$	$\underset{4}{2,325.793}$	0.5866		$\underset{4}{2,340.458}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter
3.2 Demolition - 2026

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0333	1.0055	0.3814	$\begin{gathered} 4.4700 \mathrm{e}- \\ 003 \end{gathered}$	0.1102	$\begin{gathered} 1.8400 \mathrm{e}- \\ 003 \end{gathered}$	0.1120	0.0302	$\begin{gathered} 1.7600 \mathrm{e}- \\ 003 \end{gathered}$	0.0320		! 488.7128	488.7128	0.0339		489.5605
Vendor	0.0124	0.4096	0.1312	$1.42000-$ 003	0.0384	4.8000e-	0.0389	0.0111	$\begin{gathered} 4.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0115		151.8352	151.8352	8.4000e-		152.0453
Worker	0.0475	0.0266	0.3271	$\begin{gathered} 1.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.1453	$\begin{gathered} 1.0300 \mathrm{e}- \\ 003 \end{gathered}$	0.1463	0.0385	$\begin{gathered} 9.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0395		116.5025	116.5025	${ }^{2.55000-}$		116.5663
Total	0.0931	1.4417	0.8396	$\begin{gathered} 7.0600 \mathrm{e}- \\ 003 \end{gathered}$	0.2939	$\begin{gathered} 3.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.2973	0.0798	$\begin{gathered} 3.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.0830		757.0505	757.0505	0.0449		758.1720

3.3 Grading - 2026

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Off-Road	1.1904	12.4243	8.4937	0.0206		0.4961	0.4961		0.4564	0.4564		$\begin{gathered} 1,995.797 \\ 5 \end{gathered}$	$1,995.797$	0.6455		2,011.9345
Total	1.1904	12.4243	8.4937	0.0206	6.5523	0.4961	7.0484	3.3675	0.4564	3.8239		$\begin{array}{\|c} \hline 1,995.797 \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline 1,995.797 \\ 5 \end{array}$	0.6455		$\begin{array}{\|c\|} \hline 2,011.934 \\ 5 \end{array}$

CalEEMod Version: CalEEMod.2016.3.2
Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					2.5554	0.0000	2.5554	1.3133	0.0000	1.3133			0.0000			0.0000
orf-Road	${ }^{1.1904}$	12.4243	8.4937	0.0206		0.4961	0.4961		0.4564	0.4564	0.0000	${ }^{1,995.797}$	1,995.797	0.6455		$2,011.9345$
Total	1.1904	12.4243	8.4937	0.0206	2.5554	0.4961	3.0515	1.3133	0.4564	1.7697	0.0000	${ }^{1,995.797}$	${ }_{5}^{1,995.797}$	0.6455		$\underset{5}{2,011.934}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter

3.3 Grading - 2026

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0124	0.4096	0.1312	$\begin{gathered} 1.4200 \mathrm{e}- \\ 003 \end{gathered}$	0.0384	$\begin{gathered} 4.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0389	0.0111	$\begin{gathered} 4.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0115		151.8352	151.8352	$8.4000 \mathrm{e}-1$ 003		152.0453
Worker	0.0365	0.0205	0.2516	$\begin{gathered} 9.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.1118	$\begin{gathered} 7.9000 \mathrm{e} \\ 004 \end{gathered}$	0.1126	0.0296	$\begin{gathered} 7.3000 \mathrm{e}- \\ 004 \end{gathered}$	0.0304		89.6173	89.6173	$\begin{gathered} 1.9600 \mathrm{e}- \\ 003 \end{gathered}$		89.6664
Total	0.0489	0.4300	0.3828	$\begin{gathered} 2.3200 \mathrm{e}- \\ 003 \end{gathered}$	0.1502	$\begin{gathered} 1.2700 \mathrm{e}- \\ 003 \end{gathered}$	0.1515	0.0407	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.0419		241.4525	241.4525	0.0104		241.7117

3.4 Building Construction-2026

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498		$\begin{aligned} & 2,289.889 \\ & 8 \end{aligned}$	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$
Total	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498		$\begin{array}{\|c\|} \hline 2,289.889 \\ \hline \end{array}$	$\begin{array}{\|c} 2,289.889 \\ 8 \end{array}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter
3.4 Building Construction-2026
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0558	1.8430	0.5903	$\begin{gathered} 6 .-7700 \mathrm{e}- \\ 003 \end{gathered}$	0.1729	$\begin{gathered} 2.1600 \mathrm{e}- \\ 003 \end{gathered}$	0.1750	0.0498	$\begin{gathered} 2.0700 \mathrm{e}- \\ 003 \end{gathered}$	0.0518		683.2583	683.2583	0.0378		684.2037
Worker	0.2483	0.1392	1.7108	$\begin{gathered} 6.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.7601	$\begin{gathered} 5.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.7655	0.2016	$\begin{gathered} 4.9600-- \\ 003 \end{gathered}$	0.2065		609.3977	609.3977	0.0134		609.7314
Total	0.3041	1.9822	2.3012	0.0125	0.9330	$\begin{gathered} 7.5500 \mathrm{e}- \\ 003 \end{gathered}$	0.9405	0.2514	$\begin{gathered} 7.0300 \mathrm{e}- \\ 003 \end{gathered}$	0.2584		$\begin{array}{\|c\|} \hline 1,292.656 \\ 0 \end{array}$	$\begin{gathered} 1,292.656 \\ 0 \end{gathered}$	0.0512		$\underset{1}{1,293.935}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	$\begin{array}{r} \hline \text { PM2.5 } \\ \text { Total } \end{array}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498	0.0000	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$
Total	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498	0.0000	$\begin{array}{\|c} \hline 2,289.889 \\ 8 \end{array}$	$\begin{array}{\|c} \hline 2,289.889 \\ 8 \end{array}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter
3.4 Building Construction-2026

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000	0.0000			
Vendor	0.0558	1.8430	0.5903	$6.3700 e-$ 003	0.1729	$2.1600 \mathrm{e}-$ 003	0.1750	0.0498	$2.0700 \mathrm{e}-$ 003	0.0518		683.2583	683.2583	0.0378		684.2037
Worker		0.1392	1.7108	$\begin{gathered} 6.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.7601	$\begin{gathered} 5.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.7655	0.2016	$\begin{gathered} 4.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.2065		609.3977	609.3977	0.0134		609.7314
Total	0.3041	1.9822	2.3012	0.0125	0.9330	$\begin{gathered} 7.5500 \mathrm{e}- \\ 003 \end{gathered}$	0.9405	0.2514	$\begin{gathered} 7.0300 \mathrm{e}- \\ 003 \end{gathered}$	0.2584		$\begin{array}{\|c\|} \hline 1,292.656 \\ 0 \end{array}$	$\begin{array}{\|c} 1,292.656 \\ 0 \end{array}$	0.0512		$\underset{1}{1,293.935}$

3.4 Building Construction-2027
Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498		$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	0.4200		$\underset{7}{2,300.388}$
Total	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498		$\begin{array}{\|c\|} \hline 2,289.889 \\ \hline \end{array}$	$\begin{array}{\|c} 2,289.889 \\ 8 \end{array}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter
3.4 Building Construction - 2027
Unmitigated Construction Off-Site

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498	0.0000	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	$\begin{gathered} 2,289.889 \\ 8 \end{gathered}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$
Total	1.4897	12.0233	14.0072	0.0250		0.4700	0.4700		0.4498	0.4498	0.0000	$\begin{array}{\|c} \hline 2,289.889 \\ 8 \end{array}$	$\begin{array}{\|c} \hline 2,289.889 \\ 8 \end{array}$	0.4200		$\begin{gathered} 2,300.388 \\ 7 \end{gathered}$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter

3.4 Building Construction-2027
 Mitigated Construction Off-Site

3.5 Paving-2027

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.7854	7.4371	11.6737	0.0179		0.3503	0.3503		0.3234	0.3234		$\begin{gathered} 1,710.006 \\ : \quad 7 \end{gathered}$	$\begin{gathered} 1,710.006 \\ 7 \end{gathered}$	0.5420		$\begin{aligned} & 1,723.555 \\ & \hline \end{aligned}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000^{-1}
Total	0.7854	7.4371	11.6737	0.0179		${ }^{0.3503}$	0.3503		0.3234	${ }^{0.3234}$		$\underset{7}{1,710.006}$	${ }_{\text {1,710.006 }}^{7}$	0.5420		$\underset{\substack{1,723.555 \\ 6}}{ }$

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter

3.5 Paving - 2027

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0524	0.0283	0.3536	$\begin{gathered} 1.3000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.1200 \mathrm{e} \\ 003 \end{gathered}$	0.1688	0.0445	$\begin{gathered} 1.0300 \mathrm{e}- \\ 003 \end{gathered}$	0.0455		130.1407	130.1407	2.7000 e 003		130.2083
Total	0.0524	0.0283	0.3536	$\begin{gathered} 1.3000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.1200 \mathrm{e}- \\ 003 \end{gathered}$	0.1688	0.0445	$\begin{gathered} 1.0300 \mathrm{e}- \\ 003 \end{gathered}$	0.0455		130.1407	130.1407	$\begin{aligned} & 2.7000 \mathrm{e}- \\ & 003 \end{aligned}$		130.2083

Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.7854	7.4371	11.6737	0.0179		0.3503	0.3503		0.3234	0.3234	0.0000	${ }^{1,710.006}$	$\stackrel{1,710.006}{7}$	0.5420		$\underset{6}{1,723.555}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.7854	7.4371	11.6737	0.0179		0.3503	0.3503		0.3234	0.3234	0.0000	($1,710.006$	${ }_{\text {1,710.006 }}^{7}$	0.5420		$\underset{\substack{1,723.555 \\ 6}}{ }$

3.5 Paving - 2027

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0524	0.0283	0.3536	$\begin{aligned} & 1.3000 \mathrm{e}- \\ & 003 \end{aligned}$	0.1677	$\begin{gathered} 1.1200 \mathrm{e}- \\ 003 \end{gathered}$	0.1688	0.0445	$\begin{gathered} 1.0300 \mathrm{e}- \\ 003 \end{gathered}$	0.0455		130.1407	130.1407	$\begin{gathered} 2.7000 \mathrm{e}- \\ 003 \end{gathered}$		130.2083
Total	0.0524	0.0283	0.3536	$\begin{gathered} 1.3000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 1.1200 \mathrm{e}- \\ 003 \end{gathered}$	0.1688	0.0445	$\begin{gathered} 1.0300 \mathrm{e}- \\ 003 \end{gathered}$	0.0455		130.1407	130.1407	$\begin{gathered} 2.7000 \mathrm{e}- \\ 003 \end{gathered}$		130.2083

3.6 Architectural Coating - 2026

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Archit. Coating	3.1620					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1709	1.1455	1.8091	$2.9700 \mathrm{e}-$		0.0515	0.0515		0.0515	0.0515		281.4481	281.4481	0.0154		281.8319
Total	3.3328	1.1455	1.8091	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0515	0.0515		0.0515	0.0515		281.4481	281.4481	0.0154		281.8319

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter

3.6 Architectural Coating-2026

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0511	0.0287	0.3522	$\begin{gathered} 1.2600 \mathrm{e}- \\ 003 \end{gathered}$	0.1565	$\begin{gathered} 1.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.1576	0.0415	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0425		125.4642	125.4642	$2.7500 \mathrm{e}-$ 003		125.5329
Total	0.0511	0.0287	0.3522	$\begin{gathered} 1.2600 \mathrm{e}- \\ 003 \end{gathered}$	0.1565	$\begin{gathered} 1.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.1576	0.0415	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0425		125.4642	125.4642	$\begin{gathered} 2.7500 \mathrm{e}- \\ 003 \end{gathered}$		125.5329

Mitigated Construction On-Site

	ROG	NOX	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Archit. Coating	3.1620					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1709	1.1455	1.8091	$2.9700 \mathrm{e}-$ 003		0.0515	0.0515		0.0515	0.0515	0.0000	281.4481	281.4481	0.0154		281.8319
Total	3.3328	1.1455	1.8091	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0515	0.0515		0.0515	0.0515	0.0000	281.4481	281.4481	0.0154		281.8319

3.6 Architectural Coating - 2027

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive	Exhaust	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.1620					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1709	1.1455	1.8091	${ }^{2.97700-}$		0.0515	0.0515		0.0515	0.0515		281.4481	281.4481	0.0154		281.8319
Total	${ }^{3} 3328$	1.1455	1.8091	$\begin{aligned} & 2.9700 \mathrm{e}- \\ & 003 \end{aligned}$		0.0515	0.0515		0.0515	0.0515		281.4481	281.4481	0.0154		281.8319

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter

3.6 Architectural Coating-2027

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										1b/day					
Archit. Coating	3.1620					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1709	1.1455	1.8091	2.97000		0.0515	0.0515		0.0515	0.0515	0.0000	281.4481	281.4481	0.0154		281.8319
Total	3.3328	1.1455	1.8091	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		0.0515	0.0515		0.0515	0.0515	0.0000	281.4481	281.4481	0.0154		281.8319

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of $28 \quad$ Date: 11/26/2018 1:05 PM
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter

3.6 Architectural Coating-2027
 Mitigated Construction Off-Site

4.0 Operational Detail - Mobile

[^15]| | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Category | lb/day | | | | | | | | | | lb/day | | | | | |
| Mitigated | : 4.2277 | 21.5760 | 47.4933 | 0.2106 | 21.2917 | 0.1388 | 21.4305 | 5.6957 | 0.1289 | 5.8245 | | 21,585.67 | $21,585.67$
 17
 $-\mathbf{- - - 5}$ | 0.9634 | | 21,609.75 76 $-\mathbf{- - - - - ~}$ |
| Unmitigated | : 4.7162 | 24.0086 | 58.4063 | 0.2679 | 27.5850 | 0.1743 | 27.7593 | 7.3792 | 0.1618 | 7.5409 | | $\begin{gathered} \text { 27,443.08 } \\ \hline \end{gathered}$ | $\begin{gathered} 27,443.08 \\ 89 \\ \hline \end{gathered}$ | 1.1872 | | $\begin{gathered} 27,472.77 \\ 00 \end{gathered}$ |

LBCC LAC Interim Year 2030 (2026-2030 Construction)
4.2 Trip Summary Information
4.3 Trip Type Information

	Average Daily Trip Rate			Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Junior College (2Yr)	4,296.40	1,569.12	149.44	.0,010,572	7,726,738
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Total	4,296.40	1,569.12	149.44	10,010,572	7,726,738

	Miles			Trip \%			Trip Purpose \%		
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Junior College (2Yr)	16.60	8.40	6.90	6.40	88.60	5.00	92	7	1
Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Junior College (2Yr)	0.542058:	0.044057	0.210689	0.115963	0.013736	0.006367	0.021423	0.034509	0.002637	0.001734	0.005297	0.000719	0.000812
\cdots	0.542058	0.044057	0.210689	0.115963	0.013736	0.006367:	0.021423	0.034509	0.002637	0.001734	0.005297 '	0.000719	0.000812

5.1 Mitigation Measures Energy

Mitigated
Land Use
Junior College
${ }_{(2 \mathrm{Yr})}{ }^{\text {Junior }}$ - Other Non- Asphalt Surfaces Total
6.0 Area Detail
6.1 Mitigation Measures Area

5.2 Energy by Land Use - NaturalGas
 Unmitigated

Unitigat
CalEEMod Version: CaIEEMod.2016.3.2

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Exhaust } \\ \text { PM10 } \end{array}$	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM2.5 } \end{gathered}$	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	$\begin{aligned} & \text { PM2.5 } \\ & \text { Total } \end{aligned}$	Bio- CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Mitigated	1.6895	${ }^{3.4200 e-}$	0.3797	${ }^{3.00000-}$		${ }^{1.3500 e-}$	$\begin{aligned} & 1.35000- \\ & 003 \end{aligned}$		$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		0.8181	0.8181	$\begin{gathered} 2.1100 \mathrm{e}- \\ 003 \end{gathered}$		0.8708
Ünioitigated	1.6895	${ }^{3.42000-}$	0.3797	$\begin{gathered} 3.0000 \mathrm{e}- \\ 005 \end{gathered}$		- 1.35000	$1.3500 e^{-}$		$\begin{gathered} -9.300 \mathrm{e} \\ 003 \end{gathered}$	$1.3500-1$		0.8181	0.8181	$\begin{gathered} -1.110-\mathrm{e}- \\ 003 \end{gathered}$		0.8708

6.2 Area by SubCategory

Unmitigated
Date: 11/26/2018 1:05 PM LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Winter
6.2 Area by SubCategory
Mitigated

70 Water Detail
7.1 Mitigation Measures Water
8.1 Mitigation Measures Waste
9.0 Operational Offroad
10.0 Stationary Equipment
Fire Pumps and Emergency Generators

11.0 Vegetation

Date: 11/26/2018 1:06 PM
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual
LBCC LAC Interim Year 2030 (2026-2030 Construction)
Los Angeles-South Coast County, Annual

Wind Speed (m/s)

CH4 Intensity
(lb/MWhr)

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	3,736.00	Student	0.88	72,336.00	0
Other Non-Asphalt Surfaces	2.07	Acre	2.07	90,169.20	0

1.0 Project Characteristics
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual
Construction Phase - 20 days Demo, 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving.
Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.
Demolition - Demolition of 27,792 SF of building space
Project Characteristics - Interim Year 2030
Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA. Vehicle Emission Factors Vehicle Emission Factors Vehicle Emission Factors -
Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsit and connecting offsite
Mobile Commute Mitigation -
CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	6.00	20.00
tbiConstructionPhase	NumDays	10.00	220.00
tbiconstructionPhase	NumDays	10.00	20.00
tbiConstructionPhase	PhaseEndDate	7/6/2026	7/26/2026
tbiconstructionPhase	PhaseEndDate	5/10/2027	5/28/2027
tbiconstructionPhase	PhaseEndDate	6/7/2027	5/28/2027
tbiconstructionPhase	PhaseEndDate	5/24/2027	6/26/2027
tbiconstructionPhase	PhaseStartbate	717/2026	7/27/2026
tbiconstructionPhase	PhaseStarto-ate	5/25/2027	7/27/2026
tbiConstructionPhase	PhaseStartDate	5/11/2027	5/29/2027
tbilanduse	LanduseSquareFeet	163,084.76	72,336.00
tbiLanduse	LotAcreage	3.74	0.88
toiTripsAndVMT	VendorTrip ${ }^{\text {a }}$ umber	0.00	6.00
		0.00	7.00
tblvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary

Unmitigated Construction
Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	$\begin{array}{\|c} \text { PM2.5 } \\ \text { Total } \end{array}$	Bio- CO 2	NBio- CO 2	Total CO2	CH4	N2O	C02e
Year	tons/yr										MT/yr					
2026	0.3199	1.1395	1.2853	$\begin{aligned} & 2.9300 \mathrm{e}- \\ & 003 \end{aligned}$	0.0962	0.0407	0.1368	0.0315	0.0387	0.0703	0.0000	; 255.8688	255.8688	0.0369	0.0000	256.7920
2027	0.2803	0.8793	1.0936	$2.4000 \mathrm{e}-$	0.0583	0.0316	0.0899	0.0157	0.0302	0.0459	0.0000	208.3359	208.3359	0.0283	0.0000	209.0442
Maximum	0.3199	1.1395	1.2853	$\begin{gathered} 2.9300 \mathrm{e}- \\ 003 \end{gathered}$	0.0962	0.0407	0.1368	0.0315	0.0387	0.0703	0.0000	255.8688	255.8688	0.0369	0.0000	256.7920

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.	Exhaust	$\begin{aligned} & \text { PM2.5 } \\ & \text { Total } \end{aligned}$	Bio- CO 2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.0	23.8	0.00	17.57	31.5	0.00	15.80	0.00	0.00	0.00	0.00	0.0	0.00

CaIEEMod Version: CalEEMod.2016.3.2
Date: 11/26/2018 1:06 PM
Page 5 of 33
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	6-1-2026	8-31-2026	0.5585	0.5585
2	9-1-2026	11-30-2026	0.6611	0.6611
3	12-1-2026	2-28-2027	0.6534	0.6534
4	3-1-2027	5-31-2027	0.6537	0.6537
5	6-1-2027	8-31-2027	0.0770	0.0770
		Highest	0.6611	0.6611

2.2 Overall Operational
Unmitigated Operational

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \begin{array}{c} \text { Potal } \end{array} \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	$\xrightarrow{\text { PM } 2.5}$ Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	co2e
Category	tons/yr										MT/yr					
Area	0.3063	$\begin{gathered} 4.3000 \mathrm{e}- \\ 004 \end{gathered}$	0.0475	0.0000		$\begin{gathered} 1.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 1.7000 \mathrm{e}- \\ & 004 \end{aligned}$		$\begin{gathered} 1.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 1.70000 \mathrm{e} \\ & 004 \end{aligned}$	0.0000	0.0928	0.0928	$\begin{aligned} & 2.4000 \mathrm{e}- \\ & \hline 004 \end{aligned}$	0.0000	0.0988
Energy	0.0106	0.0960	0.0807	$5.8000 \mathrm{e}$ 004		$\begin{aligned} & 7.3000 \mathrm{e}- \\ & 003 \end{aligned}$	$7.3000 \mathrm{e}-$		$\begin{aligned} & 7.3000 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 7.3000 \mathrm{e} \\ & 003 \end{aligned}$	0.0000	-335.4711	335.4711	0.0115	$3.8900 \mathrm{e}-$ 003	336.9185
Mobile	0.6462	3.4248	8.3067	0.0381	3.7982	0.0244	3.8225	1.0177	0.0227	1.0403	0.0000	${ }^{3,544.646}$	3,544.646	0.1502	0.0000	$\begin{gathered} 3,548.401 \\ 6 \end{gathered}$
Waste						0.0000	0.0000		0.0000	0.0000	138.4033	0.0000	138.4033	8.1794	0.0000	342.8883
						0.0000	0.0000		0.0000	0.0000	2.5378	77.4759	80.0136	0.2639	$\begin{gathered} 6.8200 \mathrm{e}- \\ 003 \end{gathered}$	88.6412
Total	0.9631	${ }^{3.5213}$	8.4349	0.0387	3.7982	0.0319	3.8300	1.0177	0.0301	1.0478	140.9411	$\begin{array}{\|c} 3,957.686 \\ 2 \end{array}$	$\underset{2}{4,098.627}$	8.6052	0.0107	${ }_{3}^{4,316.948}$

	ROG	NOX	co	SO2	Fugitive PM10	Exhaust	$\stackrel{\text { PM10 }}{\text { Total }}$	Fugitive PM2.	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- $\mathrm{CO2}$	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	7.16	9.90	18.63	21.00	22.81	15.60	22.75	22.81	15.34	22.60	0.00	19.05	18.40	0.33	0.00	17.48

3.0 Construction Detail
Construction Phase
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual

$\begin{aligned} & \hline \text { Phase } \\ & \text { Number } \end{aligned}$	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	:Demolition	16/1/2026	;6/26/2026	5	20	
2	Grading	:Grading	6-77/2026	7/26/2026	5	20	
3	Building Construction	Building Construction	-7/27/2026	5/28/2027		220	
4	Paving	:Paving	5/29/2027	6/26/2027	5	20	
5	Architectura Coating	:Architectural Coating	:7127/2026	:5/28/2027	5	220	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 108,504; Non-Residential Outdoor: 36,168; Striped Parking Area: 5,410 (Architectural Coating - sqft)
OffRoad Equipment

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	6.00	126.00	14.70	6.90	20.0	D_Mix	HDT_Mix	HHDT
Grading	4	10.00	6.00	0.00	14.70	6.90	20.00	D_Mix	IHDT_Mix	1HHDT
Building Construction	8	68.00	27.	0.0	14.70	6.90	20.00	D_Mix	, HDT_Mix	1HHDT
Paving		15.00	0.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Architectural Coating	1	14.00	0.00	0.00	14.70	6.90	20.00	D_Mix	:HDT_Mix	: HHDT

CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual
3.1 Mitigation Measures Construction
Water Exposed Area

3.2 Demolition-2026

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { Exhaust } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \begin{array}{c} \text { Potal } \end{array} \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { Fugitive } \\ \text { PM2.5 } \end{array}$	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM2 } \end{aligned}$	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	20	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0137	0.0000	0.0137	${ }^{2.07000-}$	0.0000	${ }_{0}^{2.0700 e-}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0134	0.1291	0.1333	$\begin{aligned} & 2.4000 \mathrm{e}- \\ & 004 \end{aligned}$		$\begin{aligned} & 5.4500 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{array}{r} 5.4500 \mathrm{e}- \\ 003 \end{array}$		$5.00000-$	$\begin{aligned} & 5.0900 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	21.0992	21.0992	$\begin{aligned} & 5.3200 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	21.2323
Total	0.0134	0.1291	0.1333	$\begin{aligned} & 2.4000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0137	$\begin{aligned} & 5.4500 \mathrm{e}- \\ & 003 \end{aligned}$	0.0191	$\begin{gathered} 2.0700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 5.0900 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 7.1600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	21.0992	21.0992	$\begin{aligned} & 5.3200 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	21.2323

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual
3.2 Demolition-2026

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dus					$\begin{gathered} 5.3300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	$\begin{gathered} 5.3300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 8.1000 \mathrm{e}- \\ & 0004 \end{aligned}$	0.0000	$\begin{aligned} & \hline 8.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-road	0.0134	0.1291	0.1333	$2.4000 \mathrm{e}-$		$5.4500 \mathrm{e}-$	$\begin{gathered} 5.4500 \mathrm{e}- \\ 003 \end{gathered}$		$5.0900 \mathrm{e}-$	${ }^{5.09000-}$	0.0000	21.0992	21.0992	$\begin{aligned} & 5.3200 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	21.2323
Total	${ }^{0.0134}$	0.1291	0.1333	$\begin{aligned} & 2.40000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 5.33000- \\ & 003 \end{aligned}$	$\begin{aligned} & 5.4500 \mathrm{e}- \\ & 003 \end{aligned}$	0.0108	$\begin{gathered} 8.1000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 5.0900 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 5.9000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	21.0992	21.0992	$\begin{aligned} & 5.3200 \mathrm{e}- \\ & \hline 003 \end{aligned}$	0.0000	21.2323

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	$\begin{gathered} 3.3000 \mathrm{e}- \\ 004 \end{gathered}$	0.0102	$\begin{gathered} 3.7300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.0800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & \hline 2.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 2.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & 3.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	4.478	4.4781	$\begin{aligned} & 3.00000 \mathrm{e}- \\ & 0004 \end{aligned}$	0.0000	4.4857
Vendor	$\begin{aligned} & 1.2000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 4.1600 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.2600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 3.80000- \\ & 004 \end{aligned}$	0.0000	$\begin{aligned} & 3.8000 \mathrm{e} \\ & 004 \end{aligned}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	1.1000e-	0.0000	1.3993	1.3993	7.0000 e 005	0.0000	1.4012
Worker	$\begin{gathered} 4.2000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 2.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.3600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 1.42000- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 1.4300 \mathrm{e}- \\ & 003 \end{aligned}$	$-\overline{3.8000 e-}$ 004	$\begin{gathered} -0.000 \mathrm{e}- \\ 005 \end{gathered}$	$3.9000 \mathrm{e}-$ 004	0.0000	1.0745	1.0745	$\begin{gathered} --2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.0751
Total	$\begin{gathered} 8.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0147	$\begin{gathered} 8.3500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 7.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 2.8800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 3.0000 \mathrm{e}- \\ & 005 \end{aligned}$	${ }^{2.9100 \mathrm{e}-}$	$\begin{aligned} & 7.9000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 3.00000 e^{-} \\ & 005 \end{aligned}$	$\begin{gathered} 8.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	6.9519	6.9519	$\begin{aligned} & 3.90000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	6.9620

3.3 Grading - 2026

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0655	0.0000	0.0655	0.0337	0.0000	0.0337	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0119	0.1242	0.0849	${ }^{2.10000-}$		$4.9600 \mathrm{e}-$	$4.9600 \mathrm{e}-$		$4.5600 \mathrm{e}-$	$4.5600 \mathrm{e}-$	0.0000	18.1056	18.1056	$5.8600 \mathrm{e}-$	0.0000	18.2520
Total	0.0119	0.1242	0.0849	$2.1000 \mathrm{e}-$	0.0655	$\begin{aligned} & 4.9600 \mathrm{e}- \\ & 003 \end{aligned}$	0.0705	0.0337	$\begin{aligned} & 4.5600 \mathrm{e}- \\ & 003 \end{aligned}$	0.0382	0.0000	18.1056	18.1056	$\begin{gathered} 5.8600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	18.2520

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0256	0.0000	0.0256	0.0131	0.0000	0.0131	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ofi-Road	0.0119	0.1242	0.0849	$2.1000 \mathrm{e}-$		$4.9600 \mathrm{e}-$ 003	$4.9600 \mathrm{e}-$		$4.5600 \mathrm{e}-$	4.5600e-	0.0000	18.1056	18.1056	$5.8600 \mathrm{e}-$	0.0000	18.2519
Total	0.0119	0.1242	0.0849	$\begin{aligned} & 2.10000 \mathrm{e}- \\ & \hline 004 \end{aligned}$	0.0256	$\begin{aligned} & 4.9600 \mathrm{e}- \\ & 003 \end{aligned}$	0.0305	0.0131	$\begin{gathered} 4.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.0177	0.0000	18.1056	18.1056	$\begin{gathered} 5.8600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	18.2519

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual

3.3 Grading - 2026

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	${ }^{1.20000}$	$\begin{gathered} 4.1600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.2600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 3.8000 \mathrm{e}- \\ & 0.0 \end{aligned}$	0.0000	$3.8000 \mathrm{e}-$	$1.1000 \mathrm{e}-$	0.0000	004 $\begin{gathered} 1.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.3993	1.3993	$\begin{aligned} & 7.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0000	1.4012
Worker	$\begin{gathered} 3.3000 \mathrm{e} \\ 004 \end{gathered}$	$2.1000 \mathrm{e}-$	$\begin{gathered} 2.5900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.00000- \\ 005 \end{gathered}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 2.9000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$3.0000 \mathrm{e}-$ 004	0.0000	0.8265	0.8265	$\begin{gathered} --2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	0.8270
Total	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.3700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.8500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.4800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & 1.4800 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$4.1000 \mathrm{e}-$ 004	0.0000	${ }^{2.2258}$	2.2258	$\begin{gathered} 9.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	2.2281

3.4 Building Construction-2026

Unmitigated Construction On-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0849	0.6853	0.7984	$\begin{aligned} & 1.4300 \mathrm{e}- \\ & 003 \end{aligned}$		0.0268	0.0268		0.0256	0.0256	0.0000	118.4091	118.4091	0.0217	0.0000	118.9520
Total	0.0849	0.6853	0.7984	$\begin{aligned} & 1.4300 \mathrm{e}- \\ & 003 \end{aligned}$		0.0268	0.0268		0.0256	0.0256	0.0000	118.4091	118.4091	0.0217	0.0000	118.9520

CaIEEMod Version: CalEEMod.2016.3.2

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0849	0.6853	0.7984	$\begin{aligned} & 1.4300 \mathrm{e}- \\ & 003 \end{aligned}$		0.0268	0.0268		0.0256	0.0256	0.0000	¢ 118.4090	118.4090	0.0217	0.0000	118.9519
Total	0.0849	0.6853	0.7984	$\begin{gathered} 1.4300 \mathrm{e}- \\ 003 \end{gathered}$		0.0268	0.0268		0.0256	0.0256	0.0000	118.4090	118.4090	0.0217	0.0000	118.9519

CaIEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual
3.4 Building Construction-2026

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	${ }^{3.09000}$	0.1067	0.0323	$3.7000 \mathrm{e}-$ 004	$\begin{gathered} 9.7000 \mathrm{e}- \\ 003 \end{gathered}$	$1.2000 \mathrm{e}-$	$\begin{aligned} & 9.8200 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 2.8000 \mathrm{e} \\ 003 \end{gathered}$	$\begin{aligned} & 1.2000 \mathrm{e}- \\ & 004 \end{aligned}$	$2.9100 \mathrm{e}-$	0.0000	35.8929	35.8929	${ }^{1.90000} 0$	0.0000	35.9403
Worker	0.0127	$8.1500 \mathrm{e}-$	0.1003	$3.5000 \mathrm{e}-$ 004	0.0425	$3.1000 \mathrm{e}-$	0.0428	0.0113	$2.8000 \mathrm{e}-$	0.0116	0.0000	32.0354	32.0354	$\begin{gathered} 7.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	32.0530
Total	0.0158	0.1148	0.1326	$\begin{gathered} 7.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0522	$\begin{aligned} & 4.3000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0526	0.0141	$4.0000 \mathrm{e}-$ 004	0.0145	0.0000	67.9283	67.9283	${ }_{003}^{2.6000-}$	0.0000	67.9933

3.4 Building Construction-2027
 Unmitigated Construction On-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0790	0.6372	0.7424	$1.3300 \mathrm{e}-$		0.0249	0.0249		0.0238	0.0238	0.0000	110.0997	110.0997	0.0202	0.0000	110.6045
Total	0.0790	0.6372	0.7424	$\begin{gathered} 1.3300 \mathrm{e}- \\ 003 \end{gathered}$		0.0249	0.0249		${ }^{0.0238}$	0.0238	0.0000	110.0997	110.0997	0.0202	0.0000	110.6045

CaIEEMod Version: CalEEMod.2016.3.2

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0790	0.6372	0.7424	$\begin{aligned} & 1.33000 \mathrm{e} \\ & 003 \end{aligned}$		0.0249	0.0249		0.0238	0.0238	0.0000	: 110.0996	110.0996	0.0202	0.0000	110.6044
Total	0.0790	0.6372	0.7424	$\begin{aligned} & 1.3300 \mathrm{e}- \\ & 003 \end{aligned}$		0.0249	0.0249		0.0238	0.0238	0.0000	110.0996	110.0996	0.0202	0.0000	110.6044

Mitigated Construction Off-Site

3.5 Paving - 2027

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	$\begin{gathered} 7.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.0744	0.1167	$\begin{gathered} 1.8000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{aligned} & \hline 3.5000 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 3.5000 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 3.2300 \mathrm{e}- \\ 003 \end{gathered}$	$3.2300 e$	0.0000	15.5129	15.5129	$\begin{gathered} 4.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	15.6358
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	${ }^{0.0000}$
Total	$\begin{gathered} 7.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.0744	0.1167	$1.8000 \mathrm{e}-$ 004		$\begin{aligned} & 3.5000 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 3.5000 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{aligned} & 3.2300 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 3.2300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	15.5129	15.5129	$\begin{gathered} 4.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	15.6358

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 4.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.9000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 1.6400 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e} \\ 005 \end{gathered}$	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 1.0000-- \\ 005 \end{gathered}$	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.2002	1.2002	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.2009
Total	$\begin{gathered} 4.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.9000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 4.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	1.2002	1.2002	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.2009

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{array}{r} \hline \text { PM2.5 } \\ \text { Total } \end{array}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	$7.8500 \mathrm{e}-$ 003	0.0744	0.1167	$\begin{gathered} 1.8000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 3.5000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.5000 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 3.2300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.2300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	15.5129	15.5129	$\begin{gathered} 4.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	15.6358
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	$\begin{gathered} 7.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.0744	0.1167	$\begin{aligned} & 1.8000 \mathrm{e}- \\ & 004 \end{aligned}$		$\begin{gathered} 3.5000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.5000 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 3.2300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.2300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	15.5129	15.5129	$\begin{gathered} 4.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	15.6358

Mitigated Construction Off-Site
3.6 Architectural Coating-2026

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM25	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Archit. Coating	0.1802					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-Road	$\begin{gathered} 9.7400 \mathrm{e} \\ 0 . \end{gathered}$	0.0653	0.1031	$1.7000 \mathrm{e}-$		$2.9400 \mathrm{e}-$	$\begin{aligned} & 2.9400 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{aligned} & 2.9400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 2.9400 \mathrm{e} \\ & 003 \end{aligned}$	0.0000	14.5536	14.5536	$\begin{aligned} & 7.9000 \mathrm{e} \\ & 004 \end{aligned}$	0.0000	14.5734
Total	0.1900	0.0653	0.1031	$\begin{gathered} 1.7000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{aligned} & 2.9400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 2.9400 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{aligned} & 2.9400 \mathrm{e}- \\ & 003 \end{aligned}$	$2.9400 \mathrm{e}-$	0.0000	14.5536	14.5536	$\begin{aligned} & 7.9000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	14.5734

CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual
3.6 Architectural Coating - 2026
Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Fugitive } \\ \text { PM22.5 } \end{array}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 2.6100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.6800 \mathrm{e}- \\ & 003 \end{aligned}$	0.0207	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 8.7400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 6.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 8.8100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.3200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 2.3800 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	6.5955	6.5955	$\begin{aligned} & 1.40000- \\ & 004 \end{aligned}$	0.0000	6.599
Total	$\begin{gathered} 2.6100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.6800 \mathrm{e}- \\ 003 \end{gathered}$	0.0207	$\begin{gathered} \hline 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & \hline 8.7400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 8.8100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.3200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 2.38000 e^{2} \\ & 003 \end{aligned}$	0.0000	6.5955	6.5955	$\begin{aligned} & 1.4000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	6.5991

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coating	0.1802					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	${ }^{9.74000-}$	0.0653	0.1031	${ }_{1}^{1.70000-}$		${ }^{2.94009}$	${ }^{2.94000-}$		2.9403e-	$2.9000-$ 003	0.0000	14.5335	14.5335	${ }^{7.9000-}$	0.0000	14.5734
Total	0.1900	0.0653	0.1031	$1.7000 \mathrm{e}-$ 004		$\begin{gathered} 2.9400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 2.94000- \\ & 003 \end{aligned}$		$\begin{gathered} 2.9400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.9400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	14.5535	14.5535	$7.9000 \mathrm{e}-$ 004	0.0000	14.5734

CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual
3.6 Architectural Coating-2026
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 2.6100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.6800 \mathrm{e}- \\ 003 \end{gathered}$	0.0207	$\begin{aligned} & 7.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 8.7400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 8.8100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.3200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.3800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	6.5955	6.5955	$\begin{aligned} & 1.4000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	6.5991
Total	$\begin{gathered} 2.6100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.6800 \mathrm{e}- \\ 003 \end{gathered}$	0.0207	$\begin{aligned} & 7.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 8.7400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 8.8100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.3200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.3800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	6.5955	6.5955	$\begin{gathered} 1.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	6.5991

3.6 Architectural Coating-2027
 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coating	0.1676					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	$9.0600 \mathrm{e}-$	0.0607	0.0959	$1.6000 \mathrm{e}-$		$2.7300 \mathrm{e}-$	$2.7300 \mathrm{e}-$		$2.7300 \mathrm{e}-$ 003	2.7300e-	0.0000	13.5322	13.5322	7.4000e-	0.0000	13.5070
Total	0.1766	0.0607	0.0959	$1.6000 \mathrm{e}-$ 004		$\begin{gathered} 2.7300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 2.7300 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{aligned} & \hline 2.7300 \mathrm{e}- \\ & 003 \end{aligned}$	$2.7300 \mathrm{e}-$ 003	0.0000	13.5322	13.5322	$\begin{aligned} & 7.40000- \\ & 004 \end{aligned}$	0.0000	13.5507

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coatin	0.1676					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	9.0600e-	0.0607	0.0959	$1.60000-$ 004		${ }^{2.73000-}$	${ }^{2.73000-}$		${ }^{2} \mathbf{2} 73000-$	$2.7300 e^{-}$ 003	0.0000	13.5322	13.5322	$7.40000-$ 004	0.0000	13.507
Total	0.1766	0.0607	0.0959	$1.6000 \mathrm{e}-$ 004		$\begin{gathered} 2.7300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.7300 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 2.7300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.7300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	13.5322	13.5322	$7.4000 \mathrm{e}-$ 004	0.0000	13.5507

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of $33 \quad$ Date: 11/26/2018 1:06 PM
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual

3.6 Architectural Coating-2027
 Mitigated Construction Off-Site

4.0 Operational Detail - Mobile

[^16]| | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Category | tons/yr | | | | | | | | | | MT/yr | | | | | |
| Mitigated | 0.5773 | 3.0762 | 6.7357 | 0.0300 | 2.9316 | 0.0194 | 2.9511 | 0.7855 | 0.0180 | 0.8035 | 0.0000 | 2,790.634 | $2,790.634$ 8 | 0.1216 | 0.0000 | $2,793.674$ 8 |
| Unmitigated | 0.6462 | 3.4248 | 8.3067 | 0.0381 | 3.7982 | 0.0244 | 3.8225 | 1.0177 | 0.0227 | 1.0403 | 0.0000 | $\begin{gathered} 3,544.646 \\ \\ \hline \end{gathered}$ | $:$ | 0.1502 | 0.0000 | $\begin{gathered} 6,548.401 \\ \hline \end{gathered}$ |

4.2 Trip Summary Information

	Average Daily Trip Rate			Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Junior College (2Yr).	4,296.40	1,569.12	149.44	10,010,572	7,726,738
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Total	4,296.40	1,569.12	149.44	10,010,572	7,726,738

4.3 Trip Type Information

	Miles			Trip \%			Trip Purpose \%		
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Junior College (2Yr)	16.60	8.40	6.90	6.40	88.60	5.00	92	7	1
Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Junior College (2Yr)	$0.542058:$	0.044057	0.210689	0.115963	0.013736	0.006367	0.021423	0.034509	0.002637	0.001734	0.005297	0.000719	0.000812
Other Non-Asphalt Surfaces	0.542058	0.044057	0.210689	0.115963	0.013736	0.006367	0.021423	0.034509	0.002637	0.001734	0.005297	0.000719	0.000812

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	230.9390	230.9390	$\begin{gathered} 9.5300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9700 \mathrm{e}- \\ 003 \end{gathered}$	231.7651
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	230.9390	230.9390	$\begin{aligned} & 9.53000 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.9700 e- \\ 003 \end{gathered}$	231.7651
NaturalGas Mitigated	0.0106	0.0960	0.0807	$\begin{gathered} 5000 \\ 000 \end{gathered}$		7.3000 e 003	$\begin{gathered} 7 .-3000 \mathrm{e} \\ 003 \end{gathered}$		$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 7.3000 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	104.5322	104.5322	$\begin{aligned} & 2.0000 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.9200 \mathrm{e}- \\ 003 \end{gathered}$	105.1534
NaturalGas Unmitigated	0.0106	0.0960	0.0807	$\begin{gathered} 5.8000 \mathrm{e} \\ 004 \end{gathered}$		$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.3000 \mathrm{e} \\ 003 \end{gathered}$		$\begin{gathered} 7.3000 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$		104.5322	104.5322	$\begin{gathered} -0.0000 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 1.9200 \mathrm{e} \\ 003 \end{gathered}$	105.1534

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	tons/yr										MT/yr					
Junior College (2Yr)	$\begin{gathered} 1.95886 \mathrm{e} \\ +006 \end{gathered}$	0.0106	0.0960	0.0807	$\begin{aligned} & 5.8000 \mathrm{e}- \\ & 004 \end{aligned}$		$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	104.5322	104.5322	$\begin{gathered} 2.0000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9200 \mathrm{e}- \\ 003 \end{gathered}$	105.1534
Other NonAsphalt Surface		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0106	0.0960	0.0807	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.3000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	104.5322	104.5322	$\begin{gathered} 2.0000 \mathrm{e}- \\ 003 \end{gathered}$	${ }_{003}^{1.9200 \mathrm{e}-}$	105.1534

Mitigated

6.0 Area Detail
6.1 Mitigation Measures Area

6.2 Area by SubCategory

Unmitigated

7.0 Water Detail
7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	${ }^{\text {coze }}$
Category	мT\у			
Mitigated	80.0136	0.2639	6.8200e	88.6412
Unimitigated	80.0136	0.2639	6.782009	-98.6412

7.2 Water by Land Use
Unmitigated

ชั๊			
\% ${ }^{\text {a }}$			
䂆	Σ		\|öỡ
	$\stackrel{\text { ® }}{\text { 区 }}$		
	-		-

7.2 Water by Land Use
Mitigated

8.0 Waste Detail
8.1 Mitigation Measures Waste
Category/Year

	Total CO2	CH4	N2O	CO2e	
		MT/yr			
Mitigated	138.4033	8.1794	0.0000	342.8883	
Unmitigated	$: 138.4033$	8.1794	0.0000	342.8883	

LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual

8.2 Waste by Land Use
 Unmitigated

Mitigated

9.0 Operational Offroad

Equipment Type	Number	HoursDay	Days VYear	Horse Power	Load Factor	Fuel Type

CaIEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2030 (2026-2030 Construction) - Los Angeles-South Coast County, Annual
10.0 Stationary Equipment

APPENDIX E

CalEEMod Model Interim Year 2035 Printouts
Date: 11/26/2018 11:33 AM
Page 1 of 25
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer
LBCC LAC Interim Year 2035 (2031-2035 Construction) Los Angeles-South Coast County, Summer
1.0 Project Characteristics
1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	5,362.00	Student	1.97	162,651.00	0
Other Non-Asphalt Surfaces	2.07	Acre	2.07	90,169.20	0

[^17]
Project Characteristics - Interim Year 2035

Land Use - 5,362 student Junior College on 1.97 acre and 162,651 sq ft and 2.07-acres Other Non-Asphalt Surfaces.

Construction Phase - 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving.

Trips and VMT - To account for water trucks, 6 vendor trips added to Grading.

Demolition

Grading

Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA.

Energy Use -

Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsite and connecting offsite

2.1 Overall Construction (Maximum Daily Emission) Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	1b/day										1b/day					
2031	8.4802	11.6518	21.2973	0.0543	6.7584	0.2353	6.9937	3.4230	0.2352	3.6582	0.0000	: ${ }_{\text {5,282.650 }}$	$\begin{gathered} 5,282.650 \\ 1 \end{gathered}$	0.1962	0.0000	$\begin{gathered} 5,287.556 \\ 5 \end{gathered}$
2032	8.4571	11.6205	21.1366	--0.0540	1.6821	0.2539	1.8601	0.4521	0.2538	0.6294	0.0000	$5,259.054$	$5,259.054$	0.1943	0.0000	$\begin{gathered} 5,263.913 \\ 3 \end{gathered}$
Maximum	8.4802	11.6518	21.2973	0.0543	6.7584	0.2539	6.9937	3.4230	0.2538	3.6582	0.0000	$\begin{array}{\|c\|} \hline 5,282.650 \\ 1 \end{array}$	$\begin{gathered} 5,282.650 \\ 1 \end{gathered}$	0.1962	0.0000	$\begin{gathered} 5,287.556 \\ 5 \end{gathered}$

Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										1b/day					
2031	8.4802	11.6518	21.2973	0.0543	2.7615	0.2353	2.9968	1.3689	0.2352	1.6040	0.0000	$\begin{gathered} 5,282.650 \\ 1 \end{gathered}$	$5,282.650$	0.1962	0.0000	$\begin{gathered} 5,287.556 \\ 4 \end{gathered}$
2032	8.4571	11.6205	21.1366	0.0540	1.6821	0.2539	1.8601	0.4521	0.2538	0.6294	0.0000	$5,25.054$	$5,259.054$	0.1943	0.0000	$\begin{gathered} 5,263.913 \\ 3 \end{gathered}$
Maximum	8.4802	11.6518	21.2973	0.0543	2.7615	0.2539	2.9968	1.3689	0.2538	1.6040	0.0000	$\begin{array}{\|c\|} \hline 5,282.650 \\ 1 \end{array}$	$\begin{gathered} 5,282.650 \\ 1 \end{gathered}$	0.1962	0.0000	$\begin{gathered} 5,287.556 \\ 4 \end{gathered}$

CalEEMod Version: CaIEEMod.2016.3.2

Unmitigated Operational
Mitigated Operational

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer																
	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PM2.5 } \end{aligned}$	Exhaust PM12.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO 2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	6.63	8.54	19.16	20.82	22.81	13.77	22.75	22.81	13.45	22.58	0.00	20.40	20.40	18.75	0.00	20.40

3.0 Construction Detail

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	:Grading	:Grading	,6/1/2031	; 6/27/2031		20	
2	Building Construction	:Building Construction	6/28/2031	5/14/2032		230	
3	Paving	:Paving	5/15/2032	6/11/2032		20	
4	Architectural Coating	:Architectural Coating	:6/28/2031	:5/14/2032		230	

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Grading	Excavators	1	8.00	158;	0.38
Grading	-Graders	1	8.00	187!	0.41
Grading	Rubber Tired Dozers	1	8.00	247!	0.40
Grading	Tractors/Loaders/Backhoes	3	8.00	97!	0.37
Building Construction	-Cranes	1	7.00	231'	0.29
Building Construction	Forklifts	3	8.00	89'	0.20
Building Construction	-Generator Sets	1	8.00	84!	0.74
Building Construction	-Tractors/Loaders/Backhoes	3	7.00	97!	0.37
Building Construction	Welders	1	8.00	46'	0.45
Paving	Cement and Mortar Mixers	2	6.00	9	0.56
Paving	Pavers	1	8.00	130	0.42
Paving	Paving Equipment	2	6.00	132	0.36
Paving	Rollers	2	6.00	80'	0.38
Paving	-Tractors/Loaders/Backhoes	1	8.00	97!	0.37
Architectural Coating	:Air Compressors	1	6.00	78:	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	$\begin{array}{\|l\|} \hline \text { Hauling Trip } \\ \text { Number } \end{array}$	Worker Trip Length	Vendor Trip Length	$\begin{gathered} \text { Hauling Trip } \\ \text { Length } \end{gathered}$	Worker Vehicle Class	$\begin{array}{\|c\|} \hline \text { Vendor } \\ \text { Vehicle Class } \end{array}$	$\begin{gathered} \text { Hauling } \\ \text { Vehicle Class } \end{gathered}$
Grading	6	15.00	6.00	0.00	14.70	6.90	20.00	D_Mix	;HDT_Mix	[HHD
Building Construction	9	106.00:	41.00	0.00	14.70	6.90	20.00	- - Mix	HDT_Mix	T
Paving	8	20.00	0.00	0.00	14.70	6.90	20.00	--Mix	HDT_Mix	Hidt
Architectura Coaing	1	21.00	0.00	0.00	14.70	6.90	20.00	D_Mix	HTT-M	Hid

3.1 Mitigation Measures Construction
Water Exposed Area

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM2.5 } \end{gathered}$	$\begin{aligned} & \hline \text { Exhaust } \\ & \hline \text { PM2 } \end{aligned}$	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0110	0.3962	0.1137	$\begin{aligned} & 1.420-\mathrm{e}- \\ & 003 \end{aligned}$	0.0384	$4.2000 \mathrm{e}-$	0.0389	0.0111	$\begin{aligned} & 4.1000 \mathrm{e}- \\ & 0.0 \end{aligned}$	0.0115		153.2408	153.2408	$\begin{aligned} & 7.5000 \mathrm{e}- \\ & 003 \end{aligned}$		153.4284
Worker	0.0355	0.0181	0.3030	$\begin{gathered} 1.2500 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	004 $8.5000 \mathrm{e}-$	0.1685	0.0445	$7.8000 \mathrm{e}-$	0.0452		124.7846	124.7846	${ }^{2.0500}{ }^{0}$		124.8359
Total	0.0465	0.4143	0.4167	$\begin{array}{\|c\|} \hline 2.6700 \mathrm{e}- \\ 003 \end{array}$	0.2061	$\begin{aligned} & 1.27000- \\ & 003 \end{aligned}$	0.2074	0.0555	$\begin{aligned} & 1.1900 \mathrm{e}- \\ & 003 \end{aligned}$	0.0567		278.0254	278.0254	${ }^{9.55000} 0$		278.2642

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer
3.2 Grading - 2031

Mitigated Construction On-Site
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling							0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		
Vendor	0.0110	0.3962	0.1137	$\begin{gathered} 1.42000- \\ 003 \end{gathered}$	0.0384	$\begin{gathered} 4.2000 \mathrm{e} \\ 004 \end{gathered}$	0.0389	0.0111	$\begin{gathered} 4.1000 \mathrm{e} \\ 004 \end{gathered}$	0.0115		153.2408	153.2408	7.5000 e 003		153.4284
	0.0355	0.0181	0.3030	$\begin{gathered} 1.2500 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 8.5000 \mathrm{e} \\ 004 \end{gathered}$	0.1685	0.0445	$\begin{gathered} 7.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0452		124.7846	124.7846	$\begin{aligned} & 2.0500 \mathrm{e}- \\ & 003 \end{aligned}$		124.8359
Total	0.0465	0.4143	0.4167	$\begin{gathered} 2.6700 \mathrm{e}- \\ 003 \end{gathered}$	0.2061	$\begin{gathered} 1.2700 \mathrm{e}- \\ 003 \end{gathered}$	0.2074	0.0555	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.0567		278.0254	278.0254	$\begin{gathered} 9.5500 \mathrm{e}- \\ 003 \end{gathered}$		278.2642

CalEEMod Version: CaIEEMod.2016.3.2

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer
3.3 Building Construction-2031

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling					0.0000		0.0000	0.0000	0.0000	0.0000			0.0000	0.0000		
Vendor	0.0748	2.7074	0.7769	$\begin{gathered} 9.7300 \mathrm{e}- \\ 003 \end{gathered}$	0.2625	$\begin{gathered} 2.9000 \mathrm{e}- \\ 003 \end{gathered}$	0.2655	0.0756	$\begin{gathered} 2.7700 \mathrm{e}- \\ 003 \end{gathered}$	0.0784		\| $\begin{gathered}1,047.145 \\ 7\end{gathered}$	1,047.145	0.0513		$\begin{gathered} 1,048.427 \\ 1 \end{gathered}$
Worker	0.2511	0.1281	2.1414	$\begin{gathered} 8.8400 \mathrm{e}- \\ 003 \end{gathered}$	1.1848	$\begin{gathered} 5.9900 \mathrm{e} \\ 003 \end{gathered}$	1.1908	0.3142	$\begin{aligned} & 5.5100 \mathrm{e}- \\ & 003 \end{aligned}$	0.3197		881.8111	881.8111	0.0145		882.1735
Total	0.3259	2.8355	2.9183	0.0186	1.4474	$\begin{gathered} 8.8900 \mathrm{e}- \\ 003 \end{gathered}$	1.4563	0.3898	$\begin{gathered} 8.2800 \mathrm{e}- \\ 003 \end{gathered}$	0.3981		$\begin{array}{\|c\|} \hline 1,928.956 \\ 9 \end{array}$	$\begin{gathered} 1,928.956 \\ 9 \end{gathered}$	0.0657		$\begin{gathered} 1,930.600 \\ 6 \end{gathered}$

Mitigated Construction On-Site

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0748	2.7074	0.7769	$\begin{gathered} 9.7300 \mathrm{e}- \\ 003 \end{gathered}$	0.2625	${ }^{2.90000-}$	0.2655	0.0756	$\begin{gathered} 2.7700 \mathrm{e}- \\ 003 \end{gathered}$	0.0784		$\left.\right\|_{1} ^{1,047.145}$	${ }_{7}^{1,047.145}$	0.0513		$1,048.427$ 1
Worker	0.2511	0.1281	2.1414	$\begin{gathered} 8.8400 \mathrm{e}- \\ 003 \end{gathered}$	1.1848	$\begin{gathered} 5.9900 \mathrm{e}- \\ 003 \end{gathered}$	1.1908	0.3142	$\begin{gathered} 5.5100 \mathrm{e}- \\ 003 \end{gathered}$	0.3197		881.8111	881.8111	0.0145		882.1735
Total	0.3259	2.8355	2.9183	0.0186	1.4474	$\begin{gathered} 8.8900 \mathrm{e}- \\ 003 \end{gathered}$	1.4563	0.3898	$\begin{gathered} 8.2800 \mathrm{e}- \\ 003 \end{gathered}$	0.3981		$\begin{array}{\|c} \hline 1,928.956 \\ 9 \end{array}$	$\begin{array}{\|c\|} \hline 1,928.956 \\ 9 \end{array}$	0.0657		$\begin{gathered} 1,930.600 \\ 6 \end{gathered}$

CalEEMod Version: CaIEEMod.2016.3.2

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer
3.3 Building Construction-2032

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling					0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		
Vendor	0.0742	2.6897	0.7733	$\begin{gathered} 9.7100 \mathrm{e}- \\ 003 \end{gathered}$	0.2626	$\begin{gathered} 2.8600 \mathrm{e} \\ 003 \end{gathered}$	0.2654	0.0756	$\begin{gathered} 2.7300 \mathrm{e} \\ 003 \end{gathered}$	0.0783		-1,045.052	1,045.052	0.0509		$\begin{gathered} 1,046.324 \\ 2 \end{gathered}$
Work	0.2324	0.1168	2.0103	$\begin{gathered} 8.6500 \mathrm{e}- \\ 003 \end{gathered}$	1.1848	$\begin{gathered} 5.5900 \mathrm{e} \\ 003 \end{gathered}$	1.1904	0.3142	$\begin{gathered} 5.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.3194		863.8639	863.8639	0.0132		864.1950
Total	0.3066	2.8065	2.7836	0.0184	1.4474	$\begin{gathered} 8.4500 \mathrm{e}- \\ 003 \end{gathered}$	1.4558	0.3898	$\begin{gathered} 7.8700 \mathrm{e}- \\ 003 \end{gathered}$	0.3977		$\begin{array}{\|c\|} \hline 1,908.916 \\ 7 \end{array}$	$\begin{array}{c\|} \hline 1,908.916 \\ 7 \end{array}$	0.0641		$\begin{gathered} 1,910.519 \\ 2 \end{gathered}$

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0439	0.0220	0.3793	$1.6300 \mathrm{e}-$	0.2236	$1.0500 \mathrm{e}-$	0.2246	0.0593	$9.7000 \mathrm{e}-$	0.0603		162.9932	162.9932	$2.5000 e-$		163.0557
Total	0.0439	0.0220	0.3793	$\begin{gathered} 1.6300 \mathrm{e}- \\ 003 \end{gathered}$	0.2236	$\begin{gathered} 1.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.2246	0.0593	$\begin{gathered} 9.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0603		162.9932	162.9932	$\begin{gathered} 2.5000 \mathrm{e}- \\ 003 \end{gathered}$		163.0557

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer

3.4 Paving - 2032

Mitigated Construction On-Site
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling		0.0000			0.0000				0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0439	0.0220	0.3793	$\begin{gathered} 1.6300 \mathrm{e}- \\ 003 \end{gathered}$	0.2236	$\begin{gathered} 1.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.2246	0.0593	$\begin{gathered} 9.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0603		162.9932	162.9932	$\begin{gathered} 2.5000 \mathrm{e}- \\ 003 \end{gathered}$		163.0557
Total	0.0439	0.0220	0.3793	$\begin{aligned} & 1.6300 \mathrm{e}- \\ & 003 \end{aligned}$	0.2236	$\begin{gathered} 1.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.2246	0.0593	$\begin{gathered} 9.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0603		162.9932	162.9932	$\begin{gathered} 2.5000 \mathrm{e}- \\ 003 \end{gathered}$		163.0557

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer

3.5 Architectural Coating - 2031

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling		0.0000			0.0000				0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0498	0.0254	0.4243	$\begin{gathered} 1.7500 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.2359	0.0623	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		174.6984	174.6984	$\begin{gathered} 2.8700 \mathrm{e}- \\ 003 \end{gathered}$		174.7702
Total	0.0498	0.0254	0.4243	$\begin{gathered} 1.7500 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.2359	0.0623	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		174.6984	174.6984	$\begin{gathered} 2.8700 \mathrm{e}- \\ 003 \end{gathered}$		174.7702

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer

3.5 Architectural Coating-2031

Mitigated Construction On-Site

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000	0.0000	0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0498	0.0254	0.4243	$\begin{gathered} 1.7500 \mathrm{e} \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.2359	0.0623	$\begin{gathered} 1.0900 \mathrm{e} \\ 003 \end{gathered}$	0.0633		174.6984	174.6984	$\begin{gathered} 2.8700 \mathrm{e}- \\ 003 \end{gathered}$		174.7702
Total	0.0498	0.0254	0.4243	$\begin{gathered} 1.7500 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.2359	0.0623	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		174.6984	174.6984	$\begin{gathered} 2.8700 \mathrm{e}- \\ 003 \end{gathered}$		174.7702

CalEEMod Version: CaIEEMod.2016.3.2

3.5 Architectural Coating - 2032

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOX	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Work	0.0460	0.0231	0.3983	$\begin{gathered} 1.7100 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{aligned} & 1.1100 \mathrm{e}- \\ & 003 \end{aligned}$	0.2358	0.0623	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		171.1428	171.1428	$\begin{gathered} 2.6200 \mathrm{e}- \\ 003 \end{gathered}$		171.2084
Total	0.0460	0.0231	0.3983	$\begin{gathered} 1.7100 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.2358	0.0623	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		171.1428	171.1428	$\begin{gathered} 2.6200 \mathrm{e}- \\ 003 \end{gathered}$		171.2084

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Increase Transit Accessibility

Improve Pedestrian Network

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										Ib/day					
Mitigated	5.1796	29.7272	59.6272	0.3009	30.5648	0.1508	30.7156	8.1764	0.1401	8.3164		:	$\begin{aligned} & 30,915.48 \\ & 96 \end{aligned}$	1.2175		$30,945.92$
- Uninitigated	5.8207			0.3818					0.1761			${ }^{39,2039} 59$	${ }_{59}{ }^{-20367}$	$\overline{1.5054}$		$\begin{gathered} 39,-241.30 \\ 98 \end{gathered}$

4.2 Trip Summary Information
4.3 Trip Type Information

	Miles			Trip \%			Trip Purpose \%		
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Junior College (2Yr)	16.60	8.40	6.90	6.40	88.60	5.00	92	7	1
Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

Date: 11/26/2018 11:33 AM
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	sBus	MH
Junior College (2Yr)	0.53985	0.043743	0.210883	0.115969	0.013375	0.006440	0.022010	0.036531	0.002703	0.001629	0.005324	0.000732	0.00080
Oither Nön-Asphäl Surfaces	0.53988	0.043743:	0.210883	0.115969	0.013375!	5440:	0.022010	$0.036531:$	2703:	0.001629	05324	0.000732	00087

4.4 Fleet Mix

5.0 Energy Detail
Historical Energy Use: N
5.1 Mitigation Measures Energy
Unmitigated

Mitigated

Land Use

kBTU/yr

	$\begin{array}{\|c\|} \hline \text { NaturalGa } \\ \text { s Use } \end{array}$	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{array}{r} \text { PM2.5 } \\ \text { Total } \end{array}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	lb/day										lb/day					
Junior College (2Yr)	12.0674	0.1301	1.1831	0.9938	$\begin{gathered} 7.1000 \mathrm{e}- \\ 003 \end{gathered}$		0.0899	0.0899		0.0899	0.0899		$\begin{gathered} 1,419.690 \\ 3 \end{gathered}$	$\begin{array}{\|c} 1,419.690 \\ 3 \end{array}$	0.0272	0.0260	$\begin{gathered} 1,428.126 \\ 8 \end{gathered}$
Other NonAsphalt Surfac		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1301	1.1831	0.9938	$\begin{gathered} 7.1000 \mathrm{e}- \\ 003 \end{gathered}$		0.0899	0.0899		0.0899	0.0899		$\begin{array}{\|c} \hline 1,419.690 \\ 3 \end{array}$	$\begin{gathered} \hline 1,419.690 \\ 3 \end{gathered}$	0.0272	0.0260	$\begin{gathered} 1,428.126 \\ 8 \end{gathered}$

6.0 Area Detail
6.1 Mitigation Measures Area

\％ั๊		
\％		
哭	）	
$\begin{aligned} & \hline \stackrel{y}{0} \\ & \dot{\mathrm{O}} \\ & \dot{\mathrm{i}} \end{aligned}$		
은		
	合	
\％o		
\bigcirc		
¢		
－		
	言	

6．2 Area by SubCategory
Unmitigated

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of $25 \quad$ Date: 11/26/2018 11:33 AM LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer
6.2 Area by SubCategory

Mitigated

70 Water Detail
7.1 Mitigation Measures Water
8.1 Mitigation Measures Waste
9.0 Operational Offroad
10.0 Stationary Equipment

Fire Pumps and Emergency Generators
Date: 11/26/2018 11:33 AM
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Summer

11.0 Vegetation

Page 1 of 25
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter

LBCC LAC Interim Year 2035 (2031-2035 Construction)

Los Angeles-South Coast County, Winter
Los Angeles-South Coast County, Winter
$\varsigma \varepsilon 0 乙$
$\varepsilon \varepsilon$

0.029
2.2

Wind Speed (m/s)
1.2 Other Project Characteristics
1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	5,362.00	Student	1.97	162,651.00	0
Other Non-Asphalt Surfaces	2.07	Acre	2.07	90,169.20	0

1.0 Project Characteristics
CalEEMod Version: CalEEMod.2016.3.2 LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter

Project Characteristics - Interim Year 2035

Land Use - 5,362 student Junior College on 1.97 acre and 162,651 sq ft and 2.07-acres Other Non-Asphalt Surfaces.

Construction Phase - 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving.

Trips and VMT - To account for water trucks, 6 vendor trips added to Grading.

Demolition

Grading

Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA.

Energy Use -

Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsite and connecting offsite

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	18.00	230.00
tbiConstructionPhase	NumDays	8.00	20.00
tbiconstructionPhase	NumDays	18.00	20.00
tbiconstructionPhase	PhaseEndDate	7/15/2032	5/14/2032
tbiconstructionPhase	PhaseEndDate	5/26/2032	5/14/2032
tbiconstructionPhase	PhaseEndDate	799/2031	6/27/2031
tbiconstructionPhase	PhaseEndDate	6/2-7/2032	6/11/2032
tbiconstructionPhase	PhaseStarto----	6/22/2032	6/28/2031
tbiconstructionPhase	PhaseStartorate	7/10/2031	6/28/2031
tbiconstructionPhase	PhaseStartDate	6/28/2031	6/1/2031
tbiconstructionPhase	PhaseStartorate	5/27/2032	5/15/2032
tbilanduse	LandUseSquareFeet	234,063.30	162,651.00
tbilanduse	LotAcreage	5.37	1.97
toīTripändVM'	VendorTrip ${ }^{\text {ajumber }}$	0.00	6.00
tbivehicleTrips	WD_TR	1.23	1.15

2.1 Overall Construction (Maximum Daily Emission)
Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2031	8.5266	11.6557	21.1162	0.0534	6.7584	0.2353	6.9937	3.4230	0.2352	3.6582	0.0000	: ${ }_{9}^{\text {,193.200 }}$	5,193.200	0.1977	0.0000	$\underset{4}{5,198.142}$
	8.5009	11.6228	20.9673	0.0531	1.6821	0.2539	1.8602	0.4521	0.2538	0.6295	0.0000	:5,170.823	$5,170.823$ 9	0.1958	0.0000	$\begin{gathered} 5,175.719 \\ 0 \end{gathered}$
Maximum	8.5266	11.6557	21.1162	0.0534	6.7584	0.2539	6.9937	3.4230	0.2538	3.6582	0.0000	$\underset{9}{5,193.200}$	$\begin{gathered} 5,193.200 \\ 9 \end{gathered}$	0.1977	0.0000	$\begin{gathered} 5,198.142 \\ 4 \end{gathered}$

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2031	8.5266	11.6557	21.1162	0.0534	2.7615	0.2353	2.9968	1.3689	0.2352	1.6041	0.0000	$\begin{gathered} 5,193.200 \\ \hline \end{gathered}$	$\begin{gathered} 5,193.200 \\ 9 \end{gathered}$	0.1977	0.0000	$\begin{gathered} 5,198.142 \\ 4 \end{gathered}$
2032	8.5009	11.6228	20.9673	0.0531	1.6821	0.2539	1.8602	0.4521	0.2538	0.6295	0.0000	$\begin{gathered} -170.823 \\ 9 \end{gathered}$	$\begin{gathered} 5,170.823 \\ 9 \end{gathered}$	0.1958	0.0000	$\begin{gathered} 5,175.719 \\ 0 \end{gathered}$
Maximum	8.5266	11.6557	21.1162	0.0534	2.7615	0.2539	2.9968	1.3689	0.2538	1.6041	0.0000	$\begin{array}{\|c} 5,193.200 \\ 9 \end{array}$	$\begin{array}{\|c\|} \hline 5,193.200 \\ 9 \end{array}$	0.1977	0.0000	$\begin{array}{\|c\|} \hline 5,198.142 \\ 4 \end{array}$

2.0 Emissions Summary
CalEEMod Version: CalEEMod.2016.3.2 Page 4 of $25 \quad$ Date: 11/26/2018 11:32 AM

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter																
	ROG	NOX	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
$\begin{gathered} \text { Percent } \\ \text { Reduction } \end{gathered}$	0.00	0.00	0.00	0.00	47.35	0.00	45.14	53.01	0.00	47.91	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

Mitigated Operational

Page 6 of 25 Date: 11/26/2018 11:32 AM

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter																
	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{array}{r} \hline \text { PM2.5 } \\ \text { Total } \end{array}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	6.69	8.94	18.38	20.89	22.81	13.74	22.75	22.81	13.42	22.58	0.00	20.47	20.47	18.34	0.00	20.46

CalEEMod Version: CaIEEMod.2016.3.2
3.0 Construction Detail

Construction Phase

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Acres of Paving: 2.07

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 243,977; Non-Residential Outdoor: 81,326; Striped Parking Area: 5,410 (Architectural Coating - sqft)
OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Grading	-Excavators	1	8.00	158'	0.38
Grading	-Graders	1	8.00	187!	0.41
Grading	-Rubber Tired Dozers	1	8.00	247!	0.40
Grading	:Tractors/Loaders/Backhoes	3	8.00	97!	0.37
Building Construction	:Cranes	1	7.00	231'	0.29
Building Construction	-Forklifts	3	8.00	89'	0.20
Building Construction	-Generator Sets	1	8.00	84!	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97!	0.37
Building Construction	-Welders	1	8.00	46'	0.45
Paving	Cement and Mortar Mixers	2	6.00	9	0.56
Paving	Pavers	1	8.00	130	0.42
Paving	Paving Equipment	2	6.00	132'	0.36
Paving	-Rollers	2	6.00	801	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97!	0.37
Architectural Coating	:Air Compressors	1	6.00	78:	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Grading		15.00	6.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Building Constructio		106.00	41.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Paving		20.00	0.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Architectural Coating		21.00	0.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction
Water Exposed Area

3.2 Grading - 2031

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0115	0.3945	0.1238	$\begin{gathered} 1.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.0384	$4.3000 \mathrm{e}-$ 004	0.0389	0.0111	$\begin{gathered} 4.1000 \mathrm{e} \\ 004 \end{gathered}$	0.0115		149.2133	149.2133	$\begin{gathered} 7.880-\mathrm{e}- \\ 003 \end{gathered}$		149.4103
Worker	0.0406	0.0200	0.2735	$\begin{gathered} 1.1800 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 8.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1685	0.0445	$\begin{gathered} 7.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0452		117.4703	117.4703	$\begin{gathered} 1.9100 \mathrm{e}- \\ 003 \end{gathered}$		117.5181
Total	0.0521	0.4145	0.3973	$\begin{gathered} 2.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.2061	$\begin{gathered} 1.2800 \mathrm{e}- \\ 003 \end{gathered}$	0.2074	0.0555	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.0567		266.6836	266.6836	$\begin{gathered} 9.7900 \mathrm{e}- \\ 003 \end{gathered}$		266.9284

3.2 Grading - 2031

Mitigated Construction On-Site
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling							0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		
Vendor	0.0115	0.3945	0.1238	$\begin{gathered} 1.3900 \mathrm{e}- \\ 003 \end{gathered}$	0.0384	$\begin{gathered} 4.3000 \mathrm{e} \\ 004 \end{gathered}$	0.0389	0.0111	$\begin{gathered} 4.1000 \mathrm{e} \\ 004 \end{gathered}$	0.0115		149.2133	149.2133	7.8800e- 003		149.4103
Work	0.0406	0.0200	0.2735	$\begin{gathered} 1.1800 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 8.5000 \mathrm{e} \\ 004 \end{gathered}$	0.1685	0.0445	$\begin{gathered} 7.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0452		117.4703	117.4703	$\begin{gathered} 1.9100 \mathrm{e}- \\ 003 \end{gathered}$		117.5181
Total	0.0521	0.4145	0.3973	$\begin{aligned} & 2.5700 \mathrm{e}- \\ & 003 \end{aligned}$	0.2061	$\begin{gathered} 1.2800 \mathrm{e}- \\ 003 \end{gathered}$	0.2074	0.0555	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.0567		266.6836	266.6836	$\begin{gathered} 9.7900 \mathrm{e}- \\ 003 \end{gathered}$		266.9284

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter

3.3 Building Construction-2031

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling		0.0000			0.0000				0.0000	0.0000				0.0000		0.0000
Vendor	0.0785	2.6955	0.8459	$\begin{gathered} 9.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.2625	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$	0.2655	0.0756	$\begin{gathered} 2.8400 \mathrm{e}- \\ 003 \end{gathered}$	0.0784		$\begin{gathered} 1,01.624 \\ 0 \end{gathered}$	1,019.624	0.0539		$\begin{gathered} 1,020.970 \\ 2 \end{gathered}$
Worker	0.2869	0.1413	1.9327	$\begin{gathered} 8.3200 \mathrm{e}- \\ 003 \end{gathered}$	1.1848	$\begin{gathered} 5.9900- \\ 003 \end{gathered}$	1.1908	0.3142	$\begin{gathered} 5.5100 \mathrm{e}- \\ 003 \end{gathered}$	0.3197		830.1236	830.1236	0.0135		830.4612
Total	0.3653	2.8368	2.7786	0.0178	1.4474	$\begin{gathered} 8.9600 \mathrm{e}- \\ 003 \end{gathered}$	1.4563	0.3898	$\begin{gathered} 8.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.3982		$\begin{array}{\|c} \hline 1,849.747 \\ 6 \end{array}$	$\begin{array}{\|c\|} \hline 1,849.747 \\ 6 \end{array}$	0.0674		$\begin{gathered} 1,851.431 \\ 4 \end{gathered}$

CalEEMod Version: CaIEEMod.2016.3.2

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter
Mitigated Construction On-Site

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0785	2.6955	0.8459	$\begin{gathered} 9.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.2625	${ }^{2.97000} 00$	0.2655	0.0756	$\begin{gathered} 2.8400 \mathrm{e}- \\ 003 \end{gathered}$	0.0784		:1,019.624	1,019.624	0.0539		$\underset{2}{1,020.970}$
Worker	0.2869	0.1413	1.9327	$\begin{array}{r} 8.32000 \\ \hline \end{array}$	1.1848	$\begin{gathered} 5.9900 \mathrm{e}- \\ 003 \end{gathered}$	1.1908	0.3142	$\begin{gathered} 5.5100 \mathrm{e}- \\ 003 \end{gathered}$	0.3197		830.1236	830.1236	0.0135		830.4612
Total	0.3653	2.8368	2.7786	0.0178	1.4474	$\begin{gathered} 8.9600 \mathrm{e}- \\ 003 \end{gathered}$	1.4563	0.3898	$\begin{gathered} 8.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.3982		$\begin{array}{\|c} 1,849.747 \\ 6 \end{array}$	$\begin{array}{\|c\|} \hline 1,849.747 \\ 6 \end{array}$	0.0674		$\begin{gathered} 1,851.431 \\ 4 \end{gathered}$

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter
3.3 Building Construction-2032

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling					0.0000		0.0000	0.0000	0.0000	0.0000			0.0000	0.0000		
Vendor	0.0778	2.6777	0.8420	$\begin{gathered} 9.4600 \mathrm{e} \\ 003 \end{gathered}$	0.2626	$\begin{gathered} 2.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.2655	0.0756	$\begin{gathered} 2.7900 \mathrm{e} \\ 003 \end{gathered}$	0.0784		\| $\begin{gathered}1,017.565 \\ 8\end{gathered}$	$1,017.565$ 8	0.0534		$\begin{gathered} 7,018.900 \\ 7 \end{gathered}$
	0.2659	0.1288	1.8117	$\begin{gathered} 8.1400 \mathrm{e} \\ 003 \end{gathered}$	1.1848	$\begin{gathered} 5.5900 \mathrm{e} \\ 003 \end{gathered}$	1.1904	0.3142	$\begin{gathered} 5.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.3194		813.1647	813.1647	0.0123		813.4729
Total	0.3437	2.8064	2.6537	0.0176	1.4474	$\begin{gathered} 8.5100 \mathrm{e}- \\ 003 \end{gathered}$	1.4559	0.3898	$\begin{gathered} 7.9300 \mathrm{e}- \\ 003 \end{gathered}$	0.3978		$\begin{array}{\|c} 1,830.730 \\ 4 \end{array}$	$\begin{gathered} 1,830.730 \\ 4 \end{gathered}$	0.0657		$\begin{gathered} 1,832.373 \\ 6 \end{gathered}$

CalEEMod Version: CaIEEMod.2016.3.2

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter
3.3 Building Construction-2032

Mitigated Construction On-Site

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0778	2.6777	0.8420	$\begin{gathered} 9.4600 \mathrm{e} \\ 003 \end{gathered}$	0.2626	$\begin{gathered} 2.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.2655	0.0756	$\begin{gathered} 2.7900 \mathrm{e}- \\ 003 \end{gathered}$	0.0784		\| $\begin{gathered}1,017.565 \\ 8\end{gathered}$	$1,017.565$ 8	0.0534		$1,018.900$
Worker	0.2659	0.1288	1.8117	$\begin{gathered} 8.1400 \mathrm{e}- \\ 003 \end{gathered}$	1.1848	$\begin{gathered} 5.5900 \mathrm{e} \\ 003 \end{gathered}$	1.1904	0.3142	$\begin{gathered} 5.1400 \mathrm{e} \\ 003 \end{gathered}$	0.3194		813.1647	813.1647	0.0123		813.4729
Total	0.3437	2.8064	2.6537	0.0176	1.4474	$\begin{gathered} 8.5100 \mathrm{e}- \\ 003 \end{gathered}$	1.4559	0.3898	$\begin{gathered} 7.9300 \mathrm{e}- \\ 003 \end{gathered}$	0.3978		$\begin{array}{\|c\|} \hline 1,830.730 \\ 4 \end{array}$	$\begin{array}{\|c\|} 1,830.730 \\ 4 \end{array}$	0.0657		$\begin{gathered} 1,832.373 \\ 6 \end{gathered}$

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter

3.4 Paving - 2032

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0502	0.0243	0.3418	$1.5400 \mathrm{e}-$	0.2236	$1.0500 \mathrm{e}-$	0.2246	0.0593	$9.7000 \mathrm{e}-$	0.0603		153.4273	153.4273	$2.3300 e-$		153.4855
Total	0.0502	0.0243	0.3418	$\begin{gathered} 1.5400 \mathrm{e}- \\ 003 \end{gathered}$	0.2236	$\begin{gathered} 1.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.2246	0.0593	$\begin{gathered} 9.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0603		153.4273	153.4273	$\begin{aligned} & 2.3300 \mathrm{e}- \\ & 003 \end{aligned}$		153.4855

Mitigated Construction On-Site
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0502	0.0243	0.3418	$\begin{gathered} 1.5400 \mathrm{e}- \\ 003 \end{gathered}$	0.2236	$\begin{gathered} 1.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.2246	0.0593	$\begin{gathered} 9.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0603		153.4273	153.4273	$\begin{gathered} 2.3300 \mathrm{e}- \\ 003 \end{gathered}$		153.4855
Total	0.0502	0.0243	0.3418	$\begin{gathered} 1.5400 \mathrm{e}- \\ 003 \end{gathered}$	0.2236	$\begin{gathered} 1.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.2246	0.0593	$\begin{gathered} 9.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0603		153.4273	153.4273	$\begin{gathered} 2.3300 \mathrm{e}- \\ 003 \end{gathered}$		153.4855

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter

3.5 Architectural Coating - 2031

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0568	0.0280	0.3829	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.2359	0.0623	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		164.4585	164.4585	$\begin{gathered} 2.6800 \mathrm{e}- \\ 003 \end{gathered}$		164.5253
Total	0.0568	0.0280	0.3829	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.2359	0.0623	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		164.4585	164.4585	$\begin{gathered} 2.6800 \mathrm{e}- \\ 003 \end{gathered}$		164.5253

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter

3.5 Architectural Coating - 2031

Mitigated Construction On-Site

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling		0.0000			0.0000				0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0568	0.0280	0.3829	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.2359	0.0623	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		164.4585	164.4585	$\begin{gathered} 2.6800 \mathrm{e}- \\ 003 \end{gathered}$		164.5253
Total	0.0568	0.0280	0.3829	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.2359	0.0623	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		164.4585	164.4585	$\begin{gathered} 2.6800 \mathrm{e}- \\ 003 \end{gathered}$		164.5253

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter

3.5 Architectural Coating - 2032

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling		0.0000			0.0000				0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0527	0.0255	0.3589	$\begin{gathered} 1.6100 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.2358	0.0623	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		161.0987	161.0987	$\begin{gathered} 2.4400 \mathrm{e} \\ 003 \end{gathered}$		161.1597
Total	0.0527	0.0255	0.3589	$\begin{gathered} 1.6100 \mathrm{e}- \\ 003 \end{gathered}$	0.2347	$\begin{gathered} 1.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.2358	0.0623	$\begin{gathered} 1.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.0633		161.0987	161.0987	$\begin{gathered} 2.4400 \mathrm{e}- \\ 003 \end{gathered}$		161.1597

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

ncrease Transit Accessibility

Improve Pedestrian Network

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PM1H10 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										Ib/day					
Mitigated	5.0174	29.8596	57.4175	0.2866	30.5648	0.1513	30.7161	8.1764		8.3169		$\begin{aligned} & 29,461.82 \\ & : 25 \end{aligned}$	$\begin{aligned} & 29,461.82 \\ & 25 \end{aligned}$	1.2353		$\begin{aligned} & 29,492.70 \\ & 51 \end{aligned}$
Ünimitigated		32.9089	70.6919	0.3641	-39.5990	0.1900	39.7890		0.1765			${ }^{37,409.16}$	${ }^{37,4099.16}$	1.5194		$\begin{aligned} 37,447,15 \\ 00 \end{aligned}$

4.2 Trip Summary Information
4.3 Trip Type Information

	Miles			Trip \%			Trip Purpose \%		
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Junior College (2Yr)	16.60	8.40	6.90	6.40	88.60	5.00	92	7	1
Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

Date: 11/26/2018 11:32 AM
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Junior College (2Yr)	0.53985	743	0.210883	0.115969	0.013375	0.006440	0.022010	0.036	0.002	0.001	24	0.000732	. 0008
OTher Non-Aspöalit Suraces	0.93985	0.043773	0.210883	0.115969	0.013375	0.006440	0.022010	0.036531	0.002703:	0.001629	0.005324	0.000732	0.0008

4.4 Fleet Mix

5.0 Energy Detail
Historical Energy Use: N
5.1 Mitigation Measures Energy

Mitigated
Land Use

kBTU/yr
CalEEMod Version: CalEEMod.2016.3.2 LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Winter
> 5.2 Energy by Land Use - NaturalGas

> Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	lb/day										1b/day					
Junior College (2Yr)	12.0674	0.1301	1.1831	0.9938	$\begin{gathered} 7.1000 \mathrm{e}- \\ 003 \end{gathered}$		0.0899	0.0899		0.0899	0.0899		$\begin{gathered} 1,419.690 \\ 3 \end{gathered}$	$\begin{gathered} 1,419.690 \\ 3 \end{gathered}$	0.0272	0.0260	$\begin{gathered} 1,428.126 \\ 8 \end{gathered}$
Other NonAsphalt Surfaces		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1301	1.1831	0.9938	$\begin{gathered} 7.1000 \mathrm{e}- \\ 003 \end{gathered}$		0.0899	0.0899		0.0899	0.0899		$\begin{array}{\|c} \hline 1,419.690 \\ 3 \end{array}$	$\begin{array}{c\|} \hline 1,419.690 \\ 3 \end{array}$	0.0272	0.0260	$\begin{array}{\|c\|} \hline 1,428.126 \\ 8 \end{array}$

6.0 Area Detail
6.1 Mitigation Measures Area

	ROG	NOX	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Exhaust } \\ \text { PM10 } \end{array}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM2.5 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Exhaust } \\ \text { PM2.5 } \end{array}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Mitigated		$\begin{aligned} & 4.8900 \mathrm{e}- \\ & 003 \end{aligned}$	0.5446	$\begin{aligned} & 4.0000 e- \\ & \hline 005 \end{aligned}$		$\begin{aligned} & 1.93000 \mathrm{e} \\ & 003 \end{aligned}$	$\begin{aligned} & 1.9300 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{aligned} & 1.9300 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.9300 \mathrm{e}- \\ 003 \end{gathered}$		1.1739	1.1739	$\begin{aligned} & 3.02000 \mathrm{e}- \\ & 003 \end{aligned}$		1.2496
Ünimitigated	-3.7222	$\begin{gathered} -8.8900 \mathrm{e}-- \\ 003 \end{gathered}$	0.5446	$\begin{gathered} -0.000 \mathrm{e}- \\ 005 \end{gathered}$		-1.930-0e-	$\begin{gathered} -930-\mathrm{e}- \\ 003 \end{gathered}$		$:$	$1.9300 \mathrm{e}-$		1.1739	1.1739	$\begin{aligned} & 3.02000-1 \\ & \hline 003 \end{aligned}$		1.2496

6.2 Area by SubCategory

Unmitigated

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail
8.1 Mitigation Measures Waste

9.0 Operational Offroad

10.0 Stationary Equipment

Fire Pumps and Emergency Generators
Date: 11/26/2018 11:32 AM

11.0 Vegetation
1.0 Project Characteristics

Los Angeles-South Coast County, Annual

33
N్ల

Precipitation Freq (Days)
Operational Year
1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	5,362.00	Student	1.97	162,651.00	0
Other Non-Asphalt Surfaces	2.07	Acre	2.07	90,169.20	0

[^18]0.029
2.2
1.3 User Entered Comments \& Non-Default Data

Project Characteristics - Interim Year 2035

Land Use - 5,362 student Junior College on 1.97 acre and 162,651 sq ft and 2.07-acres Other Non-Asphalt Surfaces.

Construction Phase - 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving.

Trips and VMT - To account for water trucks, 6 vendor trips added to Grading.

Demolition

Grading

Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA.

Energy Use -

Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsite and connecting offsite

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	18.00	230.00
tbiConstructionPhase	NumDays	8.00	20.00
tbiconstructionPhase	NumDays	18.00	20.00
tbiConstructionPhase	PhaseEndDate	7/15/2032	5/14/2032
tbiconstructionPhase	PhaseEndDate	5/26/2032	5/4/2032
tbiConstructionPhase	PhaseEndDate	799/2031	6/27/2031
tbiconstructionPhase	PhaseEndDate	6/21/2032	6/11/2032
tbiconstructionPhase	PhaseStartorate	6/22/2032	6/28/2031
tbiconstructionPhase	PhaseStartorate	7/10/2031	6/28/2031
tbiConstructionPhase	PhaseStarto----	6/28/2031	6/1/2031
tbiconstructionPhase	PhaseStartorate	5/27/2032	5/15/2032
tbilanduse	LandUseSquareFeet	234,063.30	162,651.00
tbilanduse	Lotacreage	5.37	1.97
tbiTripsAndVMT	VendorTripNumber	0.00	6.00
tolveniclēTrips		1.23	1.15

Unmitigated Construction
2.0 Emissions Summary

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr										MT/yr					
2031	0.5810	0.8598	1.5552	${ }^{3.9600 e-}$	0.1773	0.0142	0.1915	0.0638	0.0142	0.0779	0.0000	348.9228	348.9228	0.0133	0.0000	349.2539
2032	0.4225	0.6284	1.1530	$\begin{gathered} 2.8400 \mathrm{e}- \\ 003 \end{gathered}$	0.0822	0.0112	0.0934	0.0221	0.0111	0.0333	0.0000	249.8852	249.8852	$\begin{gathered} 9.5300 \mathrm{e} \\ 003 \end{gathered}$	0.0000	250.1234
Maximum	0.5810	0.8598	1.5552	$\begin{gathered} 3.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.1773	0.0142	0.1915	0.0638	0.0142	0.0779	0.0000	348.9228	348.9228	0.0133	0.0000	349.2539

Mitigated Construction

	ROG	NOx	CO	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr										MT/yr					
2031	0.5810	0.8598	1.5552	$\begin{gathered} 3.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.1373	0.0142	0.1515	0.0432	0.0142	0.0574	0.0000	348.9225	348.9225	0.0133	0.0000	349.2537
2032	0.4225	0.6284	1.1530	$\begin{gathered} 2.8400 \mathrm{e}- \\ 003 \end{gathered}$	0.0822	0.0112	0.0934	0.0221	0.0111	0.0333	0.0000	249.8851	249.8851	$\begin{gathered} 9.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	250.1232
Maximum	0.5810	0.8598	1.5552	$\begin{gathered} 3.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.1373	0.0142	0.1515	0.0432	0.0142	0.0574	0.0000	348.9225	348.9225	0.0133	0.0000	349.2537

CaIEEMod Version: CalEEMod.2016.3.2
Date 11/26/2018 11:34 AM
Page 4

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual																
	ROG	NOX	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	15.40	0.00	14.03	23.91	0.00	18.47	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
$\mathbf{1}$	$6-1-2031$	$8-31-2031$	0.5621	0.5621
2	$9-1-2031$	$11-30-2031$	0.6554	0.6554
3	$\mathbf{1 2 - 1 - 2 0 3 1}$	$\mathbf{2 - 2 9 - 2 0 3 2}$	0.6547	0.6547
4	$\mathbf{3 - 1 - 2 0 3 2}$	$5-31-2032$	0.5836	0.5836
5	$6-1-2032$	$8-31-2032$	0.0293	0.0293
		Highest	0.6554	0.6554

2.2 Overall Operational
 Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Tota	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Area	0.6764	$6.1000 \mathrm{e}-$ 004	0.0681	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 2.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.4000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 2.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	0.1331	0.1331	$\begin{gathered} 3.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	0.1417
Energy	0.0238	0.2159	0.1814	$\begin{gathered} 1.3000 \mathrm{e} \\ 003 \end{gathered}$		0.0164	0.0164		0.0164	0.0164	0.0000	754.3231	754.3231	0.0259	8.7400 e 003	757.5776
Mobile	0.7756	4.6925	10.0425	0.0518	5.4524	0.0266	5.4790	1.4609	0.0247	1.4857	0.0000	4,832.258	$4,832.258$ 8	0.1919	0.0000	$\begin{gathered} 4,837.057 \\ 2 \end{gathered}$
Waste						0.0000	0.0000		0.0000	0.0000	198.6388	0.0000	198.6388	11.7392	0.0000	492.1193
Water						0.0000	0.0000		0.0000	0.0000	3.6423	111.1953	114.8375	0.3787	$\begin{gathered} 9.7800 \mathrm{e} \\ 003 \end{gathered}$	127.2200
Total	1.4758	4.9090	10.2919	0.0532	5.4524	0.0433	5.4956	1.4609	0.0414	1.5023	202.2811	$\begin{array}{\|c} \hline 5,697.910 \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline 5,900.191 \\ 3 \end{array}$	12.3361	0.0185	$\underset{7}{6,214.115}$

3.0 Construction Detail
Construction Phase
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual

$\begin{aligned} & \text { Phase } \\ & \text { Number } \end{aligned}$	Phase Name	Phase Type	Start Date	End Date	$\begin{gathered} \text { Num Days } \\ \text { Week } \end{gathered}$	Num Days	Phase Description
1	:Grading	:Grading	;6/1/2031	[6/27/2031	5	20	
2	Building Construction	:Building Construction	6/28/2031	5/14/2032	5	230	
3	Paving	-Paving	5/15/2032	6/11/2032	5	20	
4	Architectural Coating	Architectural Coating	:6/28/2031	:5/14/2032	5	230	

Acres of Grading (Site Preparation Phase): 0
Acres of Grading (Grading Phase): 10
Acres of Paving: 2.07
Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 243,977; Non-Residential Outdoor: 81,326; Striped Parking Area: 5,410 (Architectural Coating - sqft)
OffRoad Equipment

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	$\begin{array}{\|c\|} \hline \text { Vendor } \\ \text { Vehicle Class } \\ \hline \end{array}$	Hauling Vehicle Class
Grading	6	15.00	6.00	0.00;	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	106.00	41.00	0.00	14.70	6.90	20.00	LD-MMix	HDT_Mix	НН®т
Paving		20.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating		21.00	0.00	0.00:	14.70	6.90	20.00	LD_Mix	:HDT_Mix	:HEDT

3.1 Mitigation Measures Construction
Water Exposed Area

3.2 Grading - 2031

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { PMotal } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0655	0.0000	0.0655	0.0337	0.0000	0.0337	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0162	0.0775	0.1445	${ }^{3.6000-}$		$\begin{aligned} & 2.3400 \mathrm{e}- \\ & 0.0 \end{aligned}$	$2.3400 \mathrm{e}-$		$2.3400 \mathrm{e}-$	$\frac{2.3400 \mathrm{e}}{0.2}$	0.0000	31.2046	31.2046	$1.3000 \mathrm{e}-$	0.0000	31.2372
Total	${ }^{0.0162}$	0.0775	0.1445	$\begin{aligned} & 3.6000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0655	$\begin{aligned} & 2.3400 \mathrm{e}- \\ & 003 \end{aligned}$	0.0679	0.0337	$\begin{aligned} & 2.3400 \mathrm{e}- \\ & 003 \end{aligned}$	0.0360	0.0000	31.2046	31.2046	$\begin{aligned} & 1.30000- \\ & \hline 003 \end{aligned}$	0.0000	31.2372

Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2. 5	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$1.1000 \mathrm{e}-$	$\begin{aligned} & 4.0000 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.1900 \mathrm{e}- \\ 003 \end{gathered}$	$1.0000 \mathrm{e}-$	$\begin{gathered} 3.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	$\begin{aligned} & 3.8000 \mathrm{e} \\ & 004 \end{aligned}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	$\begin{aligned} & -7.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	1.3748	1.3748	$\begin{gathered} 7.0000 e- \\ 005 \end{gathered}$	0.0000	1.3766
Worker	$3.6000 \mathrm{e}-$	$\begin{aligned} & 2.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 2.8200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} -7.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 4.4000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 4.4000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	1.0835	1.0835	$\begin{gathered} 2 .-0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.0839
Total	$\begin{gathered} 4.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 4.2100 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 4.0100 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 2.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & \hline 2.0200 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 2.0300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 1.00000- \\ & 005 \end{aligned}$	$\begin{aligned} & 5.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	2.4583	2.4583	$\begin{aligned} & 9.00000- \\ & 005 \end{aligned}$	0.0000	2.4605

Mitigated Construction On-Site
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.1900 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 3.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	$\begin{gathered} 3.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	1.3748	1.3748	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.3766
Worker	$\begin{gathered} 3.6000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.1000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.8200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e} \\ 005 \end{gathered}$	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.0835	1.0835	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.0839
Total	$\begin{gathered} 4.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.2100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 2.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 2.0200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.0300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 5.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	2.4583	2.4583	$\begin{gathered} 9.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	2.4605

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual
3.3 Building Construction-2031

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{aligned} & 5.0800 \mathrm{e}- \\ & 003 \end{aligned}$	0.1819	0.0541	$\begin{gathered} 6.4000 \mathrm{e} \\ 004 \end{gathered}$	0.0172	$\begin{gathered} 1.9000- \\ 004 \end{gathered}$	0.0174	$\begin{gathered} 4.9600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 5.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	62.4747	62.4747	$\begin{gathered} 3.1600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	62.5537
Worker	0.0170	$\begin{gathered} 9.6700 \mathrm{e}- \\ 003 \end{gathered}$	0.1324	$\begin{gathered} 5.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0772	$\begin{gathered} 4.0000-- \\ 004 \end{gathered}$	0.0776	0.0205	$\begin{gathered} 3.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0209	0.0000	50.9163	50.9163	$\begin{aligned} & 8.3000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	50.9370
Total	0.0220	0.1916	0.1864	$\begin{aligned} & 1.2000 \mathrm{e}- \\ & 003 \end{aligned}$	0.0944	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0950	0.0255	$\begin{gathered} 5.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0260	0.0000	113.3910	113.3910	$\begin{gathered} 3.9900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	113.4907

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual
Mitigated Construction On-Site

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH 4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{gathered} 5.0800 \mathrm{e}- \\ 003 \end{gathered}$	0.1819	0.0541	$\begin{gathered} 6.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0172	$\begin{gathered} 1.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0174	$\begin{gathered} 4.9600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 5.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	62.4747	62.4747	$\begin{gathered} 3.1600 \mathrm{e} \\ 003 \end{gathered}$	0.0000	62.5537
Worker	0.0170	$\begin{gathered} 9.6700 \mathrm{e}- \\ 003 \end{gathered}$	0.1324	$\begin{gathered} 5.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0772	$\begin{aligned} & 4.0000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0776	0.0205	$\begin{gathered} 3.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0209	0.0000	50.9163	50.9163	$\begin{gathered} 8.3000-- \\ 004 \end{gathered}$	0.0000	50.9370
Total	0.0220	0.1916	0.1864	$\begin{gathered} 1.2000 \mathrm{e}- \\ 003 \end{gathered}$	0.0944	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0950	0.0255	$\begin{gathered} 5.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0260	0.0000	113.3910	113.3910	$\begin{gathered} 3.9900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	113.4907

CalEEMod Version: CalEEMod.2016.3.2
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual
3.3 Building Construction-2032

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{gathered} 3.6700 \mathrm{e} \\ 003 \end{gathered}$	0.1318	0.0392	$\begin{gathered} 4.7000- \\ 004 \end{gathered}$	0.0125	$\begin{gathered} 1.4000 \mathrm{e} \\ 004 \end{gathered}$	0.0127	$\begin{gathered} 3.6200 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 1.3000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.7500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	45.4728	45.4728	$\begin{gathered} 2 .-9900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	45.5300
Worker	0.0115	$\begin{gathered} 6.4300 \mathrm{e} \\ 003 \end{gathered}$	0.0905	$\begin{gathered} 4.0000- \\ 004 \end{gathered}$	0.0563	$\begin{gathered} 2.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0566	0.0150	$\begin{gathered} 2.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0152	0.0000	36.3766	36.3766	$\begin{aligned} & 5.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	36.3904
Total	0.0151	0.1382	0.1298	$\begin{aligned} & 8.7000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0689	$\begin{aligned} & 4.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0693	0.0186	$\begin{gathered} 3.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0190	0.0000	81.8494	81.8494	$\begin{gathered} 2.8400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	81.9204

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual
3.3 Building Construction-2032

Mitigated Construction On-Site

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{gathered} -6.6700 \mathrm{e}- \\ 003 \end{gathered}$	0.1318	0.0392	$\begin{gathered} 4.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0125	$\begin{aligned} & 1.4000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0127	$\begin{gathered} 3.6200 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 1.3000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.7500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	45.4728	45.4728	$\begin{gathered} 2.2900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	45.5300
Worker	0.0115	$\begin{gathered} 6.4300 \mathrm{e} \\ 003 \end{gathered}$	0.0905	$\begin{aligned} & 4.0000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0563	$\begin{gathered} 2.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0566	0.0150	$\begin{gathered} 2.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0152	0.0000	36.3766	36.3766	$\begin{gathered} 5.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	36.3904
Total	0.0151	0.1382	0.1298	$\begin{gathered} 8.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0689	$\begin{gathered} 4.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0693	0.0186	$\begin{gathered} 3.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0190	0.0000	81.8494	81.8494	$\begin{gathered} 2.8400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	81.9204

LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual

3.4 Paving - 2032

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.5200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.1900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.2000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} -9.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.4152	1.4152	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.4157
Total	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.5200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.1900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.2000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.4152	1.4152	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.4157

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual
3.4 Paving - 2032

Mitigated Construction On-Site
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.5200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.1900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.2000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.4152	1.4152	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.4157
Total	$\begin{gathered} 4.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.5000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.5200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} \hline 2.1900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.2000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.4152	1.4152	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.4157

3.5 Architectural Coating - 2031

Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 3.3600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.0262	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0153	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0154	$\begin{gathered} 4.0600 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	10.0872	10.0872	$\begin{gathered} 1.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	10.0913
Total	$\begin{gathered} 3.3600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.0262	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0153	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0154	$\begin{gathered} 4.0600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	10.0872	10.0872	$\begin{gathered} 1.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	10.0913

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 3.3600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.0262	$\begin{gathered} 1.1000 \mathrm{e} \\ 004 \end{gathered}$	0.0153	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0154	$\begin{gathered} 4.0600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	10.0872	10.0872	$\begin{gathered} 1.6000 \mathrm{e} \\ 004 \end{gathered}$	0.0000	10.0913
Total	$\begin{gathered} 3.3600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.9200 \mathrm{e}- \\ 003 \end{gathered}$	0.0262	$\begin{gathered} 1.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0153	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0154	$\begin{gathered} 4.0600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	10.0872	10.0872	$\begin{gathered} 1.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	10.0913

CalEEMod Version: CalEEMod.2016.3.2

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH 4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000				0.0000				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 2.2700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.2700 \mathrm{e}- \\ & 003 \end{aligned}$	0.0179	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0112	$\begin{aligned} & 5.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0112	$\begin{gathered} 2.9600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 3.0100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	7.2067	7.2067	$\begin{gathered} 1.1000-- \\ 004 \end{gathered}$	0.0000	7.2094
Total	$\begin{gathered} 2.2700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.2700 \mathrm{e}- \\ 003 \end{gathered}$	0.0179	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0112	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0112	$\begin{gathered} 2.9600 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 3.0100 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	7.2067	7.2067	$\begin{gathered} 1.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	7.2094

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

ncrease Transit Accessibility

Improve Pedestrian Network

	ROG	NOx	co	SO2	Fugitive	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \hline \text { PM10 } \\ & \begin{array}{l} \text { Total } \end{array} \end{aligned}$	Fugitive	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Mitigated		4.2557	8.1338								0.0000	3,809.585	${ }_{9}^{3,809.585}$			$\begin{gathered} 3,813.477 \\ 3 \end{gathered}$
Ünimitiated	0.7756	4.6925	10.0425	0.0518					0.0247	1.7857	0.0000	${ }_{8}^{4,832.258}$	${ }_{8}^{\text {4,832.258 }}$	0.1919	0.0000	$\xrightarrow[2]{4,837.057}$

4.2 Trip Summary Information
4.3 Trip Type Information

	Miles			Trip \%			Trip Purpose \%		
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Junior College (2Yr)	16.60	8.40	6.90	6.40	88.60	5.00	92	7	1
Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

CalEEMod Version: CaIEEMod.2016.3.2

4.4 Fleet Mix

5.0 Energy Detail
Historical Energy Use: N
5.1 Mitigation Measures Energy

Mitigated

	$\begin{array}{\|c\|} \hline \text { NaturalGa } \\ \text { s Use } \end{array}$	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	tons/yr										MT/yr					
Junior Colleg (2Yr)	$\begin{gathered} 4.40459 \mathrm{e} \\ +006 \end{gathered}$	0.0238	0.2159	0.1814	$\begin{gathered} 1.3000 \mathrm{e}- \\ 003 \end{gathered}$		0.0164	0.0164		0.0164	0.0164	0.0000	235.0457	235.0457	$\begin{gathered} 4.5100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.3100 \mathrm{e}- \\ 003 \end{gathered}$	236.4424
Other NonAsphalt Surfac		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0238	0.2159	0.1814	$\begin{gathered} 1.3000 \mathrm{e}- \\ 003 \end{gathered}$		0.0164	0.0164		0.0164	0.0164	0.0000	235.0457	235.0457	$\begin{gathered} 4.5100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.3100 \mathrm{e}- \\ 003 \end{gathered}$	236.4424

Mitigated

6.0 Area Detail
6.1 Mitigation Measures Area

6.2 Area by SubCategory

Unmitigated
CalEEMod Version: CalEEMod.2016.3.2 Page 25 of $29 \quad$ Date: 11/26/2018 11:34 AM
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual
6.2 Area by SubCategory
Mitigated

7.0 Water Detail
7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category	MT／yr			
Mitigated	114.8375	0.3787	$\begin{gathered} 9.78000- \\ 003 \end{gathered}$	127.2200
－Unminitiated	-114.8375		7.78000 003	127.2200

7．2 Water by Land Use
Unmitigated

ัั๊		覴	
\％	ミ		$\frac{\dot{e} \dot{\circ}, 0}{\substack{\dot{\circ} \\ \hline 0}}$
款			
	$\stackrel{\text { ® }}{\text { 区 }}$		
	－		－

7.2 Water by Land Use
Mitigated

8.0 Waste Detail
8.1 Mitigation Measures Waste
Category/Year

	Total CO2	CH4	N2O	CO2e	
		MT/yr			
Mitigated	198.6388	11.7392	0.0000	492.1193	
Unmitigated	$:$	198.6388	11.7392	0.0000	

8.2 Waste by Land Use
 Unmitigated

Mitigated

9.0 Operational Offroad
CaIEEMod Version: CalEEMod.2016.3.2
Date: 11/26/2018 11:34 AM
LBCC LAC Interim Year 2035 (2031-2035 Construction) - Los Angeles-South Coast County, Annual
10.0 Stationary Equipment
Fire Pumps and Emergency Generators

Equipment Type	Number	Hours Day	HoursYear	Hosse Power	Load Factor	Fuel Type

11.0 Vegetation

APPENDIX F

CalEEMod Model Interim Year 2040 Printouts
1.0 Project Characteristics
LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Summer

LBCC LAC Year 2041 (2036-2041 Construction)

 Los Angeles-South Coast County, Summer| 1.1 Land Usage | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Land Uses | Size | Metric | Lot Acreage | Floor Surface Area | Population |
| Junior College (2Yr) | 7,458.00 | Student | 1.02 | 84,015.00 | 0 |
| Other Non-Asphalt Surfaces | 2.07 | Acre | 2.07 | 90,169.20 | 0 |

[^19]1.1 Land Usage
CalEEMod Version: CalEEMod.2016.3.2

Project Characteristics - Opening Year 2041

Land Use - 7,458 student Junior College on 1.02 acre and $84,015 \mathrm{sq} \mathrm{ft}$ and 2.07 -acres Other Non-Asphalt Surfaces.

Construction Phase - 20 days Demo, 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving. Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.
Demolition - Demolition of 15,968 SF of building space.
Grading -
Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA. Swimming pool is not anticipated to generate any trips. Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsite and connecting offsite

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	18.00	230.00
tbiconstructionPhase	NumDays	8.00	20.00
tbiConstructionPhase	NumDays	18.00	20.00
tbiConstructionPhase	PhaseEndDate	7/16/2037	6/12/2037
tbiconstructionPhase	PhaseEndDate	5/27/2037	6/12/2037
tbiConstructionPhase	PhaseEndDate	799/2036	7127/2036
tbiConstructionPhase	PhaseEndDate	6/22/2037	7/10/2037
tbiConstructionPhase	PhaseStarto---7ate	6/23/2037	7/28/2036
tbiconstructionPhase	PhaseStartorate	7/10/2036	7/28/2036
tbiConstructionPhase	PhaseStartDate	5/28/2037	6/13/2037
tbiLanduse	LandusesquareFeet	325,558.38	$84,015.00$
tbilanduse	LotAcreage	7.47	1.02
tbiTripsAndVı	VendorTripNumber	0.00	6.00
	VendororripNumber	0.00	6.00
tblvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary
2.1 Overall Construction (Maximum Daily Emission)
Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2036	5.0407	9.8706	19.8636	0.0514	6.7584	0.2287	6.9151	3.4230	0.2286	3.5797	0.0000	${ }_{0}^{4,927.732}$	${ }^{4,927.732}$	0.1872	0.0000	4,932.4113
	5.0407	9.8706	19.8636	0.0476	1.1693	0.1548	1.2754	0.3143	0.1548	0.4200	0.0000	4,598.167	${ }_{9}^{4,598.167}$	0.1622	0.0000	$\begin{gathered} 4,602.223 \\ 4 \end{gathered}$
Maximum	5.0407	9.8706	19.8636	0.0514	6.7584	0.2287	6.9151	3.4230	0.2286	3.5797	0.0000	$\underset{0}{4,927.732}$	$\begin{gathered} 4,927.732 \\ 0 \end{gathered}$	0.1872	0.0000	$\begin{array}{\|c\|} \hline 4,932.411 \\ 3 \end{array}$

Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										1b/day					
2036	5.0407	9.8706	19.8636	0.0514	2.7615	0.2287	2.9182	1.3689	0.2286	1.5255	0.0000	$\begin{gathered} 4,927.732 \\ 0 \end{gathered}$	4,927.732	0.1872	0.0000	$4,932.4113$
2037	5.0407	9.8706	19.8636	0.0476	1.1693	0.1548	1.2754	0.3143	0.1548	0.4200	0.0000	$\begin{gathered} 9,598.167 \\ 9 \end{gathered}$	9	0.1622	0.0000	$\begin{gathered} 4,602.223 \\ 4 \end{gathered}$
Maximum	5.0407	9.8706	19.8636	0.0514	2.7615	0.2287	2.9182	1.3689	0.2286	1.5255	0.0000	$\begin{array}{\|c} \hline 4,927.732 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline 4,927.732 \\ 0 \end{array}$	0.1872	0.0000	$\begin{array}{\|c\|} \hline 4,932.411 \\ 3 \end{array}$

CalEEMod Version: CalEEMod.2016.3.2 Page 4 of $28 \quad$ Date: 11/26/2018 11:04 AM

\%ัٌ	\bigcirc
\%ั	\bigcirc
포́	$\stackrel{\circ}{\circ}$
	\bigcirc
	\bigcirc
	\%
践	$\left\lvert\, \begin{aligned} & \stackrel{e}{n} \\ & \stackrel{1}{n} \end{aligned}\right.$
(¢
	\|ợ
	\%
	\bigcirc
	登
\%ั	\bigcirc
\bigcirc	¢
\%	\bigcirc
©	$\stackrel{\circ}{\circ}$

2.2 Overall Operational

Unmitigated Operational
Mitigated Operational

$$
\text { LBCC LAC Year } 2041 \text { (2036-2041 Construction) - Los Angeles-South Coast County, Summer }
$$

3.0 Construction Detail

Acres of Grading (Site Preparation Phase): 0
Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	:Demolition	6/1/2036	;6/27/2036		20	
2	Grading	;Grading	6/28/2036	17/27/2036	5	20	
3	Building Construction	Building Construction	7/28/2036	6/12/2037	5	230	
4	Paving	:Paving	16/13/2037	17/10/2037		20	
5	Architectural Coating	Architectural Coating	:7/28/2036	:6/12/2037	5	230	

Acres of Grading (Grading Phase): 10
Acres of Paving: 2.07
OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	:Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	:Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Grading	: Excavators	1	8.00	158	0.38
Grading	:Graders	1	8.00	187	0.41
Grading	:-----------7	1	8.00	247	0.40
Grading	:Tractor/Loaders/Backhoes	3	8.00	97	0.37
Building Construction	:Cranes	1	7.00	231	0.29
Building Construction	:Forklifts	3	8.00	89	0.20
Building Construction	:-7enerator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoe-----1	3	7.00	97	0.37
Building Construction	:Welders	1	8.00	46	0.45
Paving	Cement and Mortar Mixers	2	6.00	9	0.56
Paving	:---7aver	1	8.00	130	0.42
Paving	PPaving Equipment	2	6.00	132	0.36
Paving	:Rollers	2	6.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Architectural Coating	:Air Compressors	1:	6.00 :	78	0.48

Trips and VMT

Unmitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \begin{array}{c} \text { Total } \end{array} \end{aligned}$	Fugitive	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					0.7859	0.0000	0.7859	0.1190	0.0000	0.1190			0.0000			0.0000
Oif-Road	1.8311	6.9070	18.7067	0.0462		0.2267	0.2267		0.2267	0.2267		${ }^{4} 4$	${ }_{9}^{4,378.581}$	0.1599		$\underset{5}{4,382.79}$
Total	1.8311	6.9070	18.7067	0.0462	0.7859	0.2267	1.0127	0.1190	0.2267	0.3457		${ }_{9}^{4,378.581}$	$4,378.581$	0.1599		$\underset{5}{4,382.579}$

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0181	0.5268	0.2173	$\begin{gathered} 2.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.0639	$\begin{gathered} 9.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0648	0.0175	$\begin{gathered} 8.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0184		280.4057	280.4057	0.0185		280.8681
Vendor	0.0107	0.3877	0.1119	1.4200e-	0.0384	$4.0000 \mathrm{e}-$ 004	0.0388	0.0111	$3.9000 \mathrm{e}-$ 004	0.0115		152.3814	152.3814	$7.3100 e-$ 003		152.5641
Worker	0.0272	0.0132	0.2404	$\begin{gathered} 1.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e} \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e} \\ 004 \end{gathered}$	0.0451		116.3631	116.3631	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$		116.3995
Total	0.0559	0.9278	0.5697	$\begin{gathered} 5.1500 \mathrm{e}- \\ 003 \end{gathered}$	0.2699	$\begin{gathered} 1.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.2719	0.0730	$\begin{gathered} 1.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.0749		549.1501	549.1501	0.0273		549.8318

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Fugitive Dust					0.3065	0.0000	0.3065	0.0464	0.0000	0.0464			0.0000			0.0000
Off-Road	1.8311	6.9070	18.7067	0.0462		0.2267	0.2267		0.2267	0.2267	0.0000	-$4,378.581$	4,378.581	0.1599		$\begin{gathered} 4,382.579 \\ 5 \end{gathered}$
Total	1.8311	6.9070	18.7067	0.0462	0.3065	0.2267	0.5332	0.0464	0.2267	0.2732	0.0000	$\begin{gathered} 4,378.581 \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline 4,378.581 \\ 9 \end{array}$	0.1599		$\underset{5}{4,382.579}$

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0181	0.5268	0.2173	$\begin{gathered} 2.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.0639	$\begin{gathered} 9.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0648	0.0175	$\begin{gathered} 8.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0184		; 280.4057	280.4057	0.0185		280.8681
Vendor	0.0107	0.3877	0.1119	1.4200 e 003	0.0384	$4.0000 \mathrm{e}-$ 004	0.0388	0.0111	$\begin{gathered} 3.9000 \mathrm{e} \\ 004 \end{gathered}$	0.0115		152.3814	152.3814	7.3100 e 003		152.5641
Worker	0.0272	0.0132	0.2404	$\begin{gathered} 1.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e} \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e} \\ 004 \end{gathered}$	0.0451		116.3631	116.3631	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$		116.3995
Total	0.0559	0.9278	0.5697	$\begin{gathered} 5.1500 \mathrm{e}- \\ 003 \end{gathered}$	0.2699	$\begin{gathered} 1.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.2719	0.0730	$\begin{gathered} 1.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.0749		549.1501	549.1501	0.0273		549.8318

3.3 Grading - 2036

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Oift-Road	1.4619	5.9823	14.3296	0.0363		0.1557	0.1557		0.1557	0.1557		${ }^{3,439.720}$	${ }^{3,439.720}$	0.1282		$3,442.925$
Total	1.4619	5.9823	14.3296	0.0363	6.5523	0.1557	6.7080	3.3675	0.1557	3.5231		${ }_{1}^{3,439.720}$	$\underset{1}{3,439.720}$	0.1282		$\underset{9}{3,442.925}$

3.3 Grading - 2036

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0107	0.3877	0.1119	$1.42000-$ 003	0.0384	$4.00000-$ 004	0.0388	0.0111	$\begin{gathered} 3.9000-- \\ 004 \end{gathered}$	0.0115		152.3814	152.3814	$7.3100 \mathrm{e}-$ 003		152.5641
Worker	0.0272	0.0132	0.2404	$\begin{gathered} 1.1700 \mathrm{e} \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e} \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e} \\ 004 \end{gathered}$	0.0451		116.3631	116.3631	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$		116.3995
Total	0.0378	0.4009	0.3524	$\begin{gathered} 2.5900 \mathrm{e}- \\ 003 \end{gathered}$	0.2061	$\begin{gathered} 1.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.2071	0.0555	$\begin{gathered} 9.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0565		268.7444	268.7444	$\begin{gathered} 8.7700 \mathrm{e}- \\ 003 \end{gathered}$		268.9637

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust					2.5554	0.0000	2.5554	1.3133	0.0000	${ }^{1.3133}$			0.0000			0.0000
Oift-Road	1.4619	5.9823	14.3296	0.0363		0.1557	0.1557		0.1557	0.1557	0.0000	${ }^{3,439.720}$	${ }^{3,439.720}$	0.1282		$3,442.925$
Total	1.4619	5.9823	14.3296	0.0363	2.5554	0.1557	2.7111	1.3133	0.1557	1.4690	0.0000	(${ }^{3,439.720}$	$\underset{1}{3,439.720}$	0.1282		$\underset{9}{3,442.925}$

3.3 Grading - 2036

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2. 5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										Ib/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0107	0.3877	0.1119	1.42000 003	0.0384	$4.0000 \mathrm{e}-$	0.0388	0.0111	$3.9000 \mathrm{e}-$	0.0115		152.3814	152.3814	7.3100 e 003		152.5641
Worker	0.0272	0.0132	0.2404	$\begin{aligned} & 1.1700 \mathrm{e}- \\ & 003 \end{aligned}$	0.1677	$\begin{aligned} & 6.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.1683	0.0445	$\begin{aligned} & 5.9000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0451		116.3631	116.3631	$\begin{aligned} & 1.4600 \mathrm{e}- \\ & 003 \end{aligned}$		16.3995
Total	${ }^{0.0378}$	0.4009	0.3524	$\begin{aligned} & 2.59000 \mathrm{e} \\ & 003 \end{aligned}$	0.2061	$\begin{aligned} & 1.05000 \mathrm{e} \\ & \hline 003 \end{aligned}$	0.2071	0.0555	$\begin{aligned} & 9.80000 e^{-} \end{aligned}$	0.0565		268.7444	268.7444	${ }_{003}^{8.7700-}$		268.9637

3.4 Building Construction-2036

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904		$\begin{aligned} & 2,897.546 \\ & 8 \end{aligned}$	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	0.1079		$\begin{array}{\|c} \hline 2,900.244 \\ 8 \end{array}$
Total	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904		$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	0.1079		$\begin{array}{\|c\|} \hline 2,900.244 \\ 8 \end{array}$

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling			0.0000	0.0000				0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0516	1.8740	0.5410	$\begin{gathered} 6.8400 \mathrm{e} \\ 003 \end{gathered}$	0.1857	$\begin{gathered} 1.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.1877	0.0535	$\begin{gathered} 1.8700 \mathrm{e}- \\ 003 \end{gathered}$	0.0553		736.5098	736.5098	0.0353		737.3934
Worker	0.1321	0.0644	1.1701	$\begin{gathered} 5.6700 \mathrm{e} \\ 003 \end{gathered}$	0.8160	$\begin{gathered} 3.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.8191	0.2164	$\begin{gathered} 2.8900 \mathrm{e}- \\ 003 \end{gathered}$	0.2193		566.3002	566.3002	$\begin{gathered} 7.1000 \mathrm{e}- \\ 003 \end{gathered}$		566.4777
Total	0.1837	1.9383	1.7111	0.0125	1.0017	$\begin{gathered} 5.1000 \mathrm{e}- \\ 003 \end{gathered}$	1.0068	0.2699	$\begin{gathered} 4.7600 \mathrm{e}- \\ 003 \end{gathered}$	0.2746		$\begin{array}{\|c\|} \hline 1,302.810 \\ 1 \end{array}$	$\begin{array}{\|c\|} \hline 1,302.810 \\ 1 \end{array}$	0.0424		$\begin{gathered} 1,303.871 \\ 1 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904	0.0000	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	0.1079		$\begin{gathered} 2,900.244 \\ 8 \end{gathered}$
Total	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904	0.0000	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	0.1079		$\begin{gathered} 2,900.244 \\ 8 \end{gathered}$

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2. 5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0516	1.8740	0.5410	${ }^{6.8400 e}$	0.1857	${ }^{1.96000}$	0.1877	0.0535	$\begin{aligned} & 1.8700 \mathrm{e}- \\ & 003 \end{aligned}$	0.0553		736.5098	736.5098	0.0353		737.3934
Worker	0.1321	0.0644	1.1701	$\begin{array}{r} 5.6700 \mathrm{e}- \\ 003 \end{array}$	0.8160	$\begin{aligned} & 3.1400 \mathrm{e}- \\ & 003 \end{aligned}$	0.8191	0.2164	$\begin{aligned} & 2.8900 \mathrm{e}- \\ & 003 \end{aligned}$	0.2193		566.3002	566.3002	$\begin{array}{r} 7.1000 \mathrm{e} \\ 003 \end{array}$		566.4777
Total	${ }^{0.1837}$	1.9383	1.7111	0.0125	1.0017	${ }^{5.10000}{ }^{0}$	1.0068	0.2699	$\begin{aligned} & 4.7600 \mathrm{e}- \\ & 003 \end{aligned}$	0.2746		${ }_{1}^{1,302.810}$	${ }_{\text {1,302.810 }}^{1}$	0.0424		${ }_{\substack{1,303.871 \\ 1}}$

3.4 Building Construction-2037
Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2 5	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904		${ }^{2,897.546}$	${ }_{8}^{2,897.546}$	0.1079		2,900.244
Total	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904		${ }_{8}^{2,897.546}$	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	0.1079		$\begin{array}{\|c} \hline 2,900.244 \\ 8 \end{array}$

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling			0.0000	0.0000				0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0516	1.8740	0.5410	$\begin{gathered} 6.8400 \mathrm{e} \\ 003 \end{gathered}$	0.1857	$\begin{gathered} 1.9600 \mathrm{e}- \\ 003 \end{gathered}$	0.1877	0.0535	$\begin{gathered} 1.8700 \mathrm{e}- \\ 003 \end{gathered}$	0.0553		736.5098	736.5098	0.0353		737.3934
Worker	0.1321	0.0644	1.1701	$\begin{gathered} 5.6700 \mathrm{e} \\ 003 \end{gathered}$	0.8160	$\begin{gathered} 3.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.8191	0.2164	$\begin{gathered} 2.8900 \mathrm{e}- \\ 003 \end{gathered}$	0.2193		566.3002	566.3002	$\begin{gathered} 7.1000 \mathrm{e}- \\ 003 \end{gathered}$		566.4777
Total	0.1837	1.9383	1.7111	0.0125	1.0017	$\begin{gathered} 5.1000 \mathrm{e}- \\ 003 \end{gathered}$	1.0068	0.2699	$\begin{gathered} 4.7600 \mathrm{e}- \\ 003 \end{gathered}$	0.2746		$\begin{array}{\|c\|} \hline 1,302.810 \\ 1 \end{array}$	$\begin{array}{\|c\|} \hline 1,302.810 \\ 1 \end{array}$	0.0424		$\begin{gathered} 1,303.871 \\ 1 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904	0.0000	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	0.1079		$\begin{gathered} 2,900.244 \\ 8 \end{gathered}$
Total	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904	0.0000	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	0.1079		$\begin{gathered} 2,900.244 \\ 8 \end{gathered}$

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0516	1.8740	0.5410	$\begin{gathered} 6.84000 \\ 003 \end{gathered}$	0.1857	$1.96000-$ 003	0.1877	0.0535	$\begin{gathered} 1.8700-- \\ 003 \end{gathered}$	0.0553		736.5098	736.5098	0.0353		737.3934
Worker	0.1321	0.0644	1.1701	$\begin{gathered} 5.6700 \mathrm{e} \\ 003 \end{gathered}$	0.8160	$\begin{gathered} 3.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.8191	0.2164	$\begin{gathered} 2.8900 \mathrm{e}- \\ 003 \end{gathered}$	0.2193		566.3002	566.3002	7.1000 e 003		566.4777
Total	0.1837	1.9383	1.7111	0.0125	1.0017	$\begin{gathered} 5.1000 \mathrm{e}- \\ 003 \end{gathered}$	1.0068	0.2699	$\begin{gathered} 4.7600 \mathrm{e}- \\ 003 \end{gathered}$	0.2746		$1,302.810$ 1	$\begin{array}{\|c\|} \hline 1,302.810 \\ 1 \end{array}$	0.0424		$\begin{gathered} 1,303.871 \\ 1 \end{gathered}$

3.5 Paving-2037

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road		4.7441	13.0737	0.0230		0.1540	0.1540		0.1540	0.1540		${ }^{2,154.260} 3$	2,154.260	0.0885		$\begin{gathered} 2,156.473 \\ 0 \end{gathered}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9893	4.7441	13.0737	0.0230		0.1540	0.1540		0.1540	0.1540		$\begin{array}{\|c} \hline 2,154.260 \\ 3 \end{array}$	$\begin{array}{\|c\|} \hline 2,154.260 \\ 3 \end{array}$	0.0885		$\underset{0}{2,156.473}$

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2 5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Off-Road	0.9893	4.7441	13.0737	0.0230		0.1540	0.1540		0.1540	0.1540	0.0000	! ${ }^{2,154.260}$	${ }_{3}^{2,154.260}$	0.0885		$\begin{gathered} 2,156.473 \\ 0 \end{gathered}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9893	4.7441	13.0737	0.0230		0.1540	0.1540		0.1540	0.1540	0.0000	${ }_{3}^{2,154.260}$	${ }_{3}^{2,154.260}$	0.0885		$\underset{0}{\text { 2,156.473 }}$

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0362	0.0176	0.3206	$1.5500 \mathrm{e}-$	0.2236	8.6000e-	0.2244	0.0593	$7.9000 \mathrm{e}-$	0.0601		155.1508	155.1508	$1.9500 \mathrm{e}-$		155.1994
Total	0.0362	0.0176	0.3206	$\begin{gathered} 1.5500 \mathrm{e}- \\ 003 \end{gathered}$	0.2236	$\begin{gathered} 8.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.2244	0.0593	$\begin{gathered} 7.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0601		155.1508	155.1508	$\begin{gathered} 1.9500 \mathrm{e}- \\ 003 \end{gathered}$		155.1994

3.6 Architectural Coating - 2036

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.4952					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1179	0.7577	1.7943	$2.9700-$ 003		${ }^{9.90000-}$	${ }^{9.90000-}$		${ }^{9.90000}$	${ }^{9.9000-}$		281.4481	281.4481	0.0104		281.7081
Total	${ }^{3.6131}$	0.7577	1.7943	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 9.90000 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$		281.4481	281.4481	0.0104		281.7081

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0272	0.0132	0.2404	$\begin{gathered} 1.1700 \mathrm{e} \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000-- \\ 004 \end{gathered}$	0.0451		116.3631	116.3631	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$		116.3995
Total	0.0272	0.0132	0.2404	$\begin{gathered} 1.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		116.3631	116.3631	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$		116.3995

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.4952					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1179	0.7577	1.7943	${ }^{2.97700 e-}$		${ }^{9.90000-}$	${ }^{9.90000}$		${ }^{9.90000}$	${ }^{9.90000} \mathbf{0} 0$	0.0000	281.4481	281.4481	0.0104		281.7081
Total	${ }^{3.6131}$	0.7577	1.7943	$2.9700 \mathrm{e}-$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 9.9000 \mathrm{e}- \\ \hline 003 \end{gathered}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	${ }_{003}^{9.9000 \mathrm{e}-}$	0.0000	281.4481	281.4481	0.0104		281.7081

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0272	0.0132	0.2404	$\begin{gathered} 1.1700 \mathrm{e} \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000-- \\ 004 \end{gathered}$	0.0451		116.3631	116.3631	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$		116.3995
Total	0.0272	0.0132	0.2404	$\begin{gathered} 1.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		116.3631	116.3631	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$		116.3995

3.6 Architectural Coating - 2037
 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										1b/day					
Archit. Coating	3.4952					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Oift-Road	0.1179	0.7577	1.7943	$2.9700 \mathrm{e}-$		$9.9000 \mathrm{e}-$	$9.9000-$ 003		$9.9000 \mathrm{e}-$	$9.9000 \mathrm{e}-$		281.4481	281.4481	0.0104		281.7081
Total	3.6131	0.7577	1.7943	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$		281.4481	281.4481	0.0104		281.7081

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000				0.0000			0.0000	0.0000			0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0272	0.0132	0.2404	$\begin{gathered} 1.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{aligned} & 6.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		116.3631	116.3631	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$		116.3995
Total	0.0272	0.0132	0.2404	$\begin{gathered} 1.1700 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{aligned} & 6.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		116.3631	116.3631	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$		116.3995

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.4952					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1179	0.7577	1.7943	${ }^{2.97700 e-}$		${ }^{9.90000-}$	$9.9000 \mathrm{e}-$		${ }^{9.90000}$	${ }^{9.9000-}$	0.0000	281.4481	281.4481	0.0104		281.7081
Total	${ }^{3.6131}$	0.7577	1.7943	$\underset{003}{2.9700 \mathrm{e}-}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$9.9000 \mathrm{e}-$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$9.90000 \mathrm{e}-$	0.0000	281.4481	281.4481	0.0104		281.7081

LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Summer

3.6 Architectural Coating - 2037
 Mitigated Construction Off-Site

4.0 Operational Detail - Mobile

[^20]4.2 Trip Summary Information
4.3 Trip Type Information
LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Summer

5.0 Energy Detail

Historical Energy Use: N
5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
NaturalGas Mitigated	0.0672	0.6111	0.5133	$\begin{gathered} 3.6700 \mathrm{e}- \\ 003 \end{gathered}$		0.0464	0.0464		0.0464	0.0464		733.3203	733.3203	0.0141	0.0134	737.6781
NaturalGas Unmitigated	0.0672	0.6111	0.5133	$\begin{gathered} 3.6700 \mathrm{e}- \\ 003 \end{gathered}$		0.0464	0.0464		0.0464	0.0464		733.3203	733.3203	0.0141	0.0134	737.6781

5.2 Energy by Land Use - NaturalGas
Unmitigated
5.2 Energy by Land Use - NaturalGas
Unmitigated

Mitigated
Land Use
Junior College
${ }_{(2 \mathrm{Yr})}^{\text {Junior }}$ - Other Non- Asphalt Surface Total
6.1 Mitigation Measures Area

Migated
-

6.0 Area Detail
6.2 Area by SubCategory

Unmitigated

7.0 Water Detail
7.1 Mitigation Measures Water
8.1 Mitigation Measures Waste

9.0 Operational Offroad

8.0 Waste Detail

Equipment Type
10.0 Stationary Equipment

Fire Pumps and Emergency Generators
Date: 11/26/2018 11:04 AM
Page 28 of 28
CalEEMod Version: CaIEEMod.2016.3.2 Pa
LBCC LA

11.0 Vegetation
1.0 Project Characteristics
CaIEEMod Version: CaIEEMod.2016.3.2
LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Winter

LBCC LAC Year 2041 (2036-2041 Construction)
 LBCC LAC Year 2041 (2036-2041 Construction)

Los Angeles-South Coast County, Winter
Page 1 of 28
1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	7,458.00	Student	1.02	84,015.00	0
Other Non-Asphalt Surfaces	2.07	Acre	2.07	90,169.20	

[^21]CalEEMod Version: CalEEMod.2016.3.2

LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Winter

Project Characteristics - Opening Year 2041

Land Use - 7,458 student Junior College on 1.02 acre and $84,015 \mathrm{sq} \mathrm{ft}$ and 2.07 -acres Other Non-Asphalt Surfaces.

Construction Phase - 20 days Demo, 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving. Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.
Demolition - Demolition of 15,968 SF of building space.
Grading -
Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA. Swimming pool is not anticipated to generate any trips. Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsite and connecting offsite

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	18.00	230.00
tbiconstructionPhase	NumDays	8.00	20.00
tbiConstructionPhase	NumDays	18.00	20.00
tbiConstructionPhase	PhaseEndDate	7/16/2037	6/12/2037
tbiconstructionPhase	PhaseEndDate	5/27/2037	6/12/2037
tbiconstructionPhase	PhaseEndDate	799/2036	7/27/2036
tbiConstructionPhase	PhaseEndDate	6/22/2037	7/10/2037
tbiConstructionPhase	PhaseStarto---7ate	6/23/2037	7/28/2036
tbiconstructionPhase	PhaseStartorate	7/10/2036	7/28/2036
tbiconstructionPhase	PhaseStarto---7e	5/28/2037	6/13/2037
tbiLanduse	LandusesquareFeet	325,558.38	$84,015.00$
tbilanduse	LotAcreage	7.47	1.02
tbiTripsAndVı	VendorTripNumber	0.00	6.00
	VendororripNumber	0.00	6.00
tblvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary
2.1 Overall Construction (Maximum Daily Emission)
Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	1b/day										lb/day					
2036	5.0672	9.8696	19.7680	0.0512	6.7584	0.2287	6.9151	3.4230	0.2286	3.5797	0.0000	${ }^{4,912.094} 7$	${ }_{7}^{4,912.094}$	0.1878	0.0000	${ }_{4}^{4,916.790}$
2037	5.0672	9.8696	19.7680	0.0470	1.1693	0.1548	1.2754	0.3143	0.1548	0.4200	0.0000	4,538.488	4,538.488	0.1633	0.0000	$\underset{2}{4,542.572}$
Maximum	5.0672	9.8696	19.7680	0.0512	6.7584	0.2287	6.9151	3.4230	0.2286	3.5797	0.0000	$\begin{array}{\|c} \hline 4,912.094 \\ 7 \end{array}$	$\begin{array}{\|c\|} \hline 4,912.094 \\ 7 \end{array}$	0.1878	0.0000	$\begin{gathered} 4,916.790 \\ 4 \end{gathered}$

Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										1b/day					
2036	5.0672	9.8696	19.7680	0.0512	2.7615	0.2287	2.9182	1.3689	0.2286	1.5255	0.0000	$\begin{gathered} 4,912.094 \\ 7 \end{gathered}$	$\begin{aligned} & 4,912.094 \\ & 7 \end{aligned}$	0.1878	0.0000	$\begin{gathered} 4,916.790 \\ 4 \end{gathered}$
2037	5.0672	9.8696	19.7680	0.0470	1.1693	0.1548	1.2754	0.3143	0.1548	0.4200	0.0000	$\begin{gathered} -5,538.488 \\ 8 \end{gathered}$	8	0.1633	0.0000	$\begin{gathered} 4,542.572 \\ 2 \end{gathered}$
Maximum	5.0672	9.8696	19.7680	0.0512	2.7615	0.2287	2.9182	1.3689	0.2286	1.5255	0.0000	$\begin{array}{\|c} \hline 4,912.094 \\ 7 \end{array}$	$\begin{array}{\|c\|} \hline 4,912.094 \\ 7 \end{array}$	0.1878	0.0000	$\begin{gathered} 4,916.790 \\ 4 \end{gathered}$

CalEEMod Version：CalEEMod．2016．3．2 Page 4 of $28 \quad$ Date：11／26／2018 11：04 AM

ััٌ	\bigcirc
\％ั	¢
꼬́	\bigcirc
	\bigcirc
	\bigcirc
$\begin{array}{\|c} \hline \stackrel{O}{O} \\ \dot{\partial} \\ \dot{\omega} \end{array}$	\bigcirc
枵景	$\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & i n \end{aligned}\right.$
	\bigcirc
	¢
을 ${ }^{\text {¢ }}$	¢
	${ }_{0}$
	尔
\％̀	\％
\bigcirc	\bigcirc
$\stackrel{\text { ¢ }}{2}$	\bigcirc
\|o	$\stackrel{\square}{\circ}$

Unmitigated Operational
Mitigated Operational

$$
\text { LBCC LAC Year } 2041 \text { (2036-2041 Construction) - Los Angeles-South Coast County, Winter }
$$

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	9.28	8.70	18.59	21.05	22.81	16.72	22.79	22.81	16.52	22.71	0.00	20.85	20.85	18.31	0.00	20.85

3.0 Construction Detail

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	:Demolition	6/1/2036	;6/27/2036		20	
2	Grading	;Grading	6/28/2036	17/27/2036	5	20	
3	Building Construction	Building Construction	7/28/2036	6/12/2037	5	230	
4	Paving	:Paving	16/13/2037	17/10/2037		20	
5	Architectural Coating	Architectural Coating	:7/28/2036	:6/12/2037	5	230	

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	:Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	: Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Grading	:Excavators	1	8.00	158	0.38
Grading	:Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	-Tractors/Loaders/Backhoes	3	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	:Forklifts	3	8.00	89	0.20
Building Construction	:Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	:Welders	1	8.00	46	0.45
Paving	Cement and Mortar Mixers	2	6.00	9	0.56
Paving	P---7-	1	8.00	130	0.42
Paving	Paving Equipment	2	6.00	132	0.36
Paving	Roillers	2	6.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Architectural Coating	Air Compressors	$1:$	6.00:	78:	0.48

Trips and VMT
CalEEMod Version: CalEEMod.2016.3.2
3.1 Mitigation Measures Construction

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust					0.3065	0.0000	0.3065	0.0464	0.0000	0.0464			0.0000			0.0000
Oift-Road	1.8311	6.9070	18.7067	0.0462		0.2267	0.2267		0.2267	0.2267	0.0000	${ }^{4,378.581}$	4	0.1599		$4,382.579$
Total	${ }^{1.8311}$	6.9070	18.7067	0.0462	0.3065	0.2267	0.5332	0.0464	0.2267	0.2732	0.0000	$\stackrel{4,378.581}{ }$	$\underset{9}{4,378.581}$	0.1599		$\underset{5}{4,382.579}$

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0185	0.5303	0.2255	$2.5100 \mathrm{e}-$ 003	0.0639	$9.2000 \mathrm{e}-$ 004	0.0648	0.0175	$\begin{gathered} 8.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0184		275.6516	275.6516	0.0189		276.1241
Vendor	0.0112	0.3859	0.1219	$\begin{gathered} 1.3800 \mathrm{e}- \\ 003 \end{gathered}$	0.0384	$\begin{aligned} & 4.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0388	0.0111	$\begin{gathered} 3.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0115		148.3466	148.3466	7.6700 e 003		148.5383
Worker	0.0312	0.0146	0.2159	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{aligned} & 6.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		109.5146	109.5146	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		109.5484
Total	0.0609	0.9307	0.5633	$\begin{gathered} 4.9900 \mathrm{e}- \\ 003 \end{gathered}$	0.2699	$\begin{gathered} 1.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.2719	0.0730	$\begin{gathered} 1.8600 \mathrm{e}- \\ 003 \end{gathered}$	0.0749		533.5128	533.5128	0.0279		534.2109

3.3 Grading - 2036

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Oift-Road	1.4619	5.9823	14.3296	0.0363		0.1557	0.1557		0.1557	0.1557		${ }^{3,439.720}$	3,439.720	0.1282		${ }^{3,442.925}$
Total	1.4619	5.9823	14.3296	0.0363	${ }^{6.5523}$	0.1557	6.7080	3.3675	0.1557	3.5231		${ }^{3,439.720}$	3,439.720	0.1282		${ }^{3,442.925}$

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										lb/day					
Fugitive Dust					2.5554	0.0000	2.5554	1.3133	0.0000	1.3133			0.0000			0.0000
Off-Road	1.4619	5.9823	14.3296	0.0363		0.1557	0.1557		0.1557	0.1557	0.0000	${ }^{3,439.720}$	${ }^{3,439.720}$	0.1282		$3,442.925$
Total	1.4619	5.9823	14.3296	0.0363	2.5554	0.1557	2.7111	1.3133	0.1557	1.4690	0.0000	(${ }^{3,439.720}$	$\underset{1}{3,439.720}$	0.1282		$\underset{9}{3,442.925}$

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0112	0.3859	0.1219	$\begin{aligned} & 1.3800 \mathrm{e}- \\ & 003 \end{aligned}$	0.0384	$\begin{gathered} 4.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0388	0.0111	$\begin{gathered} 3.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0115		148.3466	148.3466	$7.6700 \mathrm{e}-$ 003		148.5383
Worker	0.0312	0.0146	0.2159	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		109.5146	109.5146	$\begin{gathered} 1.3500-- \\ 003 \end{gathered}$		109.5484
Total	0.0424	0.4005	0.3378	$\begin{gathered} 2.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.2061	$\begin{gathered} 1.0600 \mathrm{e}- \\ 003 \end{gathered}$	0.2071	0.0555	$\begin{gathered} 9.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0565		257.8612	257.8612	$\begin{gathered} 9.0200 \mathrm{e}- \\ 003 \end{gathered}$		258.0868

3.4 Building Construction-2036

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904		$\begin{aligned} & 2,897.546 \\ & 8 \end{aligned}$	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	0.1079		$\begin{array}{\|c} \hline 2,900.244 \\ 8 \end{array}$
Total	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904		$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	0.1079		$\begin{array}{\|c\|} \hline 2,900.244 \\ 8 \end{array}$

LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Winter
3.4 Building Construction-2036

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling			0.0000	0.0000				0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0541	1.8651	0.5894	$\begin{gathered} 6.6600- \\ 003 \end{gathered}$	0.1857	$\begin{gathered} 1.9900 \mathrm{e}- \\ 003 \end{gathered}$	0.1877	0.0535	$\begin{aligned} & 1.9000 \mathrm{e}- \\ & 003 \end{aligned}$	0.0554		717.0086	717.0086	0.0371		717.9353
Worker	0.1520	0.0709	1.0506	$\begin{gathered} 5.3400 \mathrm{e} \\ 003 \end{gathered}$	0.8160	$\begin{gathered} 3.1400 \mathrm{e} \\ 003 \end{gathered}$	0.8191	0.2164	$\begin{gathered} 2.8900 \mathrm{e}- \\ 003 \end{gathered}$	0.2193		532.9708	532.9708	$\begin{gathered} 6.5900 \mathrm{e}- \\ 003 \end{gathered}$		533.1357
Total	0.2061	1.9360	1.6400	0.0120	1.0017	$\begin{gathered} 5.1300 e- \\ 003 \end{gathered}$	1.0068	0.2699	$\begin{gathered} 4.7900 \mathrm{e}- \\ 003 \end{gathered}$	0.2747		$\begin{gathered} 1,249.979 \\ 5 \end{gathered}$	$\begin{array}{\|c} \hline 1,249.979 \\ 5 \end{array}$	0.0437		$\begin{gathered} 1,251.071 \\ 0 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904	0.0000	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	0.1079		$\begin{gathered} 2,900.244 \\ 8 \end{gathered}$
Total	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904	0.0000	$\begin{array}{\|c} 2,897.546 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	0.1079		$\underset{8}{2,900.244}$

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2. 5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	Ib/day										Ib/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0541	1.8651	0.5894	${ }^{6.66000}$	0.1857	${ }^{1.99000-}$	0.1877	0.0535	$\begin{aligned} & 1.9000 \mathrm{e}- \\ & 003 \end{aligned}$	0.0554		717.0086	717.0086	0.0371		717.9353
Worker	0.1520	0.0709	1.0506	$\begin{aligned} & 5.3400 \mathrm{e}- \\ & 003 \end{aligned}$	0.8160	$\begin{gathered} 3.1400 \mathrm{e}- \\ 003 \end{gathered}$	0.8191	0.2164	$\begin{gathered} 2.8900 \mathrm{e}- \\ 003 \end{gathered}$	0.2193		532.9708	532.9708	$\begin{gathered} 6 .-2903-- \\ 003 \end{gathered}$		533.1357
Total	0.2061	1.9360	1.6400	0.0120	1.0017	${ }^{5.13000-}$	1.0068	0.2699	$\begin{gathered} 4.7900 \mathrm{e}- \\ 003 \end{gathered}$	0.2747		${ }_{5}^{1,249.979}$	${ }_{5}^{1,249.979}$	0.0437		$\underset{0}{1,251.071}$

3.4 Building Construction-2037

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904		${ }^{2,897.546}$	2,897.546	0.1079		${ }_{8}^{2,900.244}$
Total	${ }^{1.2168}$	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904		${ }^{2,897.546}{ }_{8}$	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	0.1079		$\begin{array}{\|c} 2,900.244 \\ 8 \end{array}$

LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Winter
3.4 Building Construction-2037

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling			0.0000	0.0000				0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0541	1.8651	0.5894	$\begin{gathered} 6.6600- \\ 003 \end{gathered}$	0.1857	$\begin{gathered} 1.9900 \mathrm{e}- \\ 003 \end{gathered}$	0.1877	0.0535	$\begin{aligned} & 1.9000 \mathrm{e}- \\ & 003 \end{aligned}$	0.0554		717.0086	717.0086	0.0371		717.9353
Worker	0.1520	0.0709	1.0506	$\begin{gathered} 5.3400 \mathrm{e} \\ 003 \end{gathered}$	0.8160	$\begin{gathered} 3.1400 \mathrm{e} \\ 003 \end{gathered}$	0.8191	0.2164	$\begin{gathered} 2.8900 \mathrm{e}- \\ 003 \end{gathered}$	0.2193		532.9708	532.9708	$\begin{gathered} 6.5900 \mathrm{e}- \\ 003 \end{gathered}$		533.1357
Total	0.2061	1.9360	1.6400	0.0120	1.0017	$\begin{gathered} 5.1300 e- \\ 003 \end{gathered}$	1.0068	0.2699	$\begin{gathered} 4.7900 \mathrm{e}- \\ 003 \end{gathered}$	0.2747		$\begin{gathered} 1,249.979 \\ 5 \end{gathered}$	$\begin{array}{\|c} \hline 1,249.979 \\ 5 \end{array}$	0.0437		$\begin{gathered} 1,251.071 \\ 0 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	1b/day										lb/day					
Off-Road	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904	0.0000	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	$\begin{gathered} 2,897.546 \\ 8 \end{gathered}$	0.1079		$\begin{gathered} 2,900.244 \\ 8 \end{gathered}$
Total	1.2168	7.1613	16.1178	0.0310		0.0904	0.0904		0.0904	0.0904	0.0000	$\begin{array}{\|c} 2,897.546 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 2,897.546 \\ 8 \end{array}$	0.1079		$\underset{8}{2,900.244}$

3.5 Paving-2037

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road		4.7441	13.0737	0.0230		0.1540	0.1540		0.1540	0.1540		${ }_{3}^{2,154.260}$	$\begin{gathered} 2,154.260 \\ 3 \end{gathered}$	0.0885		$\begin{gathered} 2,156.473 \\ 0 \end{gathered}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	${ }^{0.9893}$	4.7441	13.0737	0.0230		0.1540	0.1540		0.1540	0.1540		${ }_{3}^{2,154.260}$	$\begin{array}{\|l\|} \hline 2,154.260 \\ \hline \end{array}$	0.0885		${ }_{0}^{2,156.473}$

3.5 Paving - 2037

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PMotal } \\ \text { Ton } \end{gathered}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.9893	4.7441	13.0737	0.0230		0.1540	0.1540		0.1540	0.1540	0.0000	${ }^{2,154.260}$	${ }^{2,154.260}$	0.0885		${ }^{2,156.473}$
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9893	4.7441	13.0737	0.0230		0.1540	0.1540		0.1540	0.1540	0.0000	${ }_{3}^{2,154.260}$	${ }^{2,154.260}$	0.0885		${ }_{\text {2,156.473 }}^{0}$

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0417	0.0194	0.2879	$\begin{aligned} & 1.4600 \mathrm{e}- \\ & 003 \end{aligned}$	0.2236	$\begin{aligned} & 8.6000 \mathrm{e}- \\ & 004 \end{aligned}$	0.2244	0.0593	$\begin{gathered} 7.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0601		146.0194	146.0194	$\begin{aligned} & 1.8100 \mathrm{e}- \\ & 003 \end{aligned}$		146.0646
Total	0.0417	0.0194	0.2879	$\begin{gathered} 1.4600 \mathrm{e}- \\ 003 \end{gathered}$	0.2236	$\begin{gathered} 8.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.2244	0.0593	$\begin{gathered} 7.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0601		146.0194	146.0194	$\begin{gathered} 1.8100 \mathrm{e}- \\ 003 \end{gathered}$		146.0646

3.6 Architectural Coating - 2036

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.4952					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Oif-Road	0.1179	0.7577	1.7943	${ }^{2.97700 e-}$		${ }^{9.90000-}$	${ }^{9.90000}$		${ }^{9.90000}$	${ }^{9.9000-}$		281.4481	281.4481	0.0104		281.7081
Total	${ }^{3.6131}$	0.7577	1.7943	$2.9700 \mathrm{e}-$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 9.9000 \mathrm{e}- \\ \hline 003 \end{gathered}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$		281.4481	281.4481	0.0104		281.7081

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0312	0.0146	0.2159	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000-- \\ 004 \end{gathered}$	0.0451		109.5146	109.5146	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		109.5484
Total	0.0312	0.0146	0.2159	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		109.5146	109.5146	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		109.5484

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.4952					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1179	0.7577	1.7943	${ }^{2.97700 e-}$		${ }^{9.90000-}$	$9.9000 \mathrm{e}-$		${ }^{9.90000}$	${ }^{9.9000-}$	0.0000	281.4481	281.4481	0.0104		281.7081
Total	${ }^{3.6131}$	0.7577	1.7943	$\underset{003}{2.9700 \mathrm{e}-}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$9.9000 \mathrm{e}-$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$9.90000 \mathrm{e}-$	0.0000	281.4481	281.4481	0.0104		281.7081

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0312	0.0146	0.2159	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000- \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e} \\ 004 \end{gathered}$	0.0451		109.5146	109.5146	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		109.5484
Total	0.0312	0.0146	0.2159	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{gathered} 6.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		109.5146	109.5146	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		109.5484

3.6 Architectural Coating - 2037
 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.4952					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1179	0.7577	1.7943	${ }^{2.97000-}$		$9.9000 \mathrm{e}-$	$9.9000 \mathrm{e}-$		$9.9000 \mathrm{e}-$	$9.9000 \mathrm{e}-$		281.4481	281.4481	0.0104		281.7081
Total	3.6131	0.7577	1.7943	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$9.9000 \mathrm{e}-$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$9.9000 \mathrm{e}-$ 003		281.4481	281.4481	0.0104		281.7081

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Hauling	0.0000				0.0000			0.0000	0.0000			0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0312	0.0146	0.2159	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{aligned} & 6.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		109.5146	109.5146	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		109.5484
Total	0.0312	0.0146	0.2159	$\begin{gathered} 1.1000 \mathrm{e}- \\ 003 \end{gathered}$	0.1677	$\begin{aligned} & 6.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.1683	0.0445	$\begin{gathered} 5.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0451		109.5146	109.5146	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$		109.5484

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Archit. Coating	3.4952					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1179	0.7577	1.7943	${ }^{2.97700 e-}$		${ }^{9.90000-}$	$9.9000 \mathrm{e}-$		${ }^{9.90000}$	${ }^{9.9000-}$	0.0000	281.4481	281.4481	0.0104		281.7081
Total	${ }^{3.6131}$	0.7577	1.7943	$\underset{003}{2.9700 \mathrm{e}-}$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$9.9000 \mathrm{e}-$		$\begin{gathered} 9.9000 \mathrm{e}- \\ 003 \end{gathered}$	$9.90000 \mathrm{e}-$	0.0000	281.4481	281.4481	0.0104		281.7081

3.6 Architectural Coating - 2037
Mitigated Construction Off-Site

4.0 Operational Detail - Mobile

[^22]4.2 Trip Summary Information

4.3 Trip Type Information

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of $28 \quad$ Date: 11/26/2018 11:04 AM
LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Winter
5.0 Energy Detail
Historical Energy Use: N
5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										1b/day					
NaturalGas Mitigated	0.0672	0.6111	0.5133	$\begin{gathered} 3.6700 \mathrm{e}- \\ 003 \end{gathered}$		0.0464	0.0464		0.0464	0.0464		; 733.3203	733.3203	0.0141	0.0134	737.6781
NaturalGas Unmitigated	0.0672	0.6111	0.5133	$\begin{gathered} 3.6700 \mathrm{e}- \\ 003 \end{gathered}$		0.0464	0.0464		0.0464	0.0464		733.3203	733.3203	0.0141	0.0134	737.6781

Unmitigated

Mitigated
Land Use
Junior College
$\underset{(2 \mathrm{Yr})}{\mathrm{Junior}} \mathrm{Colege}$ - Other Non- Asphalt Surface Total
6.0 Area Detail
6.1 Mitigation Measures Area

6.2 Area by SubCategory

Unmitigated

7.0 Water Detail
7.1 Mitigation Measures Water
8.1 Mitigation Measures Waste

9.0 Operational Offroad

8.0 Waste Detail

10.0 Stationary Equipment

Fire Pumps and Emergency Generators
CaIEEMod Version: CalEEMod.2016.3.2 Page 28 of 28 Date: 11/26/2018 11:04 AM

11.0 Vegetation
1.0 Project Characteristics LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Annual LBCC LAC Year 2041 (2036-2041 Construction)
Los Angeles-South Coast County, Annual
CalEEMod Version: CalEEMod.2016.3.2 , Annual
1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	7,458.00	Student	1.02	84,015.00	0
Other Non-Asphalt Surfaces	2.07	Acre	2.07	90,169.20	0

[^23]
Project Characteristics - Opening Year 2041

Land Use - 7,458 student Junior College on 1.02 acre and $84,015 \mathrm{sq} \mathrm{ft}$ and 2.07 -acres Other Non-Asphalt Surfaces.

Construction Phase - 20 days Demo, 20 days Grading, 230 days Building Construction to occur concurrent with 230 days of Painting, 20 days Paving.
Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.
Demolition - Demolition of 15,968 SF of building space.
Grading -
Vehicle Trips - Weekday trip rate of 1.15 trips/day to Junior College obtained from TIA. Swimming pool is not anticipated to generate any trips. Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure $3 \times$ per day selected.
Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsite and connecting offsite

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	18.00	230.00
tbiconstructionPhase	NumDays	8.00	20.00
tbiConstructionPhase	NumDays	18.00	20.00
tbiConstructionPhase	PhaseEndDate	7/16/2037	6/12/2037
tbiconstructionPhase	PhaseEndDate	5/27/2037	6/12/2037
tbiConstructionPhase	PhaseEndDate	799/2036	7127/2036
tbiConstructionPhase	PhaseEndDate	6/22/2037	7/10/2037
tbiConstructionPhase	PhaseStarto---7ate	6/23/2037	7/28/2036
tbiconstructionPhase	PhaseStartorate	7/10/2036	7/28/2036
tbiConstructionPhase	PhaseStartDate	5/28/2037	6/13/2037
tbiLanduse	LandusesquareFeet	325,558.38	$84,015.00$
tbilanduse	LotAcreage	7.47	1.02
tbiTripsAndVı	VendorTripNumber	0.00	6.00
	VendorTripNumber	0.00	6.00
tblvehicleTrips	WD_TR	1.23	1.15

2.0 Emissions Summary

2.1 Overall Construction
Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr										MT/yr					
2036	0.3189	0.7017	1.4572	$\begin{gathered} 3.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.1429	$\begin{gathered} 9.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.1527	0.0536	$\begin{gathered} 9.8200 \mathrm{e}- \\ 003 \end{gathered}$	0.0634	0.0000	311.9634	311.9634	0.0113	0.0000	312.2453
2037	0.3054	0.6268	1.2911	$3.0100 \mathrm{e}-$ 003	0.0693	$7.7500 \mathrm{e}-$ 003	0.0771	0.0187	$\begin{gathered} 7.7300 \mathrm{e} \\ 003 \end{gathered}$	0.0264	0.0000	262.9215	262.9215	$9.4500 \mathrm{e}-$ 003	0.0000	263.1576
Maximum	0.3189	0.7017	1.4572	$\begin{gathered} 3.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.1429	$\begin{gathered} 9.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.1527	0.0536	$\begin{gathered} 9.8200 \mathrm{e}- \\ 003 \end{gathered}$	0.0634	0.0000	311.9634	311.9634	0.0113	0.0000	312.2453

Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr										MT/yr					
2036	0.3189	0.7017	1.4572	$\begin{gathered} 3.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.0981	$\begin{gathered} 9.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.1079	0.0323	$\begin{gathered} 9.8200 \mathrm{e}- \\ 003 \end{gathered}$	0.0421	0.0000	311.9631	311.9631	0.0113	0.0000	312.2450
2037	0.3054	0.6268	1.2911	$\begin{gathered} 3.0100 \mathrm{e}- \\ 003 \end{gathered}$	0.0693	$\begin{gathered} 7.7500 \mathrm{e}- \\ 003 \end{gathered}$	0.0771	0.0187	$\begin{gathered} 7.7300 \mathrm{e}- \\ 003 \end{gathered}$	0.0264	0.0000	262.9213	262.9213	$\begin{gathered} 9.4500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	263.1574
Maximum	0.3189	0.7017	1.4572	$\begin{gathered} 3.5700 \mathrm{e}- \\ 003 \end{gathered}$	0.0981	$\begin{gathered} 9.8500 \mathrm{e}- \\ 003 \end{gathered}$	0.1079	0.0323	$\begin{gathered} 9.8200 \mathrm{e}- \\ 003 \end{gathered}$	0.0421	0.0000	311.9631	311.9631	0.0113	0.0000	312.2450

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
$\begin{aligned} & \text { Percent } \\ & \text { Reduction } \end{aligned}$	0.00	0.00	0.00	0.00	21.10	0.00	19.49	29.45	0.00	23.68	0.00	0.00	0.00	0.00	0.00	0.00
Quarter	Start Date		End Date		Maximum Unmitigated ROG + NOX (tons/quarter)					Maximum Mitigated ROG + NOX (tons/quarter)						
1	6-1-2036		8-31-2036		0.3646					0.3646						
2	9-1-2036		11-30-2036		0.4852					0.4852						
3	12-1-2036		2-28-2037		0.4801					0.4801						
4	3-1-2037		5-31-2037		0.4902					0.4902						
5	6-1-2037		8 8-31-2037		0.1218					0.1218						
			Highest		0.4902					0.4902						

2.2 Overall Operational
 Unmitigated Operational

	ROG	NOX	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM2.5 } \end{gathered}$	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio-CO2	NBio- CO2	Total CO2	CH 4	N2O	CO2e
Category	tons/yr										MT/yr					
Area	0.3583	$\begin{gathered} 8.5000 \mathrm{e} \\ 004 \end{gathered}$	0.0946	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$		$\begin{aligned} & 3.4000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 3.4000 \mathrm{e}- \\ & 004 \end{aligned}$		$\begin{aligned} & 3.4000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 3.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	0.1851	0.1851	$\begin{gathered} 4.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	0.1971
Energy	0.0123	0.1115	0.0937	$6.7000 \mathrm{e}-$ 004		$8.48000-$	$\begin{aligned} & 8.4800 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{gathered} 8.4800 \mathrm{e}- \\ 003 \end{gathered}$	${ }^{8.48000-}$	0.0000	389.6346	389.6346	0.0134	${ }^{4.52000}$	391.3156
Mobile	0.9657	6.619	12.57775	0.0710	7.5876	0.0303	7.6180	2.0334	0.0282	2.0616	0.0000	${ }_{9}^{6,627.713}$	${ }_{9}^{6,627.713}$	0.2539	0.0000	$\begin{array}{c:c} 9,634.06 \end{array}$
Waste						0.0000	0.0000		0.0000	0.0000	276.2890	0.0000	276.2890	16.3282	0.0000	684.4942
Water						0.0000	0.0000		0.0000	0.0000	5.0660	154.6614	159.7274	0.5267	0.0136	176.9502
Total	${ }^{1.3362}$	6.7319	12.7658	0.0717	7.5876	0.0391	7.6268	2.0334	0.0370	2.0705	281.3550	$\begin{array}{\|c} 7,172.195 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline 7,453.550 \\ 0 \end{array}$	17.1227	0.0181	$\begin{array}{\|c} \hline 7,887.019 \\ 0 \end{array}$

3.0 Construction Detail
Construction Phase
Date: 11/26/2018 11:05 AM
Page 6 of 32
LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Annual

$\begin{aligned} & \text { Phase } \\ & \text { Number } \end{aligned}$	Phase Name	Phase Type	Start Date	End Date	Num Days	Num Days	Phase Description
1	:Demolition	:Demolition	16/1/2036	6/27/2036	5	20	
2	:Grading	:Grading	6/28/2036	7/27/2036	5	20	
3	Building Construction	Building Construction	7/28/2036	6/12/2037	5	230	
4	Paving	P----7ing	6/13/2037	7/10/2037	5	20	
5	Architectural Coating	Architectural Coating	:7128/2036	6/12/2037	5	$230:$	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 126,023; Non-Residential Outdoor: 42,008; Striped Parking Area: 5,410 (Architectural Coating - sqft)
OffRoad Equipment

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	$\begin{aligned} & \text { Vendor Trip } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Hauling Trip } \\ & \text { Length } \end{aligned}$	Worker Vehicle Class		
Demolition	'	15.00	6.00	73.00	14.70	6.90	20.00	LD_Mix	;HDT_Mix	HHDT
Grading	6	15.00	6.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	ННСт
Building Construction		73.00	29.00	0.00	14.70	6.90	20.00	L--MM	HDT_Mix	H-¢T
Paving	8	20.00	0.00	0.00	14.70	6.90	20.00	LD-Mix	HDT_Mix	НН̈̈'
Architectural Coating		15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	:HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Demolition - 2036

Unmitigated Construction On-Site

	ROG	N0x	co	So2	(Fugitive	${ }_{\substack{\text { Exhaust } \\ \text { PM10 }}}^{\text {ate }}$	${ }_{\text {PM10 }}^{\text {Tolal }}$	$\pm \begin{gathered}\text { Fugitive } \\ \text { PMM2. }\end{gathered}$	(Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	${ }^{\text {tonsy }}$										MT/yr					
Fugitive Dust					${ }^{7.88009}$	0.0000	7.8600	1.1900e	0.0000	${ }^{1.19000}$	0.0	0.0000	0000	0.0000	0.0000	0.0000
Oif-Road	0.0183	0.069	0.1871	${ }^{4.60000 e}$		2.2.2700e	$\begin{array}{\|l\|l\|} 2.277000 \\ 003 \end{array}$		${ }^{2.2} 2.27000$	$\begin{aligned} & 2.2700 e^{-1} \\ & 0003 \end{aligned}$	0.0000	39.7218	7218	${ }_{\text {coser }}^{1.45000}$	0.0000	3.7988
Total	${ }^{0.0183}$	${ }^{0.06}$	${ }^{0.1871}$	${ }^{4.60000}$	${ }_{\substack{7.8600 \\ 003}}$	${ }_{\text {20, }}^{2.2700}$	${ }^{0.0101}$	${ }_{\substack{1.19000 \\ 003}}$	${ }_{\text {20, }}^{\text {2.2700e- }}$	${ }^{3.4000} 0$	000	${ }^{39.7218}$	39.72	${ }_{\text {cose }}^{1.4500}$	0.0000	${ }^{39.7581}$

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	co2e
Category	tons/yr										MT/yr					
Hauling	$\begin{aligned} & 1.80000-- \\ & 004 \end{aligned}$	$\begin{aligned} & 5.4000 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 2.2100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 3.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 6.3000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$6.4000 \mathrm{e}-$ 004	$\begin{gathered} 1.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 1.80000- \\ 004 \end{gathered}$	0.0000	2.5257	2.5257	$\begin{aligned} & 1.7000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	2.5299
Vendor	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 0 \end{aligned}$	$\begin{gathered} 3.9200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.1700 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 3.80000- \\ & 004 \end{aligned}$	0.0000	$\begin{aligned} & 3.8000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	$1.1000 \mathrm{e}-$	0.0000	1.3670	1.3670	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.3687
Worker	$2.8000 \mathrm{e}-$	$1.5000 \mathrm{e}-$ 004	$\begin{gathered} 2.2300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{array}{r} 1.6400 \mathrm{e}- \\ 003 \end{array}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e} \\ 004 \end{gathered}$	$1.0000 \mathrm{e}-$	$4.4000 \mathrm{e}-$ 004	0.0000	1.0102	1.0102	$\begin{gathered} 1.0000 \mathrm{e} \\ 005 \end{gathered}$	0.0000	1.0705
Total	$\begin{gathered} 5.7000 \mathrm{e}- \\ 004 \end{gathered}$	$9.4700 \mathrm{e}-$	$\begin{gathered} 5.6100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.6500 \mathrm{e} \\ 003 \end{gathered}$	$\begin{aligned} & \hline 2.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & 2.6700 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & \hline 7.2000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & \hline 2.00000 \mathrm{e}- \\ & 005 \end{aligned}$	7.3000e004	0.0000	4.9029	4.9029	$\begin{gathered} 2.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	4.9091

3.3 Grading - 2036

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0655	0.0000	0.0655	0.0337	0.0000	0.0337	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-Road	0.0146	0.0598	0.1433	$3.6000{ }^{\text {3 }}$		$1.5600 \mathrm{e}-$	$1.5600 \mathrm{e}-$		$1.5600 \mathrm{e}-$	$1.5600 \mathrm{e}-$	0.0000	31.2046	31.2046	$1.1600 \mathrm{e}-$	0.0000	31.2337
Total	${ }^{0.0146}$	0.0598	0.1433	$3.6000 \mathrm{e}-$ 004	0.0655	$\begin{gathered} 1.5600 \mathrm{e} \\ 003 \end{gathered}$	0.0671	0.0337	$\begin{aligned} & 1.5600 \mathrm{e}- \\ & 003 \end{aligned}$	${ }^{0.0352}$	0.0000	31.2046	31.2046	$\begin{gathered} 1.1600 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	31.2337

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Fugitive } \\ & \text { PM2. } \end{aligned}$	$\begin{aligned} & \hline \text { Exhaust } \\ & \hline \text { PM2.5 } \end{aligned}$	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0256	0.0000	0.0256	0.0131	0.0000	0.0131	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0146	0.0598	0.1433	${ }^{3.6000-}$		$1.5600 \mathrm{e}-$	$1.5600 \mathrm{e}-$		$\begin{aligned} & 1.5600 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.5600 \mathrm{e} \\ 003 \end{gathered}$	0.0000	31.2046	31.2046	$\begin{aligned} & 1.1600 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	31.2337
Total	${ }^{0.0146}$	0.0598	0.1433	$\begin{gathered} 3.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0256	$\begin{gathered} 1.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.0271	0.0131	$\begin{gathered} 1.5600 \mathrm{e}- \\ 003 \end{gathered}$	0.0147	0.0000	31.2046	31.2046	$\begin{aligned} & 1.1600 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	31.2337

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 3.9200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.1700 \mathrm{e} \\ & 003 \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{aligned} & 3.8000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	$\begin{aligned} & 3.8000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	$\begin{gathered} 1.1000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.3670	1.3670	$\begin{aligned} & 7.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0000	1.3687
Worker	$\begin{aligned} & 2.8000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 1.5000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 2.2300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 1.6400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.6500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	1.0102	1.0102	$\begin{aligned} & 1.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0000	1.0105
Total	$\begin{gathered} 3.9000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.0700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.4000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.0200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.0300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 5.5000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 5.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	2.3772	2.3772	$\begin{aligned} & 8.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0000	2.3792

3.4 Building Construction-2036

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0688	0.4046	0.9107	$\begin{gathered} 1.7500 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	148.5165	148.5165	$\begin{gathered} 5.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	148.6548
Total	0.0688	0.4046	0.9107	$\begin{gathered} 1.7500 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 5.1100 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	148.5165	148.5165	$\begin{gathered} 5.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	148.6548

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{gathered} 2.9800 \mathrm{e}- \\ 003 \end{gathered}$	0.1069	0.0320	$\begin{aligned} & 3.8000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0103	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0104	$\begin{gathered} 2.9800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 3.0900 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	37.3307	37.3307	$1.85000-$ 003	0.0000	37.3770
Worker	$\begin{gathered} 7.6100 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 4.1200- \\ 003 \end{gathered}$	0.0612	$\begin{aligned} & 3.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0452	$\begin{gathered} 1.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0454	0.0120	$\begin{aligned} & 1.6000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0122	0.0000	27.7764	27.7764	$\begin{gathered} 3.4000-- \\ 004 \end{gathered}$	0.0000	27.7850
Total	0.0106	0.1110	0.0932	$\begin{aligned} & 6.9000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0555	$\begin{gathered} 2.9000 \mathrm{e}- \\ 004 \end{gathered}$	0.0558	0.0150	$\begin{gathered} 2.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0153	0.0000	65.1071	65.1071	$\begin{gathered} 2.1900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	65.1620

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0688	0.4046	0.9107	$\begin{gathered} 1.7500 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	148.5163	148.5163	$\begin{aligned} & 5.5300 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	148.6546
Total	0.0688	0.4046	0.9107	$\begin{gathered} 1.7500 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.1100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	148.5163	148.5163	$\begin{gathered} 5.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	148.6546

Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	${ }_{0}^{2.9800 e}$	0.1069	0.0320	${ }^{3.80000} 0$	0.0103	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0104	$\begin{array}{r} 2.9800 \mathrm{e} \\ 003 \end{array}$	$\begin{aligned} & 1.1000 \mathrm{e}- \\ & 004 \end{aligned}$	${ }^{3.09000-}$	0.0000	37.3307	37.3307	${ }^{1.85000}$	0.0000	37.3770
Worker	$\begin{gathered} 7.6100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 4.1200 \mathrm{e}- \\ & 003 \end{aligned}$	0.0612	$\begin{aligned} & 3.1000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0452	$\begin{aligned} & 1.8000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0454	0.0120	$\begin{aligned} & 1.6000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0122	0.0000	27.7764	27.7764	$\begin{aligned} & 3.4000 \mathrm{e} \\ & 004 \end{aligned}$	0.0000	27.7850
Total	0.0106	0.1110	0.0932	$\begin{aligned} & 6.9000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0555	$\begin{aligned} & 2.90000 e_{-}^{2} \\ & \hline 004 \end{aligned}$	0.0558	0.0150	$\begin{aligned} & 2.7000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0153	0.0000	65.1071	65.1071	${ }_{003}^{2.19000-}$	0.0000	65.1620

3.4 Building Construction-2037
 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0712	0.4189	0.9429	$\begin{gathered} 1.8100 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	153.7737	153.7737	$\begin{gathered} 5.7300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	153.9169
Total	0.0712	0.4189	0.9429	$\begin{aligned} & \hline 1.8100 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{aligned} & 5.2900 \mathrm{e}- \\ & 003 \end{aligned}$	${ }_{003}^{5.2900 e^{-}}$		$\underset{003}{5.2900 e^{-}}$	$\begin{aligned} & 5.2900 e^{-} \\ & 003 \end{aligned}$	0.0000	153.7737	153.7737	$\begin{aligned} & 5.7300 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	153.9169

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	$\begin{gathered} 3.0800-1 \\ 003 \end{gathered}$	0.1107	0.0331	$\begin{aligned} & 4.0000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0107	$1.20000-$ 004	0.0108	$\begin{gathered} 3.0900 \mathrm{e}- \\ 003 \end{gathered}$	$1.1000 \mathrm{e}-$ 004	$3.2000 \mathrm{e}-$ 003	0.0000	38.6521	38.6521	${ }^{1.92000-}$	0.0000	38.7001
Worker	$\begin{gathered} 7.8800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.2700-- \\ 003 \end{gathered}$	0.0634	$\begin{gathered} 3.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0468	$\begin{gathered} 1.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0470	0.0124	$\begin{gathered} 1.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0126	0.0000	28.7596	28.7596	$\begin{aligned} & 3.6000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	28.7685
Total	0.0110	0.1150	0.0965	$\begin{gathered} 7.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0575	$\begin{aligned} & 3.0000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0578	0.0155	$\begin{gathered} 2.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0158	0.0000	67.4118	67.4118	$\begin{gathered} 2.2800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	67.4686

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0712	0.4189	0.9429	$\begin{gathered} 1.8100 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	153.7735	153.7735	$\begin{gathered} 5.7300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	153.9167
Total	0.0712	0.4189	0.9429	$\begin{gathered} 1.8100 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.2900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	153.7735	153.7735	$\begin{gathered} 5.7300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	153.9167

Mitigated Construction Off-Site
3.5 Paving - 2037

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	$\begin{aligned} & 9.8900 \mathrm{e}- \\ & 003 \end{aligned}$	0.0474	0.1307	$\begin{gathered} 2.3000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.5400 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 1.54000- \\ & 003 \end{aligned}$	0.0000	19.5431	19.5431	$8.0000 \mathrm{e}-$ 004	0.0000	19.5632
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	${ }^{0.0000}$
Total	$\begin{gathered} 9.89000- \\ 003 \end{gathered}$	0.0474	0.1307	$2.3000 \mathrm{e}-$ 004		$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.5400 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.5400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	19.5431	19.5431	$8.0000 \mathrm{e}-$ 004	0.0000	19.5632

3.5 Paving - 2037

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	$\begin{aligned} & 9.8900 \mathrm{e}- \\ & 003 \end{aligned}$	0.0474	0.1307	$\begin{gathered} 2.3000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 1.5400 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 1.54000- \\ & 003 \end{aligned}$	0.0000	19.5431	19.5431	$8.0000 \mathrm{e}-$ 004	0.0000	19.5632
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	${ }^{0.0000}$
Total	$\begin{gathered} 9.8900 \mathrm{e}- \\ 003 \end{gathered}$	0.0474	0.1307	$2.3000 \mathrm{e}-$ 004		$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 1.5400 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{gathered} 1.5400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.5400 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	19.5431	19.5431	$8.0000 \mathrm{e}-$ 004	0.0000	19.5632

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 3.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.190-\mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.2000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000-- \\ 005 \end{gathered}$	$\begin{aligned} & 5.9000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	1.3469	1.3469	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.3473
Total	$\begin{gathered} 3.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 2.9700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.1900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.2000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 5.9000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	1.3469	1.3469	$\begin{gathered} 2.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.3473

3.6 Architectural Coating - 2036

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio- CO 2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coating	0.1975					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-Road	$6.6600 \mathrm{e}-$ 003	0.0428	0.1014	$1.7000 \mathrm{e}-$		$5.6000 \mathrm{e}-$	$5.6000 \mathrm{e}-$		$5.6000 \mathrm{e}-$	$5.6000 \mathrm{e}-$	0.0000	14.4259	14.4259	$5.3000 \mathrm{e}-$	0.0000	14.4392
Total	0.2041	0.0428	0.1014	$1.7000 \mathrm{e}-$ 004		$\begin{aligned} & 5.6000 \mathrm{e}- \\ & 004 \end{aligned}$	$5.6000 \mathrm{e}-$ 004		$5.6000 \mathrm{e}-$ 004	$5.6000 \mathrm{e}-$ 004	0.0000	14.4259	14.4259	$5.3000 \mathrm{e}-$ 004	0.0000	14.4392

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000		0.0000					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{aligned} & 1.5600 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 8.5000 \mathrm{e} \\ 004 \end{gathered}$	0.0126	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 9.2900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 9.3200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 2.4700 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} -2.5000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	5.7075	5.7075	$\begin{gathered} 7.0000-1 \\ 005 \end{gathered}$	0.0000	-7.7092
Total	$\begin{array}{\|c} 1.5600 \mathrm{e}- \\ 003 \end{array}$	$\begin{aligned} & 8.5000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0126	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{array}{\|c\|} \hline 9.2900 \mathrm{e}- \\ 003 \end{array}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 9.3200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.4700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.5000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	5.7075	5.7075	$\begin{aligned} & 7.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0000	5.7092

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coating	0.1975					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	$6.67000-$ 003	0.0428	0.1014	$1.7000 \mathrm{e}-$ 004		$5.6000 \mathrm{e}-$ 004	$5.6000 \mathrm{e}-$ 004		$5.6000 \mathrm{e}-$ 004	5.6000e-	0.0000	14.4259	14.4259	$5.3000 \mathrm{e}-$	0.0000	14.4392
Total	0.2041	0.0428	0.1014	$\begin{aligned} & 1.7000 \mathrm{e}- \\ & 004 \end{aligned}$		$\begin{gathered} 5.6000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 5.6000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 5.6000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 5.6000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	14.4259	14.4259	$\begin{aligned} & 5.30000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	14.4392

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{aligned} & 1.5600 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 8.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0126	$\begin{aligned} & 6.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} -2.2900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 9.3200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.4700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.5000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	5.7075	5.7075	$\begin{aligned} & 7.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0000	5.7092
Total	$\begin{aligned} & 1.5600 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 8.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0126	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 9.2900 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 9.3200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.4700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.5000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	5.7075	5.7075	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	5.7092

3.6 Architectural Coating - 2037
 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive	Exhaust	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	co2e
Category	tons/yr										MT/yr					
Archit. Coating	0.2045					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
oift-ioad	$\overline{6} .9000 \mathrm{e}-$	0.0443	0.1050	$1.7000 \mathrm{e}-$		$5.8000 \mathrm{e}-$	$5.8000 \mathrm{e}-$		$5.8000 \mathrm{e}-$ 004	$5.8000 \mathrm{e}-$	0.0000	14.9365	14.9365	$\begin{array}{r} 5.5000-9 \\ 004 \end{array}$	0.0000	14.9503
Total	0.2114	0.0443	0.1050	$1.7000 \mathrm{e}-$ 004		$5.8000 \mathrm{e}-$ 004	$5.8000 \mathrm{e}-$ 004		$5.8000 \mathrm{e}-$ 004	$5.8000 \mathrm{e}-$ 004	0.0000	14.9365	14.9365	$5.5000 \mathrm{e}-$ 004	0.0000	14.9503

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \hline \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000		0.0000	0.0000				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 1.6200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0130	$\begin{gathered} 7.0000 \mathrm{e} \\ 005 \end{gathered}$	$\begin{gathered} 9.6200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{aligned} & 9.6500 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{gathered} 2.5500 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} -2.5900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	5.9095	5.9095	$\begin{gathered} 7.0000-1 \\ 005 \end{gathered}$	0.0000	5.9113
Total	$\begin{gathered} 1.6200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 8.8000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0130	$\begin{gathered} 7.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 9.6200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 9.6500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.5500 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 3.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 2.5900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	5.9095	5.9095	$\begin{aligned} & 7.0000 \mathrm{e}- \\ & 005 \end{aligned}$	0.0000	5.9113

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PMi1 } \end{aligned}$	Exhaust	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	C02e
Category	tons/yr										MT/yr					
Archit. Coating	0.2045					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	${ }^{6.90000-}$	0.0443	0.1050	$1.70000-$ 004		5.8000e004	$5.8000{ }^{\text {5 }}$		$5.8000{ }^{\text {coe- }}$	5.8000--	0.0000	14.9365	14.9365	5.5000e-	0.0000	14.9503
Total	0.2114	0.0443	0.1050	$1.7000 \mathrm{e}-$ 004		$5.8000 \mathrm{e}-$ 004	$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 5.8000 \mathrm{e}- \\ 004 \end{gathered}$	$5.8000 \mathrm{e}-$ 004	0.0000	14.9365	14.9365	$\begin{gathered} 5.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	14.9503

3.6 Architectural Coating - 2037
Mitigated Construction Off-Site

4.0 Operational Detail - Mobile

[^24]| | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Category | tons/yr | | | | | | | | | | MT/yr | | | | | |
| Mitigated | 0.8469 | 6.0333 | 10.1765 | 0.0560 | 5.8566 | 0.0241 | 5.8807 | 1.5695 | 0.0224 | 1.5919 | 0.0000 | 5,231.7511 | 5,231.7511! | 0.2065 | 0.0000 | $\begin{gathered} 5,236.912 \\ 8 \end{gathered}$ |
| Unmitigated | 0.9657 | 6.6195 | 12.5775 | 0.0710 | 7.5876 | 0.0303 | 7.6180 | 2.0334 | 0.0282 | 2.0616 | 0.0000 | $\begin{gathered} 6,627.713 \\ 9 \end{gathered}$ | 9 | 0.2539 | 0.0000 | $\begin{gathered} 6,634.061 \\ 9 \end{gathered}$ |

4.2 Trip Summary Information
4.3 Trip Type Information

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM2.5 } \end{gathered}$	$\begin{gathered} \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	: 268.2252	268.2252	0.0111	${ }^{2.29000-}$	269.1848
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	268.2252	268.2252	0.0111	$\begin{gathered} 2.2900 \mathrm{e}- \\ 0 \end{gathered}$	269.1848
Naturalas. $\left.\begin{array}{c}\text { Mitigated }\end{array}\right]$	0.0123	0.1115	0.0937	${ }^{6.70000}$		8.8030	$\begin{gathered} 8.4800 \mathrm{e} \\ 003 \end{gathered}$		$8.48000-$	${ }^{8.4800 e-}$	0.0000	121.4094	121.4094	${ }^{2.33000}$	$\begin{array}{r} 2.23000- \\ 003 \end{array}$	122.1309
- $\begin{aligned} & \text { Nataiualacas } \\ & \text { Unmitigated }\end{aligned}$	0.0123			${ }_{0}^{6.70000}$		8.4800-	$\begin{aligned} & 3.480-e^{-} \\ & 003 \end{aligned}$		8.78000 003	$\begin{gathered} 8.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	: 121.7094	121.4094	${ }^{2.33000}$	$\begin{aligned} & 2.230-0-- \\ & 003 \end{aligned}$	122.1309

CalEEMod Version: CaIEEMod.2016.3.2 LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Annual
5.2 Energy by Land Use - NaturalGas
Unmitigated

Mitigated

	$\begin{array}{\|c\|\|} \hline \text { NaturalGa } \\ \text { s Use } \end{array}$	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2. } \end{aligned}$	$\begin{array}{r} \hline \text { PM2.5 } \\ \text { Total } \end{array}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	tons/yr										MT/yr					
Junior Colleg (2Yr)	$\begin{aligned} & 2.27513 e \\ & +006 \end{aligned}$	0.0123	0.1115	0.0937	$\begin{gathered} 6.7000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} \hline 8.4800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.4800 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 8.4800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	121.4094	121.4094	$\begin{gathered} 2.3300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.2300 \mathrm{e}- \\ 003 \end{gathered}$	122.1309
Other NonAsphalt Surfac		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0123	0.1115	0.0937	$\begin{gathered} 6.7000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} \hline 8.4800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.4800 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 8.4800 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.4800 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	121.4094	121.4094	$\begin{gathered} 2.3300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 2.2300 \mathrm{e}- \\ & 003 \end{aligned}$	122.1309

LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Annual

Unmitigated

Mitigated

6.0 Area Detail
6.1 Mitigation Measures Area

6.2 Area by SubCategory

Unmitigated

7.0 Water Detail
7.1 Mitigation Measures Water
LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Annual

7.2 Water by Land Use

Unmitigated

7.2 Water by Land Use
Mitigated

8.0 Waste Detail
8.1 Mitigation Measures Waste
Category/Year

	Total CO2	CH4	N2O	CO2e
	MT/yr			
Mitigated	276.2890	16.328	0.0000	684.4942
Unimitigated	278.2890	16.328	0.00000	684.4942

LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Annual

8.2 Waste by Land Use
 Unmitigated

Mitigated

9.0 Operational Offroad
10.0 Stationary Equipment
Fire Pumps and Emergency Generators
LBCC LAC Year 2041 (2036-2041 Construction) - Los Angeles-South Coast County, Annual

APPENDIX G

CalEEMod Model Master Plan Annual Printouts

1.0 Project Characteristics
CalEEMod Version: CaIEEMod.2016.3.2

Date: 1/19/2018 3:36 PM

C LAC - Los Angeles-South Coast County, Annual LBCC LAC Los Angeles-South Coast County, Annual
 Page 1 of 40
 L

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Junior College (2Yr)	7,458.00	Student	8.50	702,240.00	0
Other Non-Asphalt Surfaces	10.34	Acre	10.34	450,410.40	0
Recreational Swimming Pool	1.50	1000sqft	2.00	1,500.00	0

1.2 Other Project Characteristics
 $\begin{array}{ll}\text { Urbanization } & \text { Urban } \\ \text { Climate Zone } & 9\end{array}$
 $\begin{array}{ll}\text { Urbanization } & \text { Urban } \\ \text { Climate Zone } & 9\end{array}$

33
2040
0.006

Precipitation Freq (Days)
Operational Year
(lb/MWhr)
N2O Intensity
0.029
2.2

Urbanization	Urban	Wind Speed (m/s)
Climate Zone	9	
Utility Company	Southern California Edison	
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity $(\mathrm{lb} / \mathrm{MWhr})$

Utility Company Southern California Edison

Urbanization	Urban	Wind Speed (m/s)
Climate Zone	9	
Utility Company	Southern California Edison	
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity $(\mathrm{Ib} / \mathrm{MWhr})$

$\underset{\text { (lb/MWhr) }}{\text { CO2 Intensity }}$
(Ib/MWhr)
((Whr)
1.3 User Entered Comments \& Non-Default Data

Land Use-702.24 TSF Junior College, 50,881 SF Recreational Swimming Pool, and 10.34-acres Other Non-Asphalt Surfaces.

Project Characteristics - Opening Year 2041

Construction Phase - 60 days Demo, 120 days Grading, 674 days Building Construction to occur concurrent with 674 days of Painting, 60 days Paving.

> Trips and VMT - To account for water trucks, 6 vendor trips added to Demolition and Grading.
> Demolition-109,156 SF of building space $X 0.046$ tons of debris/SF $=5,021.18$ tons of demolition debris.

Grading

Vehicle Trips
Energy Use -
Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 Minimum Requirements, water exposure 3 x per day selected.

Colum Name

Defaut Value

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	674.00
tbiConstructionPhase	NumDays	370.00	674.00
tbiConstructionPhase	NumDays	20.00	60.00
tbiConstructionPhase	NumDays	35.00	120.00
tbiConstructionPhase	NumDays	20.00	60.00
tbiLanduse	LandUseSquareFeet	325,558.38	702,240.00
tbilanduse	LotAcreage	7.47	8.50
tbilanduse	LotAcreage	0.03	2.00
tbiTripsAndVMT	VendorTripNumber	0.00	6.00
	VendorTripNumber	0.00	6.00
tolvehicleTrips	ST_TR	9.10	0.00
tbiVehicle Trips	sü_TR	13.60	0.00
	WD_TR	1.23	1.15
tolvehicleTrips	WD_TR	33.82	0.00

2.0 Emissions Summary
CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual

2.1 Overall Construction
 Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr										MT/yr					
2018	0.3579	4.0341	2.3862	$\begin{gathered} 4.5000 \mathrm{e}- \\ 003 \end{gathered}$	0.5120	0.1802	0.6921	0.1836	0.1664	0.3500	0.0000	411.9547	411.9547	0.1129	0.0000	414.7768
2019	2.0354	6.3277	6.4863	0.0180	1.1287	0.2216	1.3503	0.3019	0.2087	0.5106	0.0000	1,651.486	1,651.486	0.1555	0.0000	$\begin{gathered} 1,655.372 \\ 5 \end{gathered}$
2020	2.1324	5.7008	6.3117	0.0189	0.9914	0.1805	1.1719	0.2669	0.1706	0.4375	0.0000	1,730.633	1,730.633	0.1402	0.0000	$\begin{gathered} 1,734.139 \\ 1 \end{gathered}$
2021	1.4497	3.9298	4.5252	0.0134	0.6823	0.1227	0.8050	0.1837	0.1154	0.2991	0.0000	1,226.765	${ }_{8}^{1,226.765}$	0.1119	0.0000	$\begin{gathered} 1,229.562 \\ 8 \end{gathered}$
Maximum	2.1324	6.3277	6.4863	0.0189	1.1287	0.2216	1.3503	0.3019	0.2087	0.5106	0.0000	$\begin{array}{\|c\|} \hline 1,730.633 \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline 1,730.633 \\ 2 \end{array}$	0.1555	0.0000	$\begin{gathered} 1,734.139 \\ 1 \end{gathered}$

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	13.49	0.00	11.13	15.71	0.00	9.21	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
$\mathbf{1}$	$\mathbf{6 - 1 - 2 0 1 8}$	$\mathbf{8 - 3 1 - 2 0 1 8}$	1.5584	1.5584
$\mathbf{2}$	$\mathbf{9 - 1 - 2 0 1 8}$	$\mathbf{1 1 - 3 0 - 2 0 1 8}$	2.1315	2.1315
$\mathbf{3}$	$\mathbf{1 2 - 1 - 2 0 1 8}$	$\mathbf{2 - 2 8 - 2 0 1 9}$	2.0258	2.0258
$\mathbf{4}$	$\mathbf{3 - 1 - 2 0 1 9}$	$\mathbf{5 - 3 1 - 2 0 1 9}$	2.1026	2.1026
$\mathbf{5}$	$\mathbf{6 - 1 - 2 0 1 9}$	$\mathbf{8 - 3 1 - 2 0 1 9}$	2.0959	2.0959
$\mathbf{6}$	$\mathbf{9 - 1 - 2 0 1 9}$	$\mathbf{1 1 - 3 0 - 2 0 1 9}$	2.0864	2.0864
$\mathbf{7}$	$\mathbf{1 2 - 1 - 2 0 1 9}$	$\mathbf{2 - 2 9 - 2 0 2 0}$	1.9914	1.9914
$\mathbf{8}$	$\mathbf{3 - 1 - 2 0 2 0}$	$\mathbf{5 - 3 1 - 2 0 2 0}$	1.9489	1.9489

Mitigated Construction

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual

9	$6-1-2020$	$\mathbf{8 - 3 1 - 2 0 2 0}$	1.9431	1.9431
10	$9-1-2020$	$\mathbf{1 1 - 3 0 - 2 0 2 0}$	1.9334	1.8239
11	$\mathbf{1 2 - 1 - 2 0 2 0}$	$\mathbf{2 - 2 8 - 2 0 2 1}$	1.8042	1.8239
12	$\mathbf{3 - 1 - 2 0 2 1}$	$5-31-2021$	1.7992	1.8042
13	$\mathbf{6 - 1 - 2 0 2 1}$	$\mathbf{8 - 3 1 - 2 0 2 1}$	0.2687	1.7992
14	$9-1-2021$	Highest	2.1315	0.2687

2.2 Overall Operational
Unmitigated Operational

	ROG	NOX	co	SO2	$\begin{gathered} \text { Fugitive } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	$\begin{aligned} & \hline \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Area	3.1145	$8.5000 \mathrm{e}-$	0.0947	$\begin{aligned} & 1.00000 e \\ & 005 \end{aligned}$		$\begin{aligned} & 3.4000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{gathered} 3.4000 \mathrm{e} \\ 004 \end{gathered}$		$\begin{gathered} 3.4000 \mathrm{e}- \\ 004 \end{gathered}$	$3.4000 \mathrm{e}-$	0.0000	0.1854	0.1854	$\begin{aligned} & 4.8000 \mathrm{e}- \\ & \hline 004 \end{aligned}$	0.0000	0.1973
Energy	0.1025	0.9322	0.7830	$\begin{gathered} 5.5900 \mathrm{e} \\ 000 \end{gathered}$		0.0709	0.0709		0.0709	0.0709	0.0000	${ }_{6}^{1-256.763}$	${ }_{4}^{3,256.763}$	0.1120	0.0378	$\begin{gathered} 3,270.814 \\ 6 \end{gathered}$
Mobile	0.9657	6.619	12.5775	0.0710	7.5876	0.0303	7.6180	2.0334	0.0282	2.0616	0.0000	$\underset{9}{1-6,627.713}$	$\underset{9}{18,26773}$	0.2539	0.0000	1
Waste						0.0000	0.0000		0.0000	0.0000	278.0245	0.0000	278.0245	16.4308	0.0000	688.7940
Water						0.0000	0.0000		0.0000	0.0000	5.0942	155.2219	160.3161	0.5296	0.0137	177.6334
Total	4.1827	7.5525	13.4553	0.0766	7.5876	0.1015	7.6891	2.0334	0.0994	${ }^{2.1328}$	283.1187	$10,039.88$ 46	${ }^{10,323.00}$	17.3268	0.0514	$\begin{array}{\|c} 10,771.50 \\ 13 \end{array}$

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
2.2 Overall Operational
Mitigated Operational

3.0 Construction Detail
Construction Phase
Date: 1/19/2018 3:36 PM
Page 7 of 40

CalEEMod Version: CalEEMod.2016.3.2

$\begin{aligned} & \hline \text { Phase } \\ & \text { Number } \end{aligned}$	Phase Name	Phase Type	Start Date	End Date	$\begin{gathered} \text { Num Days } \\ \text { Week } \end{gathered}$	Num Days	Phase Description
1	Demolition	:Demolition	6/1/2018	8/23/2018	5	60	
2	Grading	:Grading	8/24/2018	2/712019	5	120	
3	Building Construction	:Building Construction	2/8/2019	9/8/2021	5	674	
4	Architectural Coating	:Architectural Coating	2/8/2019	9/8/2021	5	674	
5	Paving	:Paving	9/9/2021	:12/1/2021	5	60	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): $\mathbf{3 0 0}$

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,129,682; Non-Residential Outdoor: 376,561; Striped Parking Area: 27,025 (Architectural Coating - sqft)
OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	:Concrete/Industrial Saws	1	8.00	81'	0.73
Demolition	:Excavators	3	8.00	158!	0.38
Demolition	Rubber Tired Dozers	2	8.00	247:	0.40
Grading	:Excavators	2	8.00	158!	0.38
Grading	:Graders	1	8.00	187:	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367:	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97:	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	:Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97,	0.37
Building Construction	Welders	1	8.00	46	0.45
Ärchitectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Pavers	2	8.00	130!	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	$2:$	8.00	80	0.38

LBCC LAC - Los Angeles-South Coast County, Annual

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	6.00	496.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Grading	8	20.00	6.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Building Constructio	9	485.00	189.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Architectural Coatin		97.00	0.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	14.70	6.90	20.00	D_Mix	HDT_Mix	HHDT

CalEEMod Version: CalEEMod.2016.3.2
3.1 Mitigation Measures Construction
Water Exposed Area
3.2 Demolition - 2018
Unmitigated Construction On-Site
LBCC LAC - Los Angeles-South Coast County, Annual
Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\underset{\text { PM10 }}{\text { Total }}$	Fugitive PM2.5	Exhaust	$\underset{\substack{\text { PM2.5 } \\ \text { Total }}}{ }$	Bio- CO2	NBio- CO 2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0537	0.0000	0.0537	$8.1300 \mathrm{e}-$	0.0000	$\begin{aligned} & 8.1300 \mathrm{e} \\ & 000 \end{aligned}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.1116	1.1497	0.669	${ }^{1.16000}$		0.0582	0.0582		0.0541	0.0541	0.0000	105.3722	105.3722	0.0290	0.0000	106.0980
Total	0.1116	1.1497	0.6691	$\begin{aligned} & 1.1600 \mathrm{e}- \\ & 003 \end{aligned}$	0.0537	0.0582	0.1119	$\begin{gathered} 8.1300 \mathrm{e}- \\ 003 \end{gathered}$	0.0541	0.0623	0.0000	105.3722	105.3722	0.0290	0.0000	106.0980

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
3.2 Demolition - 2018
Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dus					0.0210	0.0000	0.0210	${ }^{3.17000-}$	0.0000	$\begin{aligned} & 3.1700 \mathrm{e}- \\ & \hline 003 \end{aligned}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.1116	1.1497	0.6691	$1.1600 \mathrm{e}-$		0.0582	0.0582		0.0541	0.0541	0.0000	105.3721	105.3721	0.0290	0.0000	106.0979
Total	0.1116	1.1497	0.6691	$\begin{aligned} & 1.1600 \mathrm{e}- \\ & 003 \end{aligned}$	0.0210	0.0582	0.0791	$\begin{aligned} & 3.1700 \mathrm{e}- \\ & 003 \end{aligned}$	0.0541	${ }^{0.0573}$	0.0000	105.3721	105.3721	0.0290	0.0000	106.0979

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
3.3 Grading - 2018
Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{aligned} & \hline \text { PM2.5 } \\ & \text { Total } \end{aligned}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.1701	0.0000	0.1701	0.0661	0.0000	0.0661	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.2342	2.7380	1.6141	$\begin{aligned} & 2.8500 \mathrm{e}- \\ & 003 \end{aligned}$		0.1212	0.1212		0.1115	0.1115	0.0000	260.5828	260.5828	0.0811	0.0000	262.6109
Total	0.2342	2.7380	1.6141	$\begin{aligned} & 2.8500 \mathrm{e}- \\ & \hline 003 \end{aligned}$	0.1701	0.1212	0.2912	0.0661	0.1115	0.1775	0.0000	260.5828	260.5828	0.0811	0.0000	262.6109

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
3.3 Grading - 2019
Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Potal } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dusi					0.0949	0.0000	0.0949	0.0248	0.0000	0.0248	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0663	0.7633	0.4673	${ }^{8.7000 e-}$		0.0334	0.0334		0.0307	0.0307	0.0000	77.9818	77.9818	0.0247	0.0000	78.5986
Total	${ }^{0.0663}$	0.7633	0.4673	$\begin{gathered} 8.7000 \mathrm{e}- \\ 004 \end{gathered}$	0.0949	${ }^{0.0334}$	0.1283	0.0248	0.0307	0.0555	0.0000	77.9818	77.9818	0.0247	0.0000	78.5986

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
3.3 Grading - 2019
Mitigated Construction Off-Site

	ROG	NOX	co	SO2	$\begin{gathered} \hline \text { Fugitive } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust PM2.5	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	${ }^{3.6000 e}$	$\begin{gathered} 9.9200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 2.7100 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 2.0000 \mathrm{e} \\ 005 \end{gathered}$	$5.3000 \mathrm{e}-$	$6.0000 \mathrm{e}-$	$5.9000 \mathrm{e}-$	004 $1.5000 \mathrm{e}-$	$\begin{aligned} & 6.0000 \mathrm{e}- \\ & 0.0 \end{aligned}$	$2.1000 \mathrm{e}-$	0.0000	2.1005	2.1005	${ }^{1.40000}$	0.0000	2.1041
Worker	$\begin{gathered} -2.4000 \mathrm{e} \\ 003 \end{gathered}$	$\begin{gathered} 1.1700 \mathrm{e} \\ 003 \end{gathered}$	0.0127	$\begin{aligned} & \text { 3.0000e-- } \\ & 005 \end{aligned}$	$\begin{gathered} 3.0700 \mathrm{e} \\ 003 \end{gathered}$	$3.0000-$ 005	$3.1000 \mathrm{e}-$ 003	$8.1000 \mathrm{e}-$ 004	$2.0000 \mathrm{e}-$ 005	$8.4000 \mathrm{e}-$ 004	0.0000	2.9494	2.9494	$\begin{gathered} -0.0000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	2.9519
Total	$\begin{gathered} 1.7600 \mathrm{e}- \\ 003 \end{gathered}$	0.0111	0.0154	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$ 005	$\begin{gathered} 3.6000 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 9.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 3.6900 \mathrm{e}- \\ 003 \end{gathered}$	$9.6000 \mathrm{e}-$ 004	$\begin{gathered} 8.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	5.0499	5.0499	$\begin{gathered} 2.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	5.0560

3.4 Building Construction-2019
Unmitigated Construction On-Site

	ROG	NOX	co	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \hline \text { PM10 } \end{aligned}$	$\begin{gathered} \text { PM10 } \\ \text { PTotal } \end{gathered}$	Fugitive PM25	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.2751	2.4557	1.9996	$3.1400 \mathrm{e}-$		0.1503	0.1503		0.1413	0.1413	0.0000	! 273.8964	273.8964	0.0667	0.0000	275.5645
Total	0.2751	2.4557	1.9996	$\begin{gathered} 3.1400 \mathrm{e}- \\ 003 \end{gathered}$		0.1503	0.1503		0.1413	0.1413	0.0000	273.8964	273.8964	0.0667	0.0000	275.5645

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
3.4 Building Construction-2019
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0932	2.6008	0.7113	$\begin{array}{r} 5.6900 \mathrm{e}- \\ 003 \end{array}$	0.1387	0.0164	0.1551	0.0400	0.0157	0.0557	0.0000	550.6046	550.6046	0.0368	0.0000	551.5234
Worker	0.2830	0.2359	2.5652	$\begin{gathered} 6.5900 \mathrm{e} \\ 003 \end{gathered}$	0.6192	$\begin{gathered} 5.4500 \mathrm{e} \\ 003 \end{gathered}$	0.6246	0.1645	$\begin{gathered} 5.0200 \mathrm{e}- \\ 003 \end{gathered}$	0.1695	0.0000	595.1732	595.1732	0.0205	0.0000	595.6849
Total	0.3762	2.8367	3.2765	0.0123	0.7578	0.0218	0.7797	0.2045	0.0207	0.2252	0.0000	$\begin{array}{\|c\|} \hline 1,145.777 \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline 1,145.777 \\ 8 \end{array}$	0.0572	0.0000	$\begin{gathered} 1,147.208 \\ 2 \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.2751	2.4557	1.9996	$\begin{aligned} & 3.1400 \mathrm{e}- \\ & 003 \end{aligned}$		0.1503	0.1503		0.1413	0.1413	0.0000	273.8961	273.8961	0.0667	0.0000	275.5642
Total	0.2751	2.4557	1.9996	$\begin{gathered} 3.1400 \mathrm{e}- \\ 003 \end{gathered}$		0.1503	0.1503		0.1413	0.1413	0.0000	273.8961	273.8961	0.0667	0.0000	275.5642

3.4 Building Construction - 2019
 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0932	2.6008	0.7113	$5.6900 \mathrm{e}-$	0.1387	0.0164	0.1551	0.0400	0.0157	0.0557	0.0000	550.6046	550.6046	0.0368	0.0000	551.5234
	0.2830	0.2359	2.5652	$\begin{gathered} 6.5900 \mathrm{e}- \\ 003 \end{gathered}$	0.6192	$\begin{aligned} & 5.4500 \mathrm{e}- \\ & 003 \end{aligned}$	0.6246	0.1645	$\begin{gathered} 5.0200 \mathrm{e} \\ 003 \end{gathered}$	0.1695	0.0000	595.1732	595.1732	0.0205	0.0000	595.6849
Total	0.3762	2.8367	3.2765	0.0123	0.7578	0.0218	0.7797	0.2045	0.0207	0.2252	0.0000	$\begin{array}{\|c\|} \hline 1,145.777 \\ 8 \end{array}$	$\begin{gathered} 1,145.777 \\ 8 \end{gathered}$	0.0572	0.0000	$\begin{gathered} 1,147.208 \\ 2 \end{gathered}$

3.4 Building Construction-2020
Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.2777	2.5134	2.2072	$\begin{gathered} 3.5300 \mathrm{e}- \\ 003 \end{gathered}$		0.1463	0.1463		0.1376	0.1376	0.0000	303.4091	303.4091	0.0740	0.0000	305.2596
Total	0.2777	2.5134	2.2072	$\begin{gathered} 3.5300 \mathrm{e}- \\ 003 \end{gathered}$		0.1463	0.1463		0.1376	0.1376	0.0000	303.4091	303.4091	0.0740	0.0000	305.2596

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
3.4 Building Construction - 2020
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0898	2.6830	0.7263	$\begin{gathered} 6.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.1560	0.0125	0.1684	0.0450	0.0119	0.0570	0.0000	615.0784	615.0784	0.0391	0.0000	616.0555
Worker	0.2933	0.2365	2.6153	$\begin{gathered} 7.1800 \mathrm{e} \\ 003 \end{gathered}$	0.6962	$\begin{gathered} 5.9400 \mathrm{e} \\ 003 \end{gathered}$	0.7022	0.1849	$\begin{gathered} 5.4700 \mathrm{e} \\ 003 \end{gathered}$	0.1904	0.0000	648.9151	648.9151	0.0205	0.0000	649.4263
Total	0.3831	2.9195	3.3416	0.0135	0.8522	0.0184	0.8706	0.2299	0.0174	0.2473	0.0000	$\begin{array}{\|c\|} 1,263.993 \\ 5 \end{array}$	$\left.\begin{gathered} 1,263.993 \\ 5 \end{gathered} \right\rvert\,$	0.0595	0.0000	$\begin{gathered} 1,265.481 \\ \hline \end{gathered}$

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.2777	2.5134	2.2072	$\begin{gathered} 3.5300 \mathrm{e}- \\ 003 \end{gathered}$		0.1463	0.1463		0.1376	0.1376	0.0000	303.4087	303.4087	0.0740	0.0000	305.2592
Total	0.2777	2.5134	2.2072	$\begin{gathered} 3.5300 \mathrm{e}- \\ 003 \end{gathered}$		0.1463	0.1463		0.1376	0.1376	0.0000	303.4087	303.4087	0.0740	0.0000	305.2592

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0898	2.6830	0.7263	$6.3500 \mathrm{e}-$ 003	0.1560	0.0125	0.1684	0.0450	0.0119	0.0570	0.0000	615.0784	615.0784	0.0391	0.0000	616.0555
Worker	0.2933	0.2365	2.6153	$7.1800 \mathrm{e}-$ 003	0.6962	$5.9400 \mathrm{e}-$ 003	0.7022	0.1849	$5.4700 \mathrm{e}-$ 003	0.1904	0.0000	648.9151	648.9151	0.0205	0.0000	649.4263
Total	0.3831	2.9195	3.3416	0.0135	0.8522	0.0184	0.8706	0.2299	0.0174	0.2473	0.0000	$\begin{array}{\|c\|} \hline 1,263.993 \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline 1,263.993 \\ 5 \end{array}$	0.0595	0.0000	$\begin{array}{\|c} \hline 1,265.481 \\ 8 \end{array}$

3.4 Building Construction-2021
 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.1701	1.5602	1.4835	$\begin{gathered} 2.4100 \mathrm{e}- \\ 003 \end{gathered}$		0.0858	0.0858		0.0807	0.0807	0.0000	207.3154	207.3154	0.0500	0.0000	208.5658
Total	0.1701	1.5602	1.4835	$\begin{gathered} 2.4100 \mathrm{e}- \\ 003 \end{gathered}$		0.0858	0.0858		0.0807	0.0807	0.0000	207.3154	207.3154	0.0500	0.0000	208.5658

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
3.4 Building Construction-2021
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0525	1.6694	0.4526	$\begin{gathered} 4.3000 \mathrm{e}- \\ 003 \end{gathered}$	0.1066	$3.4000 \mathrm{e}-1$ 003	0.1100	0.0308	$3.25000-$ 003	0.0340	0.0000	416.9613	416.9613	0.0256	0.0000	417.6007
Worker	0.1868	0.1454	1.6415	$\begin{gathered} 4.7500 \mathrm{e}- \\ 003 \end{gathered}$	0.4757	3.9200 e 003	0.4796	0.1263	$\begin{gathered} 3.6100 \mathrm{e}- \\ 003 \end{gathered}$	0.1300	0.0000	429.2642	429.2642	0.0126	0.0000	429.5800
Total	0.2393	1.8148	2.0941	$\begin{gathered} 9.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.5822	$\begin{gathered} 7.3200 \mathrm{e}- \\ 003 \end{gathered}$	0.5895	0.1571	$\begin{gathered} 6.8600 \mathrm{e}- \\ 003 \end{gathered}$	0.1640	0.0000	846.2255	846.2255	0.0382	0.0000	847.1806

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.1701	1.5602	1.4835	$\begin{gathered} 2.4100 \mathrm{e}- \\ 003 \end{gathered}$		0.0858	0.0858		0.0807	0.0807	0.0000	207.3151	207.3151	0.0500	0.0000	208.5655
Total	0.1701	1.5602	1.4835	$\begin{gathered} 2.4100 \mathrm{e}- \\ 003 \end{gathered}$		0.0858	0.0858		0.0807	0.0807	0.0000	207.3151	207.3151	0.0500	0.0000	208.5655

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
3.4 Building Construction-2021
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0525	1.6694	0.4526	$\begin{gathered} 4.3000 \mathrm{e}- \\ 003 \end{gathered}$	0.1066	$\begin{gathered} 3.4000 \mathrm{e}- \\ 003 \end{gathered}$	0.1100	0.0308	$\begin{gathered} 3.2500 \mathrm{e}- \\ 003 \end{gathered}$	0.0340	0.0000	416.9613	416.9613	0.0256	0.0000	417.6007
Worker	0.1868	0.1454	1.6415	$\begin{gathered} 4.7500 \mathrm{e}- \\ 003 \end{gathered}$	0.4757	$\begin{gathered} 3.9200 \mathrm{e} \\ 003 \end{gathered}$	0.4796	0.1263	$\begin{gathered} 3.6100-- \\ 003 \end{gathered}$	0.1300	0.0000	429.2642	429.2642	0.0126	0.0000	429.5800
Total	0.2393	1.8148	2.0941	$\begin{gathered} 9.0500 \mathrm{e}- \\ 003 \end{gathered}$	0.5822	$\begin{gathered} 7.3200 \mathrm{e}- \\ 003 \end{gathered}$	0.5895	0.1571	$\begin{gathered} 6.8600 \mathrm{e}- \\ 003 \end{gathered}$	0.1640	0.0000	846.2255	846.2255	0.0382	0.0000	847.1806

3.5 Architectural Coating - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Archit. Coating	1.2284					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0310	0.2138	0.2145	$\begin{gathered} 3.5000 \mathrm{e} \\ \hline 004 \end{gathered}$		0.0150	0.0150		0.0150	0.0150	0.0000	29.7454	29.7454	$\begin{gathered} 2.5100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	29.8082
Total	1.2594	0.2138	0.2145	$\begin{aligned} & 3.5000 \mathrm{e}- \\ & 004 \end{aligned}$		0.0150	0.0150		0.0150	0.0150	0.0000	29.7454	29.7454	$\begin{gathered} 2.5100 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	29.8082

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual

3.5 Architectural Coating - 2019

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{aligned} & \hline \text { PM2.5. } \\ & \text { Total } \end{aligned}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Archit. Coating	1.2284					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oif-Road	0.0310	0.2138	0.2145	$3.5000 \mathrm{e}-$		0.0150	0.0150		0.0150	0.0150	0.0000	29.7454	29.7454	$2.5100 \mathrm{e}-$	0.0000	29.8082
Total	1.2594	0.2138	0.2145	$\begin{gathered} 3.5000 \mathrm{e}- \\ 004 \end{gathered}$		0.0150	0.0150		0.0150	0.0150	0.0000	29.7454	29.7454	$\begin{aligned} & 2.51000 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	29.8082

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
3.5 Architectural Coating - 2019
Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$\begin{gathered} 0.0000 \\ ------\quad . \end{gathered}$	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0566	0.0472	0.5130	$\begin{gathered} 1.3200 \mathrm{e}- \\ 003 \end{gathered}$	0.1238	$1.0900 \mathrm{e}-$ 003	0.1249	0.0329	$\begin{gathered} 1.0000 \mathrm{e}- \\ 003 \end{gathered}$	0.0339	0.0000	, 119.0347	119.0347	$\begin{gathered} 4.0900 \mathrm{e} \\ 003 \end{gathered}$	0.0000	119.1370
Total	0.0566	0.0472	0.5130	$\begin{gathered} 1.3200 \mathrm{e}- \\ 003 \end{gathered}$	0.1238	$\begin{gathered} 1.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.1249	0.0329	$\begin{gathered} 1.0000 \mathrm{e}- \\ 003 \end{gathered}$	0.0339	0.0000	119.0347	119.0347	$\begin{gathered} 4.0900 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	119.1370

3.5 Architectural Coating - 2020
Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	co2e
Category	tons/yr										MT/yr					
Archit. Coating	1.3813					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0317	0.2206	0.2399	$3.9000 \mathrm{e}-$		0.0145	0.0145		0.0145	0.0145	0.0000	33.4476	33.4476	${ }^{2.59003}$	0.0000	33.5124
Total	1.4130	0.2206	0.2399	$3.9000 \mathrm{e}-$ 004		0.0145	0.0145		0.0145	0.0145	0.0000	33.4476	33.4476	$\frac{2.5900 e-}{2003}$	0.0000	33.5124

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \hline \text { Total } \end{aligned}$	Fugitive PM25	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Archit. Coating	1.3813					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-Road	0.0317	0.2206	0.2399	$3.9000 \mathrm{e}-$		0.0145	0.0145		0.0145	0.0145	0.0000	33.4476	33.4476	$2.5900 \mathrm{e}-$	0.0000	33.5123
Total	1.4130	0.2206	0.2399	$\begin{gathered} 3.9000 \mathrm{e}- \\ 004 \end{gathered}$		0.0145	0.0145		0.0145	0.0145	0.0000	33.4476	33.4476	$\begin{aligned} & 2.59000 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	33.5123

3.5 Architectural Coating - 2021
Unmitigated Construction On-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \\ & \text { Pin } \end{aligned}$	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Fugitive } \\ & \hline \text { PM2 } \end{aligned}$	$\begin{array}{l\|} \hline \text { Exhaust } \\ \text { PM2.5 } \end{array}$	$\begin{aligned} & \text { PM2.5 } \\ & \substack{\text { Total }} \end{aligned}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Archit. Coating	0.9437					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0196	0.1367	0.1627	$2.7000 \mathrm{e}-$		$\begin{aligned} & 8.4200 \mathrm{e}- \\ & 003 \end{aligned}$	$8.4200 \mathrm{e}-$		$\begin{aligned} & 8.4200 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & 8.4200 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	22.8516	22.8516	$\begin{aligned} & 1.57000- \\ & 003 \end{aligned}$	0.0000	22.8908
Total	0.9633	0.1367	0.1627	$\begin{aligned} & 2.7000 \mathrm{e}- \\ & 004 \end{aligned}$		$\begin{gathered} 8.4200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & \hline 8.4200 \mathrm{e}- \\ & 003 \end{aligned}$		$\begin{gathered} 8.4200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & \hline 8.4200 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	22.8516	22.8516	$\begin{aligned} & 1.5700 \mathrm{e}- \\ & \hline 003 \end{aligned}$	0.0000	22.8908

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual

3.5 Architectural Coating - 2021

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0374	0.0291	0.3283	$\begin{gathered} 9.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0951	$\begin{gathered} 7.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0959	0.0253	$\begin{gathered} 7.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0260	0.0000	85.8528	85.8528	$\begin{gathered} 2.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	85.9160
Total	0.0374	0.0291	0.3283	$\begin{gathered} 9.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0951	$\begin{gathered} 7.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0959	0.0253	$\begin{gathered} 7.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0260	0.0000	85.8528	85.8528	$\begin{gathered} 2.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	85.9160

Mitigated Construction On-Site

	ROG	NOx	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	Exhaust	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM25	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Archit. Coating	0.9437					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oift-Road	0.0196	0.1367	0.1627	$2.7000 \mathrm{e}-$		$8.42000-$	$\begin{gathered} 8.4200 \mathrm{e}- \\ 003 \end{gathered}$		$\begin{gathered} 8.4200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} -\quad-4200 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	22.8516	22.8516	$\begin{aligned} & 1.5700 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	22.8908
Total	0.9633	0.1367	0.1627	$\begin{aligned} & 2.70000- \\ & 004 \end{aligned}$		$\begin{aligned} & 8.4200 \mathrm{e}- \\ & 003 \end{aligned}$	$8.4200 \mathrm{e}-$		$\begin{aligned} & \hline 8.4200 \mathrm{e}- \\ & 003 \end{aligned}$	$\begin{aligned} & \hline 8.4200 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	22.8516	22.8516	$\begin{aligned} & 1.5700 \mathrm{e}- \\ & 003 \end{aligned}$	0.0000	22.8908

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0374	0.0291	0.3283	$\begin{gathered} 9.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0951	$\begin{gathered} 7.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0959	0.0253	$\begin{gathered} 7.2000 \mathrm{e} \\ 004 \end{gathered}$	0.0260	0.0000	85.8528	85.8528	$\begin{gathered} 2.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	85.9160
Total	0.0374	0.0291	0.3283	$\begin{gathered} 9.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0951	$\begin{aligned} & 7.8000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0959	0.0253	$\begin{gathered} 7.2000 \mathrm{e}- \\ 004 \end{gathered}$	0.0260	0.0000	85.8528	85.8528	$\begin{gathered} 2.5300 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	85.9160

3.6 Paving - 2021
Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0377	0.3876	0.4396	$\begin{aligned} & 6.8000 \mathrm{e}- \\ & 004 \end{aligned}$		0.0203	0.0203		0.0187	0.0187	0.0000	60.0704	60.0704	0.0194	0.0000	60.5561
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0377	0.3876	0.4396	$\begin{aligned} & 6.8000 \mathrm{e}- \\ & 004 \end{aligned}$		0.0203	0.0203		0.0187	0.0187	0.0000	60.0704	60.0704	0.0194	0.0000	60.5561

3.6 Paving - 2021

Unmitigated Construction Off-Site
Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	Exhaust PM2.5	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Off-Road	0.0377	0.3876	0.4396	$\begin{aligned} & 6.8000 \mathrm{e}- \\ & 004 \end{aligned}$		0.0203	0.0203		0.0187	0.0187	0.0000	60.0704	60.0704	0.0194	0.0000	60.5561
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0377	0.3876	0.4396	$\begin{gathered} 6.8000 \mathrm{e}- \\ 004 \end{gathered}$		0.0203	0.0203		0.0187	0.0187	0.0000	60.0704	60.0704	0.0194	0.0000	60.5561

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive	Exhaust	$\begin{aligned} & \text { PM2.5 } \\ & \text { Total } \end{aligned}$	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	$\begin{gathered} 1.9400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.5100 \mathrm{e}- \\ 003 \end{gathered}$	0.0170	$\begin{aligned} & 5.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 4.9300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.9700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.3100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{aligned} & 4.0000 \mathrm{e}- \\ & 005 \end{aligned}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	4.4501	4.4501	$\begin{aligned} & 1.3000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	4.4534
Total	$\begin{gathered} 1.9400 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.5100 \mathrm{e}- \\ 003 \end{gathered}$	0.0170	$\begin{gathered} 5.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.9300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 4.9700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.3100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 4.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.3500 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	4.4501	4.4501	$\begin{gathered} 1.3000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	4.4534

4.0 Operational Detail - Mobile
4.1 Mitigation Measures Mobile
4.2 Trip Summary Information
4.3 Trip Type Information
4.4 Fleet Mix
LBCC LAC - Los Angeles-South Coast County, Annual

Land Use	LDA	LDT1	LDT2	DV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Junior College (2Yr)	0.53719	0.043713	0.21012	0.116181	0.013260	0.00646	0.02	0.03903	0.00277	0.00159	0.0053	0.00	0.0008
Other Non-Asphalt Surfaces	0.53719	0.043713	--210127	0.116181	--013260	0.0064	-0.0227	0.03903	0.00277	0.00159	0.0053	0.00073	
Recreational Swimming Pool	0.537194:	0.043713:	0.210127:	0.116181 :	0.013260	0.006460	0.022765 :	0.039037:	0.002776	0.001599	0.005341	0.000737	0.00

5.0 Energy Detail

Historical Energy Use: N
5.1 Mitigation Measures Energy

	ROG	NOx	co	SO2	Fugitive	$\begin{aligned} & \text { Exhaust } \\ & \text { PM10 } \end{aligned}$	$\begin{aligned} & \hline \text { PM10 } \\ & \begin{array}{l} \text { Total } \end{array} \end{aligned}$	Fugitive	Exhaust	$\begin{gathered} \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Electricity Mitigated							0.0000		0.0000	0.0000	0.0000	: ${ }^{2,241.962}$	$\begin{gathered} 2,241.962 \\ 1 \end{gathered}$	0.0926	0.0192	$\begin{gathered} 2,249.982 \\ 8 \end{gathered}$
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	(2,241.962	${ }_{1}^{2,241.962}$	0.0926	0.0192	$\begin{aligned} & 2,249.982 \\ & 8 \end{aligned}$
$\begin{aligned} & \text { NaturalGas } \\ & \text { Mitigated } \end{aligned}$	0.1025	0.9322	0.7830	$\begin{gathered} 5.5900 \mathrm{e} \\ 0 \end{gathered}$		0.0709	0.0709		0.0709	0.0709	0.0000	${ }^{1-1,014.801}$	${ }_{4}^{1,014.801}$	0.0195	0.0186	$\begin{gathered} 1,020.831 \\ 8 \end{gathered}$
NaturalGas Unmitigated	0.1025	0.9322	0.7830	$5.5900 \mathrm{e}-$		0.0709	0.0709		0.0709	-0.0709	0.0000	${ }^{1,074.801}$	1,014.801	0.0195	0.0186	$\begin{gathered} 1,020.831 \\ 8 \end{gathered}$

CalEEMod Version: CaIEEMod.2016.3.2
LBCC LAC - Los Angeles-South Coast County, Annual
5.2 Energy by Land Use - NaturalGas
Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	tons/yr										MT/yr					
Junior College (2Yr)	$\begin{gathered} 1.90167 e \\ +007 \end{gathered}$	0.1025	0.9322	0.7830	$\begin{gathered} 5.5900 \mathrm{e}- \\ 003 \end{gathered}$		0.0709	0.0709		0.0709	0.0709	0.0000	$\begin{gathered} 1,014.801 \\ 4 \end{gathered}$	1,014.801	0.0195	0.0186	$\begin{gathered} 1,020.831 \\ 8 \end{gathered}$
Other NonAsphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Recreational Swimming Pool		0.0000	0.0000	0.0000	0.0000		0.0000	-0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1025	0.9322	0.7830	$\begin{gathered} 5.5900 \mathrm{e}- \\ 003 \end{gathered}$		0.0709	0.0709		0.0709	0.0709	0.0000	$\begin{gathered} \hline 1,014.801 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1,014.801 \\ 4 \end{array}$	0.0195	0.0186	$\begin{array}{\|c} \hline 1,020.831 \\ 8 \end{array}$

Mitigated

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	$\begin{gathered} \text { PM10 } \\ \text { Total } \end{gathered}$	Fugitive PM2.5	$\begin{gathered} \hline \text { Exhaust } \\ \text { PM2.5 } \end{gathered}$	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	tons/yr										MT/yr					
Junior College (2Yr)	$\begin{aligned} & 1.90167 \mathrm{e} \\ & +007 \end{aligned}$	0.1025	0.9322	0.7830	$\begin{gathered} 5.5900 \mathrm{e}- \\ 003 \end{gathered}$		0.0709	0.0709		0.0709	0.0709	0.0000	1,014.801	$1,014.801$ 4	0.0195	0.0186	$\begin{gathered} 1,020.831 \\ \hline 8 \end{gathered}$
Other NonAsphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Recreational Swimming Pool			0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1025	0.9322	0.7830	$\begin{gathered} 5.5900 \mathrm{e}- \\ 003 \end{gathered}$		0.0709	0.0709		0.0709	0.0709	0.0000	$\begin{array}{\|c\|} \hline 1,014.801 \\ 4 \end{array}$	$\begin{array}{\|c\|} \hline 1,014.801 \\ 4 \end{array}$	0.0195	0.0186	$\begin{gathered} 1,020.831 \\ 8 \end{gathered}$

Page 33 of 40
LBCC LAC - Los Angeles-South Coast County, Annual

CalEEMod Version: CaIEEMod.2016.3.2
5.3 Energy by Land Use - Electricity

Unmitigated

Mitigated

	Electricity	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr	MT/yr			
$\underset{(2 \mathrm{Y} r)}{\substack{\text { Junior College }}}$	$\begin{aligned} & \hline 7.03644 \mathrm{e} \\ & +006 \end{aligned}$	he	0.0926	0.0192	$\begin{gathered} 2,249.982 \\ 8 \end{gathered}$
Other Non Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000
Total		$\text { \| } 2,241.962$	0.0926	0.0192	$\begin{array}{\|c} 2,249.982 \\ 8 \end{array}$

6.0 Area Detail

6.1 Mitigation Measures Area

6.2 Area by SubCategory
Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	$\begin{gathered} \text { Exhaust } \\ \text { PM10 } \end{gathered}$	$\begin{aligned} & \hline \text { PM10 } \\ & \text { Total } \end{aligned}$	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr										MT/yr					
Architectural Coating	0.3553					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	2.7505					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	$\begin{gathered} 8.6700 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.5000 \mathrm{e} \\ 004 \end{gathered}$	0.0947	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 3.4000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 3.4000-- \\ 004 \end{gathered}$		$\begin{aligned} & 3.4000 \mathrm{e}- \\ & 004 \end{aligned}$	$\begin{aligned} & 3.4000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	0.1854	0.1854	$\begin{aligned} & 4.8000 \mathrm{e}- \\ & 004 \end{aligned}$	0.0000	0.1973
Total	3.1145	$\begin{gathered} 8.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0947	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$		$\begin{gathered} 3.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.4000 \mathrm{e}- \\ 004 \end{gathered}$		$\begin{gathered} 3.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 3.4000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	0.1854	0.1854	$\begin{gathered} 4.8000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	0.1973

7.0 Water Detail
7.1 Mitigation Measures Water
Page 36 of 40
LBCC LAC－Los Angeles－South Coast County，Annual

	Total CO2	CH4	N2O	co2e
Calegory	MTyr			
Mitigated	160.3161	0.5296	0.0137	834
Unmitigated				
Unmingaled				

7．2 Water by Land Use
Unmitigated

\％ั๊	Σ		＋
\％			¢
枵			\|ö⿳亠丷⿵冂⿱丷口犬力口
	$\stackrel{\text { ® }}{\text { ¢ }}$		
	（ex		－

8.0 Waste Detail
8.1 Mitigation Measures Waste
Page 38
LBCC LAC - Los Angeles-South Coast County, Annual

Category/Year

8.2 Waste by Land Use
Unmitigated

\%ัٌ			:obo	:揨	
\%		O-	Oo	Oo	O-
款	Σ	®	$:$	$:$	
		-	18	$\begin{array}{\|l\|l} \stackrel{\circ}{2} \\ \stackrel{\rightharpoonup}{c} \\ \hline \end{array}$	
	$\stackrel{\square}{\square}$	$\stackrel{\text { - }}{\text { - }}$			
					-

CalEEMod Version: CaIEEMod.2016.3.2
8.2 Waste by Land Use
Mitigated

9.0 Operational Offroad

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

User Defined Equipment

Equipment Type	Number

CaIEEMod Version: CaIEEMod.2016.3.2
11.0 Vegetation

Noise Measurement Site 1 - Looking North

Noise Measurement Site 1 - Looking East

Noise Measurement Site 1 - Looking South

Noise Measurement Site 1 - Looking West

Noise Measurement Site 1 - Looking Northeast

Noise Measurement Site 1 - Looking Southeast

Noise Measurement Site 1 - Looking Southwest

Noise Measurement Site 1 - Looking Northwest

Noise Measurement Site 2 - Looking North

Noise Measurement Site 2 - Looking East

Noise Measurement Site 2 - Looking South

Noise Measurement Site 2 - Looking West

Noise Measurement Site 2 - Looking Northeast

Noise Measurement Site 2 - Looking Southeast

Noise Measurement Site 2 - Looking Southwest

Noise Measurement Site 2 - Looking Northwest

Noise Measurement Site 3 - Looking North

Noise Measurement Site 3 - Looking East

Noise Measurement Site 3 - Looking South

Noise Measurement Site 3 - Looking West

Noise Measurement Site 3 - Looking Northeast

Noise Measurement Site 3 - Looking Southeast

Noise Measurement Site 3 - Looking Southwest

Noise Measurement Site 3 - Looking Northwest

Noise Measurement Site 4 - Looking North

Noise Measurement Site 4 - Looking East

Noise Measurement Site 4 - Looking South

Noise Measurement Site 4 - Looking West

Noise Measurement Site 4 - Looking Northeast

Noise Measurement Site 4 - Looking Southeast

Noise Measurement Site 4 - Looking Southwest

Noise Measurement Site 4 - Looking Northwest

 Leq (1 hour Avg.)
 Leq 1
South Side of Carson Ave Leq (1 hour Avg.) $\operatorname{Ldn}_{71.4} \mathrm{CNE}_{7}$ $\left\lvert\, \begin{array}{ccc}\text { 3- On Bus Stop Sign in front of Building D West of Clarl } \\ \text { SPL } & \text { Time } & \text { Leq (1 hour Avg.) }\end{array}\right.$

 Site
Tume
Tus:38 Leq (1 hour Avg.) Leq
 $\underset{53.6}{\text { Ldn CNEL }}$ Site 2-On Tennis Court South Side of Carson Ave
 Ldn CNE 3-On Bus Stop Sign in front of Building D West of Clar

 Ldn CNEL Site $4-1$
SPL

40 Site 4 - Ligh
SPL
Si $\underset{\substack{\text { Time } \\ \text { Tivisisu } \\ \text { iv:4s:35 }}}{\text { Leq }}$ Leq 1 q (1 hour Av Ldn CN 3- On Bus Stop Sign in front of Building D West of Clar
 Clarl $\xrightarrow[\substack{\text { Time } \\ \text { Tuve: } \\ \text { Tu }}]{ }$ Leq eq (1 hour Avg.) -9年

 -

 Leq (1 hour Avg.)
Site 2 - On Tennis Court South Side of Carson Ave $\begin{array}{cc}\text { SPL } \\ \text { 58.6 } \\ 59.4 & \text { Ti0:09:10:11 } \\ \text { 10:09 }\end{array} \quad$ Leq (1 hour Avg.)
 Site 4
SPL
55 Time
T1:02:03
11:02:06
110: $\stackrel{5}{\stackrel{5}{3}}$
$\underset{\substack{\text { hour Avg.) } \\ 57.9}}{57.9}$ of Harvey W
Ldn CN

\qquad gRRR

3-On Bus Stop Sign in front of Building D West of Clarl $\begin{array}{ccc}\text { SPL } & \text { Time } & \text { Leq }(1 \text { hour } \\ 53.7 & 11: 00: 45 \\ 11: 0048 & \end{array}$ $\begin{array}{cc}\text { SPL } & \text { Time } \\ 55.8 & 11: 00: 45 \\ 53.7 \\ 57.2 & 1110: 0088 \\ 5.51 \\ 5.1 & 1110054\end{array}$
our Avg.)
59.6
59.6
 Site 1 - On Tree East Side of Faculty Ave

 Leq (1 hour Avg.) \qquad Site 2 - On Tennis Court South Side of Carson Ave $\underset{50.3}{\text { Ldn }} \underset{50.3}{\text { CNEL }}$ ${ }_{64.6}$ | Time |
| :---: |
| 10:14:18 | Time

10:14:18
10:44:19 $10: 14: 20$
$10: 1421$
$10: 1422$
$10: 14: 23$
10 Leq (1 hour Avg.) 릉
득
我 3 - On Bus Stop Sign in front of Building D West of Clar

 Ldn CNEL

\qquad Site 2 - On Tennis Court South Side of Carson Ave

 $\begin{array}{ll}\text { SPL } & \text { Time } \\ \text { 49.8 } \\ \text { 10:19:26 }\end{array}$ Leq (1 (1 hour Avg.) Idn

\qquad

$10: 53: 49$
$10: 53: 50$
$10: 5351$
$10: 5352$
$10: 53: 53$

10.553
$10: 5354$朖器管

营堂堂害范：

$\begin{array}{ll}\text { SPL } & \text { Time } \\ 65.9 & 10: 2200\end{array}$

$10.22: 201$
10.201
$10: 22: 02$

3－On Bus Stop Sign in front of Building D West of Clar $\begin{array}{ccc}\text { SPL } & \text { Time } & \text { Leq（ } 1 \text { h } \\ \text { 61．4 } \\ \text { 6．0．6 } & 11: 31: 33 & \\ 113136\end{array}$

590．Avg．
59.8
5.8

Roadway Construction Noise Model (RCNM),Version 1.1

Report date: 4/13/2018
Case Description: LAC 2041 Facilities Master Plan - Demolition

Equipment		*Lmax	Leq	Lmax	Leq	Lmax	Leq
Concrete Saw		79.5		72.5 N/A	N/A	N/A	N/A
Dozer		69.2		65.2 N/A	N/A	N/A	N/A
Dozer		67.3		63.4 N/A	N/A	N/A	N/A
Excavator		64.9		60.9 N/A	N/A	N/A	N/A
Excavator		63.6		59.6 N/A	N/A	N/A	N/A
Excavator		62.4		58.5 N/A	N/A	N/A	N/A
	Total	80		74 N/A	N/A	N/A	N/A

*Calculated Lmax is the Loudest value.

---- Receptor \#2 ----						
Baselines (dBA)						
Description Land Use	Daytime 6	Evening	Night			
Homes on North Sid Residential		67	66.8			
			Equipment			
			Spec	Actual	Receptor	Estimated
	Impact		Lmax	Lmax	Distance	Shielding
Description	Device	Usage(\%)	(dBA)	(dBA)	(feet)	(dBA)
Concrete Saw	No	20		89.6	135	0
Dozer	No	40		81.7	185	0
Dozer	No	40.0		81.7	235	0
Excavator	No	40.0		80.7	285	0
Excavator	No	40.0		80.7	335	0
Excavator	No	40		80.7	385	0
	Results					
	Calculated	dBA)		Noise Li	imits (dBA)	
			Day		Evening	
Equipment	*Lmax	Leq	Lmax	Leq	Lmax	Leq
Concrete Saw	81.00	74.00	N/A	N/A	N/A	N/A
Dozer	70.30	66.30	N/A	N/A	N/A	N/A
Dozer	68.20	64.20		N/A	N/A	N/A
Excavator	65.60	61.60		N/A	N/A	N/A
Excavator	64.20	60.20		N/A	N/A	N/A
Excavator	63.00	59.00	N/A	N/A	N/A	N/A
Total	8	76	N/A	N/A	N/A	N/A
	*Calculated	Lmax is the L	oudest			

---- Receptor \#3 ----						
Baselines (dBA)						
Description Land Use	Daytime 60	Evening	Night			
Homes on East Side Residential		60	59.5			
	ImpactDevice Usage(\%)		Equipment		Receptor Estimated	
			Spec	Actual		
			$\begin{aligned} & \text { Lmax } \\ & (\mathrm{dBA}) \end{aligned}$	Lmax (dBA)	Distance (feet)	Shielding (dBA)
Description						
Concrete Saw	No	20		89.6	260	0
Dozer	No	40		81.7	310	0
Dozer	No	40		81.7	360	0
Excavator	No	40		80.7	410	0
Excavator	No	40		80.7	460	0
Excavator	No	40		80.7	510	0
	Results					
	Calculated (dBA)		Noise L		mits (dBA)	
			Day		Evening	
Equipment	*Lmax	Leq	Lmax	Leq	Lmax	Leq
Concrete Saw	75.3	68.3	N/A	N/A	N/A	N/A
Dozer	65.8	61.8	N/A	N/A	N/A	N/A
Dozer	64.5	60.5	N/A	N/A	N/A	N/A
Excavator	62.4	58.5	N/A	N/A	N/A	N/A
Excavator	61.4	57.5	N/A	N/A	N/A	N/A
Excavator	60.5	56.6	N/A	N/A	N/A	N/A
Total	75	70	N/A	N/A	N/A	N/A
	*Calculated Lmax is the Loudest value.					

Roadway Construction Noise Model (RCNM),Version 1.1

$\begin{array}{lc}\text { Report date: } & \text { 4/13/2018 } \\ \text { Case Description: } & \text { LAC } 2041 \text { Facilities Master Plan - Grading }\end{array}$
---- Receptor \#1 ----

Equipment	
Grader	
Dozer	
Excavator	
Excavator	
Scraper	
Scraper	
Tractor	
Tractor	

				Results			
	Calculated	(dBA			Nois	(dBA)	
				Day		Evenin	
	*Lmax	Leq		Lmax	Leq	Lmax	Leq
	74.9		70.9	N/A	N/A	N/A	N/A
	69.2		65.2	N/A	N/A	N/A	N/A
	66.4		62.4	N/A	N/A	N/A	N/A
	64.9		60.9	N/A	N/A	N/A	N/A
	66.4		62.5	N/A	N/A	N/A	N/A
	65.3		61.3	N/A	N/A	N/A	N/A
	64.7		60.7	N/A	N/A	N/A	N/A
	63.8		59.8	N/A	N/A	N/A	N/A
Total	75			N/A	N/A	N/A	N/A

---- Receptor \#2 ----
Description Land Use
Homes on North Sid Residential

Baselines (dBA)
Daytime ${ }_{67}$ Evening $67{ }^{\text {Night }} 66.8$

	Equipment				Receptor	Estimated
		Spec		Actual		
Impact		Lmax		Lmax	Distance	Shielding
Device	Usage(\%)	(dBA)		(dBA)	(feet)	(dBA)
No	40		85		135	0
No	40.0			81.7	185	0
No	40.0			80.7	235	0
No	40.0			80.7	285	0
No	40.0			83.6	335	0
No	40			83.6	385	0
No	40		84		435	0
No	40		84		485	0

Equipment	
Grader	
Dozer	
Excavator	
Excavator	
Scraper	
Scraper	
Tractor	
Tractor	
	Total

				Result			
	Calculated	(dBA			Nois	(dBA)	
				Day		Evenin	
	*Lmax	Leq		Lmax	Leq	Lmax	Leq
	76.4		72.4	N/A	N/A	N/A	N/A
	70.3		66.3	N/A	N/A	N/A	N/A
	67.3		63.3	N/A	N/A	N/A	N/A
	65.6		61.6	N/A	N/A	N/A	N/A
	67.1		63.1	N/A	N/A	N/A	N/A
	65.9		61.9	N/A	N/A	N/A	N/A
	65.2		61.2	N/A	N/A	N/A	N/A
	64.3		60.3	N/A	N/A	N/A	N/A
Total	76		75	N/A	N/A	N/A	N/A

---- Receptor \#3 ----

Description Land Use	
Homes on East Side	Residential

Baselines (dBA)	
Daytime	Evening	Night
59.5	59.5	

	Equipment					Receptor	Estimated
		Spec		Actua			
Impact		Lmax		Lmax		Distance	Shielding
Device	Usage(\%)	(dBA)		(dBA)		(feet)	(dBA)
No	40		85			260	0
No	40				81.7	310	0
No	40				80.7	360	0
No	40				80.7	410	0
No	40				83.6	460	0
No	40				83.6	510	0
No	40		84			560	0
No	40		84			610	0

Equipment	
Grader	
Dozer	
Excavator	
Excavator	
Scraper	
Scraper	
Tractor	
Tractor	
	Total

				Result			
	Calculated	(dBA)			Nois	(dBA)	
				Day		Even	
	*Lmax	Leq		Lmax	Leq	Lmax	Leq
	70.7		66.7	N/A	N/A	N/A	N/A
	65.8		61.8	N/A	N/A	N/A	N/A
	63.6		59.6	N/A	N/A	N/A	N/A
	62.4		58.5	N/A	N/A	N/A	N/A
	64.3		60.3	N/A	N/A	N/A	N/A
	63.4		59.4	N/A	N/A	N/A	N/A
	63.0		59.0	N/A	N/A	N/A	N/A
	62.3		58.3	N/A	N/A	N/A	N/A
Total	71		71	N/A	N/A	N/A	N/A

---- Receptor \#4 ----
Description Land Use
Homes on North Sid Residential

Baselines (dBA)
Daytime ${ }_{57}$ Evening Night 57

	Equipment						
		Spec		Actual		Receptor	Estimated
Impact		Lmax		Lmax		Distance	Shielding
Device	Usage(\%)	(dBA)		(dBA)		(feet)	(dBA)
No	40		85			230	0
No	40				81.7	280	0
No	40				80.7	330	0
No	40				80.7	380	0
No	40				83.6	430	0
No	40				83.6	480	0
No	40		84			530	0
No	40		84			580	0

Equipment	
Grader	
Dozer	
Excavator	
Excavator	
Scraper	
Scraper	
Tractor	
Tractor	
	Total

				Results			
	Calculated	(dBA			Nois	(dBA)	
				Day		Even	
	*Lmax	Leq		Lmax	Leq	Lmax	Leq
	71.7		67.8	N/A	N/A	N/A	N/A
	66.7		62.7	N/A	N/A	N/A	N/A
	64.3		60.3	N/A	N/A	N/A	N/A
	63.1		59.1	N/A	N/A	N/A	N/A
	64.9		60.9	N/A	N/A	N/A	N/A
	63.9		60.0	N/A	N/A	N/A	N/A
	63.5		59.5	N/A	N/A	N/A	N/A
	62.7		58.7	N/A	N/A	N/A	N/A
Total	72			N/A	N/A	N/A	N/A

Roadway Construction Noise Model (RCNM),Version 1.1

$\begin{array}{lc}\text { Report date: } & \text { 4/13/2018 } \\ \text { Case Description: } & \text { LAC } 2041 \text { Facilities Master Plan - Construction }\end{array}$

Description	Device	Usage (\%)	(dBA)	(dBA)	(feet)	(dBA)

Equipment		*Lmax			Lmax		venin	eq
Crane		70.4		62.5		N/A	N/A	N/A
Gradall		70.9		67.0		N/A	N/A	N/A
Gradall		69.1		65.1	N/A	N/A	N/A	N/A
Gradall		67.6		63.6	N/A	N/A	N/A	N/A
Generator		63.5		60.5	N/A	N/A	N/A	N/A
Welder / Torch		55.7		51.7	N/A	N/A	N/A	N/A
Tractor		64.7		60.7	N/A	N/A	N/A	N/A
Tractor		63.8		59.8	N/A	N/A	N/A	N/A
Tractor		63.0		59.0	N/A	N/A	N/A	N/A
	Total	71			N/A	N/A	N/A	N/A

*Calculated Lmax is the Loudest value.

Description	Land UseSic Residential			---- Receptor \#2 ----			
		Baselines (dBA)					
		Daytime	Evening	Night			
Homes on North Si		66.8	66.8	66.8			
		Equipment					Estimated
		Impact		Lmax	Lmax	Distance	Shielding
Description		Device	Usage(\%)	(dBA)	(dBA)	(feet)	(dBA)
Crane		No	16		80.6	135	0
Gradall		No	40		83.4	185	0
Gradall		No	40		83.4	235	0
Gradall		No	40		83.4	285	0
Generator		No	50		80.6	335	0
Welder / Torch		No	40		74	385	0
Tractor		No	40			435	0
Tractor		No	40			485	0
Tractor		No	40			535	0
		Results					
		Calculated (dBA)			Noise Limits (dBA)		
				Day		Evening	
Equipment		*Lmax	Leq	Lmax Leq		Lmax	Leq
Crane		71.9	64.0	N/A	N/A	N/A	N/A
Gradall		72.0	68.1	N/A	N/A	N/A	N/A
Gradall		70.0	66.0	N/A	N/A	N/A	N/A
Gradall		68.3	64.3	N/A	N/A	N/A	N/A
Generator		64.1	61.1	N/A	N/A	N/A	N/A
Welder / Torch		56.3	52.3	N/A	N/A	N/A	N/A
Tractor		65.2	61.2	N/A	N/A	N/A	N/A
Tractor		64.3	60.3	N/A	N/A	N/A	N/A
Tractor		63.4	59.4	N/A	N/A	N/A	N/A
	Total	72	73	N/A	N/A	N/A	N/A

---- Receptor \#3 ----							
Description	Land Use	Baselines (dBA)					
		Daytime	Evening	Night			
Homes on East Sid	Residential	60	60	59.5			
		Equipment					
		Impact		Lmax	Lmax	Distance	Shielding
Description		Device	Usage(\%)	(dBA)	(dBA)	(feet)	(dBA)
Crane		No	16		80.6	230	0
Gradall		No	40		83.4	280	0
Gradall		No	40		83.4	330	0
Gradall		No	40		83.4	380	0
Generator		No	50		80.6	430	0
Welder / Torch		No	40		74	480	0
Tractor		No	40			530	0
Tractor		No	40			580	0
Tractor		No	40			630	0
		Results					
		Calculated (dBA)		Day Noise Li			
						Evening	
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	Leq
Crane		67.3	59.3	N/A	N/A	N/A	N/A
Gradall		68.4	64.5		N/A	N/A	N/A
Gradall		67.0	63.0		N/A	N/A	N/A
Gradall		65.8	61.8	N/A	N/A	N/A	N/A
Generator		61.9	58.9		N/A	N/A	N/A
Welder / Torch		54.4	50.4		N/A	N/A	N/A
Tractor		63.5	59.5	N/A	N/A	N/A	N/A
Tractor		62.7	58.7	N/A	N/A	N/A	N/A
Tractor		62.0	58.0	N/A	N/A	N/A	N/A
	Total	68	70	N/A	N/A	N/A	N/A

Description				---- Receptor \#4 ----			
		Baselines (dBA)					
	Land Use	Daytime	Evening	Night	57.4		
Homes on North Sir Residential		57	57				
Description		Equipment				Receptor Estimated	
		Impact		Spec Lmax	Actual (dBA)	Distance	Shielding
		Device	Usage(\%)	(dBA)			
Crane		No	16		80.6	180	0
Gradall		No	40		83.4	230	0
Gradall		No	40		83.4	280	0
Gradall		No	40		83.4	330	0
Generator		No	50		80.6	380	0
Welder / Torch		No	40		74	430	0
Tractor		No	40			480	0
Tractor		No	40			530	0
Tractor		No	40			580	0
				Resul			
		Calculated	(dBA)		Noise Lim	mits (dBA)	
				Day		Evening	
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	Leq
Crane		69.4	61.5	N/A	N/A	N/A	N/A
Gradall		70.1	66.2		N/A	N/A	N/A
Gradall		68.4	64.5		N/A	N/A	N/A
Gradall		67.0	63.0	N/A	N/A	N/A	N/A
Generator		63.0	60.0		N/A	N/A	N/A
Welder / Torch		55.3	51.3	N/A	N/A	N/A	N/A
Tractor		64.4	60.4	N/A	N/A	N/A	N/A
Tractor		63.5	59.5	N/A	N/A	N/A	N/A
Tractor		62.7	58.7	N/A	N/A	N/A	N/A
	Total	70	72	N/A	N/A	N/A	N/A

Roadway Construction Noise Model (RCNM),Version 1.1

```
Report date: 4/13/2018
Case Description: LAC 2041 Facilities Master Plan - Paving
```

				---- R	\#1 ----		
		Baselines (dBA)				
Description	Land Use	Daytime	Evening	Night			
Homes on West Side	Residential	55.5	55.5				
				Equipm			
				Spec	Actual	Receptor	Estimated
		Impact		Lmax	Lmax	Distance	Shielding
Description		Device	Usage(\%)	(dBA)	(dBA)	(feet)	(dBA)
Paver		No	50		77.2	160	0
Paver		No	50		77.2	210	0
Paver		No	50		77.2	260	0
Paver		No	50		77.2	310	0
Roller		No	20		80	360	0
Roller		No	20		80	410	0
				Result			
		Calculated	(dBA)		Noise Limi	its (dBA)	
				Day		Evening	
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	Leq
Paver		67.1	64.1	N/A	N/A	N/A	N/A
Paver		64.8	61.7	N/A	N/A	N/A	N/A
Paver		62.9	59.9		N/A	N/A	N/A
Paver		61.4	58.4		N/A	N/A	N/A
Roller		62.9	55.9		N/A	N/A	N/A
Roller		61.7	54.7	N/A	N/A	N/A	N/A
	Total	67	68	N/A	N/A	N/A	N/A

				---- Receptor \#3 ----			
		Baselines (dBA)					
Description	Land Use	Daytime	Evening	Night			
Homes on East Side	Residential	59.5	59.5	59.5			
				Equipment		Receptor	
				Spec	Actual		Estimated
		Impact	Usage(\%)	$\begin{aligned} & \text { Lmax } \\ & \text { (dBA) } \end{aligned}$	Lmax (dBA)	Distance (feet)	Shielding
Description		Device					(dBA)
Paver		No	50		77.2	260	0
Paver		No	50		77.2	310	0
Paver		No	50		77.2	360	0
Paver		No	50		77.2	410	0
Roller		No	20		80	460	0
Roller		No	20		80	510	0
		Results					
		Calculated (dBA)		Day Noise Lim			
						Evening	
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	Leq
Paver		62.9	59.9	N/A	N/A	N/A	N/A
Paver		$61.4 \quad 58.4$			N/A	N/A	N/A
Paver		60.157 .1		N/A	N/A	N/A	N/A
Paver		$58.9 \quad 55.9$		N/A N/A		N/A	N/A
Roller		$60.7 \quad 53.7$		N/A N/A		N/A	N/A
Roller		$59.8 \quad 52.8$		$\begin{array}{ll} \text { N/A } & \text { N/A } \\ \text { N/A } & \text { N/A } \end{array}$		N/A	N/A
	Total	63*Calculated Lmax is the				N/A	N/A
				$\begin{array}{ll} \mathrm{N} / \mathrm{A} & \mathrm{~N} / \mathrm{A} \\ \mathrm{e} \text { Loudest value. } \end{array}$			

---- Receptor \#4 ----						
Description Land UseHomes on North Side Residential	Baselines (dBA)					
	Daytime	Evening	Night			
		57	57.4			
Description	Impact	Equipment			Receptor	Estimated
		Usage(\%)	Spec	Actual		
			Lmax	Lmax (dBA)	Distance (feet)	Shielding (dBA)
	Device		(dBA)			
Paver	No	50		77.2	230	0
Paver	No	50		77.2	280	0
Paver	No	50		77.2	330	0
Paver	No	50		77.2	380	0
Roller	No	20		80	430	0
Roller	No	20		80	480	0
	Results					
	Calculated (dBA)		Day Noise Lim			
					Evening	
Equipment	*Lmax	Leq	Lmax	Leq	Lmax	Leq
Paver	64.0	61.0		N/A	N/A	N/A
Paver	62.3 59.2		N/A	N/A	N/A	N/A
Paver	60.857 .8		N/A	N/A	N/A	N/A
Paver	$59.6 \quad 56.6$			N/A	N/A	N/A
Roller	61.3	54.3		N/A	N/A	N/A
Roller	60.453 .4		N/A	N/A	N/A	N/A
Total	*Calculated Lmax is the		N/A	N/A	N/A	N/A
			Loud	alue.		

Roadway Construction Noise Model (RCNM),Version 1.1

Report date: 4/13/2018
Case Description: LAC 2041 Facilities Master Plan - Painting

		Results						
		Calculated (dBA)				Noise Limits (dBA)		
					Day		Eveni	
Equipment		*Lmax	Leq		Lmax	Leq	Lmax	Leq
Compressor (air)				63.6	N/A	N/A	N/A	N/A
	Total			64	N/A	N/A	N/A	N/A

---- Receptor \#2 ----

	Baselines (dBA) Description\quad Land Use		Daytime	Evening	Night
Homes on North Sic Residential	66.8	66.8	66.8		

					Equip			
					Spec	Actual	Receptor	Estimated
		Impact			Lmax	Lmax	Distance	Shielding
Description		Device	Usag	(\%)	(dBA	(dBA)	(feet)	(dBA)
Compressor (air)		No		40		77.7	135	0
					Resu			
		Calculat	dBA)			Noise Limit	ts (dBA)	
					Day		Evening	
Equipment		*Lmax	Leq		Lmax	Leq	Lmax	Leq
Compressor (air)				65.1	N/A	N/A	N/A	N/A
	Total			65	N/A	N/A	N/A	N/A

		---- Recepto	\#3 ----		
	Baselines (dBA)				
Description Land Use	Daytime Evening	Night			
Homes on East Sidı Residential	$59.5 \quad 59.5$	59.5			
		Equipment			
		Spec	Actual	Receptor	Estimated
	Impact	Lmax	Lmax	Distance	Shielding
Description	Device Usage(\%)	(dBA)	(dBA)	(feet)	(dBA)
Compressor (air)	No 40		77.7	230	0
		Results			
	Calculated (dBA)		Noise Limit	ts (dBA)	
		Day		Evening	
Equipment	*Lmax Leq	Lmax	Leq	Lmax	Leq
Compressor (air)	$64.4 \quad 60.4$	N/A	N/A	N/A	N/A
Total	6460	N/A	N/A	N/A	N/A
	*Calculated Lmax is the	Loudest valu			
		---- Recepto	\#4 ----		
	Baselines (dBA)				
Description Land Use	Daytime Evening	Night			
Homes on North Sic Residential	$57 \quad 57$	57.4			
		Equipment			
		Spec	Actual	Receptor	Estimated
	Impact	Lmax	Lmax	Distance	Shielding
Description	Device Usage(\%)	(dBA)	(dBA)	(feet)	(dBA)
Compressor (air)	No 40		77.7	180	0
		Results			
	Calculated (dBA)		Noise Limit	its (dBA)	
		Day		Evening	
Equipment	*Lmax Leq	Lmax	Leq	Lmax	Leq
Compressor (air)	$67 \quad 63$	N/A	N/A	N/A	N/A
Total	6763	N/A	N/A	N/A	N/A
	*Calculated Lmax is the	Loudest valu			

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Project: LBCC 2041 Master Plan for the LAC Improvements | | $\begin{array}{c}\text { Site Conditions: Soft } \\ \text { Vehicle Mix 3 (SR-19) }\end{array}$ | | |
| :---: | :---: | :---: | :---: |
| Day | Evening | Night | Daily |
| 67.68% | 13.87% | 16.22% | 97.77% |
| 0.96% | 0.17% | 0.48% | 1.61% |
| 0.34% | 0.03% | 0.25% | 0.62% |

Road Name: Average Daily T	Paramou ffic: 225	Boulev ehicle		Vehicle Sp	$\begin{array}{r} \text { Segme } \\ \text { ed: } 40 \mathrm{MP} \\ \hline \end{array}$		North of Vehicle M	$\begin{aligned} & \text { Sarson Stı } \\ & \text { ix: } 1 \end{aligned}$			oadway	ficat	Local
		PARA	TERS	T 60 FEET	ROM CEN	NTERLINE		uiv. Lane	,		Centerli	tan	
		oise Ad	ustments			Unm	mitigated	Noise Leve			Noise Co	(
Vehicle Type	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	2.08	-1.22	-1.20	67.0	64.9	63.6	57.6	66.0	66.6	70 dBA :	33	36
Medium Trucks	76.31	-15.15	-1.22	-1.20	58.7	37.5	43.5	25.2	38.4	41.1	65 dBA :	70	77
Heavy Trucks	81.16	-19.11	-1.22	-1.20	59.6	34.3	30.9	35.5	41.7	41.8	60 dBA:	151	167
				Total:	68.3	64.9	63.6	57.6	66.0	66.7	55 dBA :	326	359

Project: LBCC 2041 Master Plan for the LAC Improvements Project: LBCC 2041 Master Plan for the LAC Improvements
Site Conditions: Soft

South of Del Amo Boulevard

Vehicle Mix: $3 \quad$ Roadway Classification: Regional Corridor | Roadway Classification: Regional Corridor | | | |
| :--- | :--- | :---: | :---: |
| INE \quad (Equiv. Lane Dist: 103.94 ft) | Centerline Distance to | | |
| Jnmitigated Noise Levels | Noise Contour (in feet) | | |

56 | 111 | 120 |
| :--- | :--- |
| 239 | 259 |
| 516 | 557 |

Road Name: Lakewood Boulevard ұนәш6әs
40 MPH

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Scenario: EXISTING CONDITIONS

Road Name: Lakewood Boulevard

Road Name: Lakewood Boulevard
Vehicle Mix: $3 \quad$ Roadway Classification: Regional Corridor

밍ㅇㅇㅇํㄴㅇㅇㅇ

Vehicle Type
Automobiles
Medium Trucks
Heavy Trucks

Road

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

Scenario: EXISTING CONDITIONS Road Name: Clark Avenue Average Daily Traffic: 22280 Vehicles			```Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: SoftNone```										
Vehicle Type	NOISE PARAMETERS AT 60 FEET FROM CENTERLINE						(Equiv. Lane Dist: 54.99 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL Traffic Adj.		Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn CNEL		Ldn CNEL		
Automobiles	65.11	2.62	-0.72	-1.20	65.8	63.7	62.4	56.4	64.8	65.4	$70 \text { dBA: }$	27	30
Medium Trucks	74.83	-14.62	-0.72	-1.20	58.3	37.0	43.1	24.8	37.9	40.7	65 dBA :	58	64
Heavy Truck	80.05	-18.57	-0.72	-1.20	59.5	34.2	30.8	35.4	41.6	41.7	60 dBA :	126	138
	Total:				67.3	63.7	62.4	56.4	64.8	65.4	55 dBA :	270	298
Road Name: Average Daily T	Clark Avenue raffic: 19130 Vehicles			Segment:Vehicle Speed: 35 MPH			North of Harvey Way Vehicle Mix: 1		Roadway Classification: Minor Avenue				
Vehicle Type	NOISE PARAMETERS AT 60 FEET Noise Adjustments				FROM CEN	NTERLINE	(Equiv. Lane Dist: 54.99 ft)				Centerline Distance to Noise Contour (in feet)		
					Unmitigated Noise Levels								
	REMEL Traffic Adj.		Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL	Noise Contour (dn feet)		
Automobiles	65.11	1.96	-0.72	-1.20	65.1	63.0	61.7	55.7	64.1	64.7	70 dBA:	24	27
Medium Trucks	74.83	-15.28	-0.72	-1.20	57.6	36.4	42.4	24.1	37.2	40.0	65 dBA:	53	58
Heavy Trucks	80.05	-19.24	-0.72	-1.20	58.9	33.5	30.1	34.8	41.0	41.1	60 dBA:	113	125
				Total:	66.6	63.0	61.8	55.7	64.1	64.8	55 dBA :	244	269

Road Name: Clark Avenue
Segment:
Average Daily Traffic: 17488 Vehicles \quad Vehicle Speed: 35 MPH

North of Carson Street

Vehicle Mix: 1 NE (Equiv. Lane Dist: 43.86 ft$) \quad$ Centerline Distance to Unmitigated Noise Levels \quad Noise Contour (in feet) | Day Leq Eve. Leq Night | Ldn | CNEL | | Ldn | CNEL | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4.1 | 62.8 | 56.8 | 65.2 | 65.8 | 70 dBA: | $\mathbf{2 4}$ | $\mathbf{2 6}$ | $\begin{array}{ll}24 & 26 \\ 52 & 57\end{array}$ $\stackrel{\sim}{N}$ 우N

Road Name: Clark Avenue
Roadway Classification: Minor Avenue

Vehicle Type	NOISE PARAMETERS AT 60 FEET FROM CENTERLINE						(Equiv. Lane Dist: 54.99 ft				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	65.11	2.92	-0.72	-1.20	66.1	64.0	62.7	56.7	65.1	65.7	70 dBA :	28	31
Medium Trucks	74.83	-14.31	-0.72	-1.20	58.6	37.3	43.4	25.1	38.2	41.0	65 dBA :	61	67
Heavy Trucks	80.05	-18.27	-0.72	-1.20	59.9	34.5	31.1	35.8	42.0	42.0	60 dBA :	132	145
				Total:	67.6	64.0	62.7	56.7	65.1	65.7	55 dBA :	283	312

Segment: South of Carson Street
Average Daily Traffic: 23898 Vehicles Vehicle Speed: 35 MPH
Average Daily Traffic: 17488 Vehicles

0
Vehicle Speed: 35 MPH
269
FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Scenario: EXISTING CONDITIONS
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

South of Lew Davis Street

Road Name: Clark Avenue
Average Daily Traffic: 18612 Vehic
Road Name: Clark Avenue
Average Daily Traffic: 18612 Vehic
Road Name: Clark Avenue

Avenue Segment:

Road Name: Clark Avenue	Segment:	$\begin{array}{l}\text { South of Spring Street }\end{array}$
Average Daily Traffic: 18500 Vehicles	Vehicle Speed: 40 MPH	Vehicle Mix: 1

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements
Site Conditions: Soft
North of Carson Street

| Roadway Classification: Boulevard |
| :---: | :---: |
| Centerline Distance to | Centerline Distance to

Noise Contour (in feet) Ldn CNEL

$\begin{array}{rr}40 & 94 \\ 87 & 902 \\ 187 & 202\end{array}$ $402 \quad 436$

[^25] South of Spring Street
 West of Lakewood Boulevard

Vehicle Mix: 2 Roadway Classification: Major Avenue | Centerline Distance to |
| :--- |
| Noise Contour (in feet) |

$\begin{array}{rr}\text { Ldn } & \text { CNEL } \\ 63 & 68 \\ 135 & 146\end{array}$ $\stackrel{\circ}{4} \stackrel{0}{9}$ 웅
$\begin{array}{rr}\text { Ldn } & \text { CNEL } \\ 63 & 68 \\ 135 & 146 \\ 291 & 316\end{array}$ ${ }^{627}$ Segment:
NE (Equiv. Lane Dist: 36.66 ft$)$「두N A
 Road Name: Del Amo Boulevard $\quad \begin{gathered}\text { Segment: } \\ \text { Average Daily Traffic: } 35410 \text { Vehicles }\end{gathered} \quad$ Vehicle Speed: 40 MPH Average Daily Traffic: 35410 Vehicles NOISE PARAMETERS AT 50 FEET FROM CENTER岂

Road Name: Bellflower Boulevard Average Daily Traffic: 26160 Vehicles Segment:
40 MPH (Equiv. Lane Dist: 88.71 ft) Unmitigated Noise Levels
 64.4
. a
FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

$$
\begin{array}{ll}
\text { Vehicle Mix: } 2 & \text { Roadway Classification: Major Avenue } \\
\hline
\end{array}
$$

 Ldn CNEL
 $\begin{array}{ll}251 & 272 \\ 541 & 586\end{array}$ Roadway Classification: Local Centerline Distance to Unmitigated Noise Levels \quad Noise Contour (in feet)
 \qquad

Road Name: Harvey WayAverage Daily Traffic: 4543 Vehicles				$\begin{aligned} & \text { Segment: } \\ & \text { Vehicle Speed: } 25 \mathrm{MPH} \\ & \hline \end{aligned}$			East of Clark Avenue Vehicle Mix: 1				Roadway Classification: Local						
Vehicle Type	NOISE PARAMETERS AT 35 FEET FROM CENTERLINE						(Equiv. Lane Dist: 33.82 ft)				Centerline Distance to Noise Contour (in feet)						
	Noise Adjustments				Unmitigated Noise Levels												
	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL				
Automobiles	59.44	-2.82	2.44	-1.20	57.9	55.7	54.4	48.4	56.8	57.5	70 dBA :	5	5				
Medium Trucks	71.09	-20.06	2.44	-1.20	52.3	31.0	37.0	18.7	31.9	34.6	65 dBA:	10	11				
Heavy Trucks	78.74	-24.02	2.44	-1.20	56.0	30.6	27.2	31.9	38.1	38.2	60 dBA :	22	24				
				Total:	60.7	55.8	54.5	48.5	56.9	57.5	55 dBA :	47	52				
Road Name:	Carson Street raffic: 23460 Vehicles		Vehicle Speed: 40 MPH				West of Cherry Avenue				Classification: Major Avenue						
Average Daily T			Vehicle Mix: 2 Roadway														
Vehicle Type	NOISE PARAMETERS AT 55 FEET FROM CENTERLINE						Centerline Distance to Noise Contour (in feet)										
	Noise Adjustments				Unmitigated Noise Levels												
	REMEL Traffic Adj.						Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL	Ldn CNEL		
Automobiles	67.36	2.02	0.84	-1.20	69.0	66.6				65.4	59.3	67.7	68.4	70 dBA :	44	48	
Medium Trucks	76.31	-12.85	0.84	-1.20	63.1	43.9	36.1	45.3	51.5	51.5	65 dBA:	96	104				
Heavy Trucks	81.16	-10.63	0.84	-1.20	70.2	53.2	45.4	54.6	60.8	60.8	60 dBA :	206	224				
				Total:	73.1	66.9	65.4	60.7	68.6	69.1	55 dBA :	444	48				

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements
West of Paramount Boulevard

Road Name: Average Daily T	Carson rffic: 381	ehicle		Vehicle Sp	Segm d 40 MP		East of C Vehicle M	ark Avenu $\text { ix: } 2$		dway	Classifica	Major	venue
		PARA	ETERS	T 75 FEET	ROM CEN	NTERLINE		uiv. Lane	6.85		Centerlin	stan	
		oise Ad	ustments			Unm	mitigated	Noise Leve			Noise C	(in	
Vehicle Type	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	4.12	-2.00	-1.20	68.3	65.9	64.6	58.6	67.0	67.6	70 dBA:	54	59
Medium Trucks	76.31	-10.74	-2.00	-1.20	62.4	43.2	35.4	44.6	50.7	50.8	65 dBA:	117	127
Heavy Trucks	81.16	-8.53	-2.00	-1.20	69.4	52.4	44.7	53.9	60.0	60.1	60 dBA :	251	273
				Total:	72.4	66.1	64.7	60.0	67.9	68.4	55 dBA :	542	587

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft
East of Bellflower Boulevard
Scenario: EXISTING CONDITIONS
Road Name: Carson Street
Vehicle Mix: $2 \quad$ Roadway Classification: Major Avenue

 East of Clark Avenue
Vehicle Mix: $1 \quad$ Ro

Vehicle Mix: 1 Roadway Classification: Neighborhood Connector \begin{tabular}{l}
Centerline Distance to

Noise Contour (in feet)

\hline

\& Ldn \& CNEL

\hline $70 \mathrm{dBA}:$ \& 1 \& 2
\end{tabular} - m

$-m$ m
m $\begin{array}{rr}7 & 7 \\ 14 & 16\end{array}$

Road Name: Conant Street Segment:
Road Name: Conant Street
Average Daily Traffic: 3320 Vehic
Average Daily Traffic: 3320 Vehicles Vehicle Speed: 15 MPH
NOISE PARAMETERS AT 60 FEET FROM CENTERLINE (Equiv. Lane Dist: 58.34 ft$)$
Unmitigated Noise Levels

Vehicle Type
Automobiles Medium Trucks Heavy Trucks

East of Clark Avenue

Road Name: Wardlow Road
Average Daily Traffic: 14440 Vehi
Project：LBCC 2041 Master Plan for the LAC Improvements

$$
\underline{L}
$$

|寸 \& 九
俖
FHWA－RD－77－108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL Site Conditions：Soft
East of Bellflower Boulevard

East of Clark Avenue
:ұuәu6əs

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Project: LBCC 2041 Master Plan for the LAC Improvements
Site Conditions: Soft

$$
\text { Vehicle Mix } 2 \text { (Vehicle Mix } 2 \text { (Arterial)) Vehicle Mix } 3 \text { (SR-19) }
$$

Scenario: EXISTING WITH PROJECT CONDITIONS
Site Conditions. Road Name: Paramount Boulevard 169 Lع
 Segment:

$$
\text { Vehicle Speed: } 40 \mathrm{MPH}
$$

$$
\begin{gathered}
\text { NOISE PARAMETERS AT } 60 \text { FEET FROM CENTERLINE } \\
\text { Noise Adiustments }
\end{gathered}
$$

North of Carson Street
Unmitigated Noise Levels
ay Leq Eve. Leq Night

$0.17 \% \quad 0.48 \% \quad 1.61 \%$ $0.25 \% \quad 0.62 \%$

Road Name:
Average Daily

Centerline Distance to \begin{tabular}{rr}
Ldn \& CNEL

\hline

 $\begin{array}{rr}33 & 36 \\ 71 & 78 \\ 153 & 169\end{array}$

\hline 79ε \&

$69 L$ \& $L \varepsilon \varepsilon$

\& $\varepsilon S L$
\end{tabular} 70 dBA: 66.755 dBA

North of Carson Street
Vehicle Mix: 1
 $\stackrel{0}{4}$ 31.0 63.7

$$
\text { Average Daily Traffic: } 23000 \text { Vehicles }
$$

Vehicle Type	NOISE PARAMETERS AT 60 FEET FROM CENTERLINE						(Equiv. Lane Dist: 59.32 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	2.18	-1.22	-1.20	67.1	65.0	63.7	57.7	66.1	66.7	70 dBA :	33	36
Medium Trucks	76.31	-15.06	-1.22	-1.20	58.8	37.6	43.6	25.3	38.5	41.2	65 dBA :	71	78
Heavy Trucks	81.16	-19.02	-1.22	-1.20	59.7	34.4	31.0	35.6	41.8	41.9	60 dBA :	153	169
				Total:	68.4	65.0	63.7	57.7	66.1	66.7	55 dBA :	331	364

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements

South of Del Amo Boulevard (Equiv. Lane Dist: 103.94 ft$) \quad$ Centerline Distance to | Centerline Distance to |
| :--- |
| Noise Contour (in feet) |
| Ldn CNEL | \sum_{0}^{1} 领

[^26]North of Carson Street

Vehicle Type	NOISE PARAMETERS AT 50 FEET FROM CENTERLINE						(Equiv. Lane Dist: 49.18 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	59.44	-3.97	0.00	-1.20	54.3	52.2	50.8	44.8	53.2	53.9	70 dBA :	4	4
Medium Trucks	71.09	-21.21	0.00	-1.20	48.7	27.4	33.5	15.2	28.3	31.1	65 dBA:	8	9
Heavy Trucks	78.74	-25.16	0.00	-1.20	52.4	27.0	23.6	28.3	34.5	34.6	60 dBA:	18	20
				Total:	57.1	52.2	50.9	44.9	53.3	53.9	55 dBA :	39	43

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

Scenario: EXISTING WITH PROJECT CONDITIONS

Road Name: Clark Avenue Average Daily Traffic: 22880 Vehicles Vehicle Speed: \begin{tabular}{l}
Segment:

\hline 5 MPH

INE (Equiv. Lane Dist: 54.99 ft) \& $\begin{array}{l}\text { Centerline Distance to } \\
\text { Jnmitigated Noise Levels } \\
\text { Noise Contour (in feet) }\end{array}$

\hline
\end{tabular}

30

North of Harvey Way Segment:

Average Daily Traffic: 19730 Vehicles				Vehicle Speed: 35 MPH			Vehicle Mix: 1				Classification: Minor Avenue		
	NOISE PARAMETERS AT 60 FEET FROM CENTERLINE						(Equiv. Lane Dist: 54.99 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
Vehicle Type	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	65.11	2.09	-0.72	-1.20	65.3	63.2	61.8	55.8	64.3	64.9	70 dBA :	25	27
Medium Trucks	74.83	-15.15	-0.72	-1.20	57.8	36.5	42.5	24.2	37.4	40.1	65 dBA :	54	59
Heavy Trucks	80.05	-19.10	-0.72	-1.20	59.0	33.7	30.3	34.9	41.1	41.2	60 dBA :	116	127
				Total:	66.8	63.2	61.9	55.9	64.3	64.9	55 dBA :	249	275

Road Name: Clark Avenue

Road Name: Clark Avenue Average Daily Traffic: 25956 Vehicles
Vehicle Mix: 1 Segment:

Roadway Classification: Minor Avenue

등이
O 굳 $\stackrel{\text { 굴 }}{ }$

Segment:
Vehicle Speed: 35 MPH
LINE
60 FEET FROM CENTER
Unmitigated Noise Levels

$\begin{array}{lll}64.3 & 63.0 & 25.4 \\ 37.7 & 43.7 & 36.1\end{array}$
$\begin{array}{rrr}34.9 & 31.5 & 36.1 \\ 64.4 & 63.1 & 57.1\end{array}$

1	0	N	0
0	0	0	0
0	1	0	0
0			

$\stackrel{y}{=}$
ㄷ
słuәułsn!p \forall əs!̣on

N
N

\vdots
 No

 Vehicle Type Automobiles Medium Trucks Heavy Trucks
FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

Vehicle Mix: 1 Roadway Classification: Minor Avenue

 \begin{tabular}{lll}
Day Leq Eve. \& Leq Night

\hline 63.6 \& 62.3 \& 56.3

67 \&

144 \& 159

310 \& 342

\hline
\end{tabular}

 Road Name: Clark Avenue Average Daily Traffic: 19000 Vehicles
South of Spring Street Segment:

Average Daily Traffic: 19000 Vehicles				Vehicle Speed: 40 MPH			Vehicle Mix: 1			Roadway Classification: Minor Avenue			
Vehicle Type	NOISE PARAMETERS AT 70 FEET FROM CENTERLINE						(Equiv. Lane Dist: 65.76 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	1.35	-1.89	-1.20	65.6	63.5	62.2	56.2	64.6	65.2	70 dBA :	31	34
Medium Trucks	76.31	-15.89	-1.89	-1.20	57.3	36.1	42.1	23.8	37.0	39.7	65 dBA :	66	73
Heavy Trucks	81.16	-19.85	-1.89	-1.20	58.2	32.9	29.5	34.1	40.3	40.4	60 dBA :	142	157
				Total:	66.9	63.5	62.2	56.2	64.6	65.2	55 dBA :	306	337

Scenario: EXISTING WITH PROJECT CONDITIONS

Road Name: Clark Avenue Average Daily Traffic: 19384 Vehicles Segment:
Vehicle Speed: 40 MPH $\begin{array}{lll}63.2 & 42.2 & 23.9\end{array}$

33.0	29.6	34.2	40.4	40.5	$60 \mathrm{dBA}:$
$\mathbf{6 3 . 6}$	$\mathbf{6 2 . 3}$	$\mathbf{5 6 . 3}$	$\mathbf{6 4 . 7}$	$\mathbf{6 5 . 3}$	$55 \mathrm{dBA}:$

$$
\overline{e a k}
$$

57.4 68.3 Total: Segment: South of Conant Stre
Medium Trucks
Heavy Trucks

Road Name:
76. Clark Avenue
Average Daily Traffic: 20821 Vehicles Vehicle Type
FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

 North of Carson Street Roadway Classification: Bistance to Noise Contour (in feet) | Ldn | CNEL |
| ---: | ---: |
| 41 | 44 |
| 88 | 95 | 95

205 $407 \quad 442$

\footnotetext{
Road Name: Bellflower Boulevard
Average Daily Traffic: 27670 Vehicles Vehicle Speed: 40 MPH Vehicle Mix: $2 \quad$ Roadway Classification: Boulevard

Segment: South of Spring Street

Roadway Classification: Boulevard
Centerline Distance to
Noise Contour (in feet)

$\begin{array}{rr}\text { Ldn } & \text { CNEL } \\ 46 & 49\end{array}$ N
N․N 494
FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements
Roadway Classification: Major Avenue
Road Name: Harvey Way
Segment:
Average Daily Traffic: 4430 Vehicles \quad Vehicle Speed: 25 MPH

	Vehicle Speed: 25 MPH						Vehicle Mix.				wa		. Loca
Vehicle Type	NOISE PARAMETERS AT 30 FEET FROM CENTERLINE						(Equiv. Lane Dist: 28.62 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	59.44	-2.93	3.53	-1.20	58.8	56.7	55.4	49.4	57.8	58.4	70 dBA :	5	5
Medium Trucks	71.09	-20.17	3.53	-1.20	53.2	32.0	38.0	19.7	32.9	35.6	65 dBA :	10	11
Heavy Trucks	78.74	-24.13	3.53	-1.20	56.9	31.6	28.2	32.8	39.0	39.1	60 dBA:	22	24
				Total:	61.7	56.7	55.5	49.5	57.9	58.5	55 dBA :	47	51

East of Clark Avenue
Vehicle Mix: 2
Scenario: EXISTING WITH PROJECT CONDITIONS
Road Name: Del Amo Boulevard
Average Daily Traffic: 34090 Vehicles Vehicle Speed: 40 MPH

Road Name: Carson Street
Average Daily Traffic: 23950 Vehicles Vehicle Speed: 40 MPH
Vehicle Mix: 2 Roadway Classification: Major Avenue

Vehicle Type	NOISE PARAMETERS AT 55 FEET FROM CENTERLINE						(Equiv. Lane Dist: 43.23 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	2.10	0.84	-1.20	69.1	66.7	65.4	59.4	67.8	68.5	70 dBA:	45	49
Medium Trucks	76.31	-12.76	0.84	-1.20	63.2	44.0	36.2	45.4	51.6	51.6	65 dBA:	97	105
Heavy Trucks	81.16	-10.54	0.84	-1.20	70.3	53.3	45.5	54.7	60.9	60.9	60 dBA :	209	227
				Total:	73.2	67.0	65.5	60.8	68.7	69.2	55 dBA :	451	489

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements
West of Paramount Boulevard

Vehicle Mix: $2 \quad$ Roadway Classification: Major Avenue \begin{tabular}{l|l}
(Equiv. Lane Dist: 94.04 ft) \& $\begin{array}{l}\text { Centerline Distance to } \\
\text { Noise Contour (in feet) }\end{array}$

\hline Jnmitigated Noise Levels \&

Ldn \& CNEL

\hline 49 \& 53

105 \& 114

26 \& 245

\& 528

62.1 \& 57.4 \& 65.3 \& 65.8 \& $55 \mathrm{dBA}:$ \& 487 \& 528

\&

West of Lakewood Boulevard
\end{tabular}

West of Lakewood Boulevard
Vehicle Mix: 2
Segment:

$\begin{array}{lllllllll}67.9 & 61.7 & 60.2 & 55.5 & 63.4 & 63.9 & 55 \mathrm{dBA}: & 437 & 474\end{array}$
West of Faculty Avenue
Scenario: EXISTING WITH PROJECT CONDITIONS
Road Name: Carson Street Average Daily Traffic: 35180 Vehicles Vehicle Speed: 40 MPH
Carson Street
Road Name: Carson Street
Average Daily Traffic: 35400 Vehicles Vehicle Speed: 40 MPH Vehicle Mix: $2 \quad$ Roadway Classification: Major Avenue

Vehicle Type	NOISE PARAMETERS AT 70 FEET FROM CENTERLINE						(Equiv. Lane Dist: 61.19 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	3.80	-1.42	-1.20	68.5	66.2	64.9	58.8	67.3	67.9	70 dBA:	53	57
Medium Trucks	76.31	-11.06	-1.42	-1.20	62.6	43.4	35.6	44.8	51.0	51.0	65 dBA:	113	123
Heavy Trucks	81.16	-8.85	-1.42	-1.20	69.7	52.7	44.9	54.1	60.3	60.3	60 dBA :	244	265
				Total:	72.6	66.4	64.9	60.2	68.1	68.7	55 dBA :	526	570

\footnotetext{
Road Name: Carson Street
Average Daily Traffic: 39780 Vehicles
Roadway Classification: Major Avenue

Vehicle Type	NOISE PARAMETERS AT 75 FEET FROM CENTERLINE						(Equiv. Lane Dist: 66.85 ft)				Centerline Distance to		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	4.31	-2.00	-1.20	68.5	66.1	64.8	58.8	67.2	67.8	70 dBA :	56	60
Medium Trucks	76.31	-10.56	-2.00	-1.20	62.6	43.4	35.6	44.8	50.9	51.0	65 dBA:	120	130
Heavy Trucks	81.16	-8.34	-2.00	-1.20	69.6	52.6	44.9	54.1	60.2	60.2	60 dBA :	259	280
				Total:	72.6	66.3	64.9	60.2	68.1	68.6	55 dBA :	557	604

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements
Scenario: EXISTING WITH PROJECT CONDITIONS
Site Conditions: Soft

East of Bellflower Boulevard

Vehicle Mix: 2 Roadway Classification: Major Avenue | LINE \quad (Equiv. Lane Dist: 49.44 ft$)$ | Centerline Distance to |
| :--- | :--- |
| Unmitigated Noise Levels | Noise Contour (in feet) |

Vehicle Mix: 1 Roadway Classification: Neighborhood Connector
 Segment: Vehicle Speed: 40 MPH

Carson Street
Average Daily Traffic: 33610 Vehicles Road Name: Sonant Street
Average Daily Traffic: 3820 Vehicles \quad Vehicle Speed: 15 MPH
Vehicle Type Automobiles Medium Trucks Heavy Trucks Peak
65.2
59.2
66.3
$\mathbf{6 9 . 2}$
69.2

.

 al:Total: OZレー
 Road Name: Wardlow Road Segment: $\begin{array}{rr}\text { Ldn } & \text { CNEL } \\ 56 & 61 \\ 120 & 131 \\ 260 & 281 \\ 559 & 606\end{array}$ 606
 Segment: Segment:
Vehicle Speed: 40 MPH

Road Name: Carson Street Average Daily Traffic: 35540 Vehicles
FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements
East of Bellflower Boulevard Site Conditions: Soft
Scenario: EXISTING WITH PROJECT CONDITIONS

AT 55 FEET FROM CENTERLINE ${ }^{\text {V }}$ (Equiv. Lante									倍
							Centerline Distance to Noise Contour (in feet)		
ts	Unmitigated Noise Levels								
dj. Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
-1.20	65.7	63.6	62.3	56.3	64.7	65.3	70 dBA :	24	27
-1.20	58.2	37.0	43.0	24.7	37.8	40.6	65 dBA:	53	58
-1.20	59.5	34.1	30.7	35.4	41.6	41.7	60 dBA :	114	125
Total:	67.2	63.6	62.3	56.3	64.7	65.4	55 dBA:	245	269

East of Bellflower Boulevard Classification: Major Avenue | $\begin{array}{c}\text { Distance to } \\ \text { nour (in feet) }\end{array}$ | |
| ---: | ---: |
| Ldn | |
| 41 | CNEL |
| 88 | 45 |
| 190 | 207 |
| 410 | 445 | East of Beliflower Boulevard

| Vehicle Mix: 2 | |
| :---: | :---: | 70 dBA:

$65 \mathrm{dBA}:$
$60 \mathrm{dBA}:$
$55 \mathrm{dBA}:$:孔uәubəs
Road Name: Spring Street
Average Daily Traffic: 27710 Vehicles Vehicle Speed: 40 MPH

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Project: LBCC 2041 Master Plan for the LAC Improvements
Scenario: YEAR 2041 WITHOUT PROJECT CONDITIONS
Project: LBCC 2041 Master Plan for the LAC improvements
Site Conditions: Soft

\section*{Road Name: Cherry Avenue
 Average Daily Traffic: 39180 Vehicles
 Roadway Classification: Major Avenue
 | Vehicle Sp | Vehicle Mix: 2 | | | | Road | | Classifica | Majo | enue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AT 90 FEET | ROM CE | NTERLINE | | quiv. Lane | | | Centerline Distance to Noise Contour (in feet) | | |
| ts | Unmitigated Noise Levels | | | | | | | | |
| dj. Finite Adj | Leq Peak | Leq Day | Leq Eve. | Leq Night | Ldn | CNEL | | Ldn | CNEL |
| -1.20 | 67.0 | 64.6 | 63.3 | 57.3 | 65.7 | 66.3 | 70 dBA : | 53 | 58 |
| -1.20 | 61.1 | 41.8 | 34.1 | 43.3 | 49.4 | 49.5 | 65 dBA : | 114 | 124 |
| $43-1.20$ | 68.1 | 51.1 | 43.4 | 52.6 | 58.7 | 58.7 | 60 dBA : | 246 | 267 |
| Total: | 71.1 | 64.8 | 63.4 | 58.6 | 66.6 | 67.1 | 55 dBA : | 531 | 576 |
| | Segme | nt: | North of | Carson Str | | | | | |

Road Name: Average Daily	Paramou affic: 264	Boulev Vehicle		Vehicle Sp	Segm 40 MP		North of Vehicle M	$\begin{aligned} & \text { Carson St } \\ & \text { lix: } 1 \end{aligned}$			oadway	fica	Local
		PARA	TERS	60 FEE	ROM CE	TERLINE	(quiv. Lane	,		Centerli	tan	
		oise Ad	ustments			Unm	itigated	Noise Leve			Noise C	(in	
Vehicle Type	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	2.78	-1.22	-1.20	67.7	65.6	64.3	58.3	66.7	67.3	70 dBA :	36	40
Medium Trucks	76.31	-14.46	-1.22	-1.20	59.4	38.2	44.2	25.9	39.1	41.8	65 dBA:	78	86
Heavy Trucks	81.16	-18.42	-1.22	-1.20	60.3	35.0	31.6	36.2	42.4	42.5	60 dBA:	168	185
				Total:	69.0	65.6	64.3	58.3	66.7	67.3	55 dBA :	362	399

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements
South of Del Amo Boulevard
Vehicle Mix: 3

 Road Name: Faculty Avenue

Roadway Classification: Local

Scenario: YEAR 2041 WITHOUT PROJECT CONDITIONS
Road Name: Lakewood Boulevard
Vehicle Speed: 40 MPH
 Site Conditions: Soft
FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

Scenario: YEAR 2041 WITHOUT PROJECT CONDITIONS
Road Name: Clark Avenue
Average Daily Traffic: 26180 Vehicles
Road Name: Clark Avenue
Average Daily Traffic: 22480 Vehicles Vehicle Speed: 35 MPH Vehicle Mix: $1 \quad$ Roadway Classification: Minor Avenue

Road Name: Clark Avenue
Average Daily Traffic: 27964 Vehicles
Vehicle Speed: 35 MPH

		AR		Vehicle Sp	d: 35 M		Vehic	x: 1	Road		Classification: Minor Avenue		
Vehicle Type	NOISE PARAMETERS AT 60 FEET Noise Adjustments REMEL Traffic Adj Dist Adj. Finite Adj				FROM CEN	NTERLINE		quiv. Lane			Centerline Distance to Noise Contour (in feet)		
					Unmitigated Noise Levels								
					Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	65.11	3.61	-0.72	-1.20	66.8	64.7	63.4	57.3	65.8	66.4	70 dBA:	31	35
Medium Trucks	74.83	-13.63	-0.72	-1.20	59.3	38.0	44.0	25.8	38.9	41.6	65 dBA :	68	75
Heavy Trucks	80.05	-17.59	-0.72	-1.20	60.5	35.2	31.8	36.4	42.6	42.7	60 dBA :	146	161
				Total:	68.3	64.7	63.4	57.4	65.8	66.4	55 dBA :	315	347

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

Vehicle Mix: $1 \quad$ Roadway Classification: Minor Avenue | INE \quad (Equiv. Lane Dist: 65.76 ft) | Centerline Distance to |
| :--- | :--- |
| Unmitigated Noise Levels | Noise Contour (in feet) |

37

80 \begin{tabular}{lllll|llll}
\& \& \& \& \&

33.5 \& 30.1 \& 34.7 \& 40.9 \& 41.0 \& $60 \mathrm{dBA}:$ \& 156 \& 172

\hline 64.1 \& 62.8 \& 56.8 \& $\mathbf{6 5 . 2}$ \& $\mathbf{6 5 . 8}$ \& $55 \mathrm{dBA}:$ \& 335 \& $\mathbf{3 7 0}$

\hline

64.1 \& 62.8 \& 56.8 \& 65.2 \& 65.8 \& $55 \mathrm{dBA}:$ \& 335 \& 370

\hline
\end{tabular} South of Conant Street

Scenario: YEAR 2041 WITHOUT PROJECT CONDITIONS

Road Name: Clark Avenue Average Daily Traffic: 21780 Vehicles Vehicle Speed: 40 MPH : Vehicle Mix: 1 Roadway Classification: Minor Avenue INE (Equiv. Lane Dist: 102.22 ft) \quad Centerline Distance to Unmitigated Noise Levels \quad Noise Contour (in feet) \begin{tabular}{rr|rr}
Ldn \& CNEL \& \& Ldn

CNEL

\hline

Ldn \& CNEL

\hline 33 \& 36

71 \& 79
\end{tabular} $\begin{array}{rr}71 & 79 \\ 154 & 169\end{array}$ 169

365 $331 \quad 365$ Average Daily Traffic: 22558 Vehicles Road Name: Clark Avenue Segment: NOISE PARAME Vehicle Speed: 40 MPH 89
-

$$
\begin{array}{l|rrr}
\hline \text { Automobiles } & 67.36 & 2.09 & -4.76 \\
\text { Medium Trucks } & 76.31 & -15.14 & -4.76 \\
\text { Heavy Trucks } & 81.16 & -19.10 & -4.76 \\
\cline { 2 - 4 } & &
\end{array}
$$

Road Name
Vehicle Type

 \begin{tabular}{l|rr}
Vehicle Type \& \multicolumn{2}{|c}{ REMEL Traffic Adj. }

\cline { 2 - 3 } Automobiles \& 67.36 \& 2.70

Medium Trucks \& 76.31 \& -14.54

Heavy Trucks \& 81.16 \& -18.50

\&

Road Name: \& \multicolumn{1}{c}{ Clark Avenue }

Average Daily Traffic: 21660 Vehicles

\hline \multicolumn{2}{|c}{ NOISE PARAM }

Vehicle Type \& \multicolumn{2}{|c}{ REMEL Traffic Adj. }

\cline { 2 - 3 } Automobiles \& 67.36 \& 2.70

Medium Trucks \& 76.31 \& -14.54

Heavy Trucks \& 81.16 \& -18.50

\&

Road Name: \& \multicolumn{2}{|c}{ Clark Avenue }

Average Daily Traffic: 21660 Vehicles

\hline
\end{tabular}

NOISE PARAMETERS AT słuәułsn!p \forall əs!on

$$
\frac{\text { ist Adj. }}{100}
$$

South of Spring Street Unmitigated Noise Levels

TEF

Vehicle Mix: 1 Roadway Classification: Minor Avenue INE (Equiv. Lane Dist: 65.76 ft) \quad Centerline Distance to ワ 「
 Vehicle Speed: 40 MPH

 \circ م 76.31
81.16
 Vehicle Type Automobiles Medium Trucks Heavy Trucks

\[
-1.89

\] | |
| :---: |
| Peak L |
| 66.2 |
| 57.9 |
| 58.8 |
| 67.4 |

Segment:

$$
\frac{\mathrm{ERL}}{\mathrm{ER}}
$$

$$
\underset{\sim}{\mathrm{S}} \left\lvert\, \begin{array}{cc}
\infty & 0 \\
\hline
\end{array}\right.
$$ $\stackrel{\omega}{0}$

∞
$\stackrel{\infty}{N}$
$\stackrel{\rightharpoonup}{1}$

Road Name: Clark Avenue

FHWA－RD－77－108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project：LBCC 2041 Master Plan for the LAC Improvements Site Conditions：Soft

Vehicle Mix： 2 Roadway Classification：Boulevard | INE \quad（Equiv．Lane Dist： 88.71 ft ） | Centerline Distance to |
| :--- | :--- |
| Jnmitigated Noise Levels | Noise Contour（in feet） |

 $\begin{array}{rr}\text { Ldn } & \text { CNEL } \\ 45 & 48\end{array}$ 104 207225 $447 \quad 484$

61.8
32.6
41.9
$63.3 \quad 61.9$

Roadway Classification：Boulevard Centerline Distance to
Noise Contour（in feet） Ldn CNEL $\begin{array}{rr}\text { Ldn } & \text { CNEL } \\ 50 & 54\end{array}$ N
둥 N 543
 Noise Adjustments Unmitigated Noise Levels

$\begin{array}{llll}71.0 & 64.8 & 63.3 & 58.6\end{array}$ 66
66
 Total：

Vehicle Type \begin{tabular}{l|lr}
Automobiles \& 67.36 \& 3.80

Automium Trucks \& 67.36 \& 36.31

Medium \& -11.07

Medium Trucks \& 76.31

Heavy Trucks \& 81.16
\end{tabular}

Scenario：YEAR 2041 WITHOUT PROJECT CONDITIONS
Road Name：Bellflower Boulevard
Average Daily
Vehicle Speed： 40 MPH
Total：

$$
\begin{aligned}
& \hline 3.84 \\
& 3.84 \\
& 3.84 \\
& \hline
\end{aligned}
$$

$$
69.6
$$

Road Name：Bellflower Boulevard Segment：South of Spring Street
Road Name：Bellflower Boulevard
Average Daily Traffic： 35350 Vehicles \quad Vehicle Speed： 40 MPH NOISE PARAMETERS AT 85 FEET FROM CENTERLINE
Vehicle Mix： 2
FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft Roadway Classification: Major Avenue

Road Name: Average Daily	Carson S affic: 276	ehicl		Vehicle Sp	$\begin{aligned} & \text { Segme } \\ & \text { ed: } 40 \mathrm{MPH} \end{aligned}$		West of Vehicle	Cherry Ave ix: 2		dway	lassific	,	Avenue
		PARA	ETERS A	T 55 FEET	ROM CEN	NTERLINE	(Eq	quiv. Lane	43.23		Centerli	stan	
		oise Ad	ustments			Unm	mitigated	Noise Leve			Noise C	(in	
Vehicle Type	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	2.73	0.84	-1.20	69.7	67.4	66.1	60.0	68.4	69.1	70 dBA:	50	54
Medium Trucks	76.31	-12.14	0.84	-1.20	63.8	44.6	36.8	46.0	52.2	52.2	65 dBA:	107	116
Heavy Trucks	81.16	-9.92	0.84	-1.20	70.9	53.9	46.1	55.3	61.5	61.5	60 dBA:	230	249
				Total:	73.8	67.6	66.1	61.4	69.3	69.9	55 dBA:	496	538

FHWA－RD－77－108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Project：LBCC 2041 Master Plan for the LAC Improvements
Site Conditions：Soft
West of Paramount Boulevard
Vehicle Mix： 2

Vehicle Mix： $2 \quad$ Roadway Classification：Major Avenue | LINE（Equiv．Lane Dist： 94.04 ft ） | Centerline Distance to |
| :--- | :--- |
| Unmitigated Noise Levels | Noise Contour（in feet） |

山信 | 70.3 | 64.1 | 62.6 | 57.9 | 65.8 | 66.4 | $55 \mathrm{dBA}:$ | 527 | 571 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

West of Lakewood Boulevard

Vehicle Mix： $2 \quad$ Roadway Classification：Major Avenue | Centerline Distance to |
| :--- |
| Noise Contour（in feet） | Noise Contour（in feet）

$\ddot{\text {－}}$ $\begin{array}{ll}\text { 元元 } \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 0 & 0 \\ 0 & 8\end{array}$

 sןəләך әs！on рәцеб！！！uu！ $\exists \mathrm{NI} 7$
\wedge
Road Name：Carson Street Segment：
Scenario：YEAR 2041 WITHOUT PROJECT CONDITIONS
Road Name：Carson Street
Average Daily Traffic： 39610 Vehicles NOISE PARAMETERS AT Noise Adjustments $\begin{array}{rr}\text { ffic Adj．} & \text { Dist Adj．} \\ 4.29 & -4.22\end{array}$ $\begin{array}{rr}4.29 & -4.22 \\ -10.58 & -4.22\end{array}$

Road Name：Carson Street
Road Name：Carson Street
Average Daily Traffic： 39920 Vehicles Vehicle Speed： 40 MPH Vehicle Mix： $2 \quad$ Roadway Classification：Major Avenue

Vehicle Type	NOISE PARAMETERS AT 70 FEET FROM CENTERLINE						（Equiv．Lane Dist： 61.19 ft ）				Centerline Distance to Noise Contour（in feet）		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj．	Dist Adj．	Finite Adj	Leq Peak	Leq Day	Leq Eve．	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	4.32	－1．42	－1．20	69.1	66.7	65.4	59.3	67.8	68.4	70 dBA：	57	62
Medium Trucks	76.31	－10．54	－1．42	－1．20	63.2	43.9	36.2	45.4	51.5	51.6	65 dBA：	123	133
Heavy Trucks	81.16	－8．32	－1．42	－1．20	70.2	53.2	45.4	54.7	60.8	60.8	60 dBA ：	264	287
				Total：	73.1	66.9	65.4	60.7	68.7	69.2	55 dBA ：	570	618

\footnotetext{
Road Name：Carson Street Segment：
Average Daily Traffic： 45180 Vehicles \quad Vehicle Speed： 40 MPH

East of Clark Avenue

Unmitigated Noise Levels

Centerline Distance to
Noise Contour（in feet）
Noise Contour（in fin
66
142 닝 ${ }_{0}^{\infty}$

61
131 $\underset{\sim}{\infty}$ N 607

亩元元元完 55 dBA ：

Vehicle Type	NOISE PARAMETERS AT 75 FEET FROM CENTERLINE						（Equiv．Lane Dist： 66.85 ft ）				Centerline Distance to Noise Contour（in feet）		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj．	Dist Adj．	Finite Adj	Leq Peak	Leq Day	Leq Eve．	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	4.86	－2．00	－1．20	69.0	66.7	65.4	59.3	67.7	68.4	70 dBA ：	61	66
Medium Trucks	76.31	－10．01	－2．00	－1．20	63.1	43.9	36.1	45.3	51.5	51.5	65 dBA：	131	142
Heavy Trucks	81.16	－7．79	－2．00	－1．20	70.2	53.2	45.4	54.6	60.8	60.8	60 dBA：	282	305
				Total：	73.1	66.9	65.4	60.7	68.6	69.1	55 dBA：	607	658

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements
East of Bellflower Boulevard

Roadway Classification: Major Avenue | INE \quad (Equiv. Lane Dist: 49.44 ft) | $\begin{array}{l}\text { Centerline Distance to } \\ \text { Noise Contour (in feet) }\end{array}$ |
| :--- | :--- |
| Jnmitigated Noise Levels | |

66
143
308
665
665

Road Name: Wardlow Road
Average Daily Traffic: 16960 Vehicles

Average Daily	fic: 169	Vehicles		Vehicle	仡		Vehic	x: 1		adway			venue
		PARA	ETERS A	T 45 FEE	FROM C	NTERLINE	(quiv. Lane	38.0			tan	
		oise Ad	ustments			Unm	mitigated	Noise Lev			Noise C	(in	
Vehicle Type	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	65.11	1.43	1.67	-1.20	67.0	64.9	63.6	57.6	66.0	66.6	70 dBA :	24	27
Medium Trucks	74.83	-15.80	1.67	-1.20	59.5	38.2	44.3	26.0	39.1	41.9	65 dBA:	53	58
Heavy Trucks	80.05	-19.76	1.67	-1.20	60.8	35.4	32.0	36.7	42.9	43.0	60 dBA :	113	125
				Tota	68.	64	63	57.6	6.	66	d	244	269

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Road Name: \quad Spring Street	Segment:	$\begin{array}{l}\text { East of Clark Avenue } \\ \text { Average Daily Traffic: } 32560 \text { Vehicles }\end{array}$

East of Bellflower Boulevard

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Project: LBCC 2041 Master Plan for the LAC Improvements | $\begin{array}{l}\text { Site Conditions: Soft } \\ \text { (SR-19) }\end{array}$ | | |
| :--- | :---: | :---: |
| vening | Night | Daily |
| 3.87% | 16.22% | 97.77% |
| $.17 \%$ | 0.48% | 1.61% |
| $.03 \%$ | 0.25% | 0.62% |
| | | |

Scenario: YEAR 2041 WITH PROJECT CONDITIONS
Vehicle Mix 2 (Vehicle Mix 2 (Arterial)) Vehicle Mix 3

\circ
0
0
0
0
0
0
:---
Automobiles
Medium Trucks
Heavy Trucks

Segment: North of Carson Street
Road Name: Cherry Avenue Segment: South of Carson Street
Road Name: Cherry Avenue
Average Daily Traffic: 39670 Vehic
Vehicle Mix: $2 \quad$ Roadway Classification: Major Avenue

 Vehicle Type \begin{tabular}{l|r}
\hline Automobiles \& 67.36

Medium Trucks \& 76.31

Heavy Trucks \& 81.16

\hline Automobiles \& 67.36

Medium Trucks \& 76.31

Heavy Trucks \& 81.16
\end{tabular}

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft
Scenario: YEAR 2041 WITH PROJECT CONDITIONS

South of Del Amo Boulevard

Vehicle Mix: 3 Roadway Classification: Regional Corridor \begin{tabular}{l|l}
INE (Equiv. Lane Dist: 103.94 ft$)$ \& $\begin{array}{l}\text { Centerline Distance to } \\
\text { Jnmitigated Noise Levels } \\
\text { Noise Contour (in feet) }\end{array}$

\hline

Ldn \& CNEL

59 \& 64

127 \& 138

275 \& 297

592 \& 639

\hline
\end{tabular}

\footnotetext{
$\begin{array}{lr}\text { Road Name: } \quad \text { Lakewood Boulevard } & \text { Segment: } \\ \text { Average Daily Traffic: } 41840 \text { Vehicles } & \text { Vehicle Speed: } 40 \mathrm{MPH}\end{array}$
Vehicle Mix: 3 Roadway Classification: Regional Corridor

AT 45 FEET FROM CENTERLINE (Equiv. Lane Dist: 27 ft)							Centerline Distance to Noise Contour (in feet)		
s	Unmitigated Noise Levels								
Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
-1.20	74.9	72.4	71.5	67.4	74.9	75.4	70 dBA:	96	104
-1.20	66.0	45.0	43.6	43.3	50.0	50.2	65 dBA :	207	224
-1.20	66.7	41.1	37.0	41.0	47.4	47.5	60 dBA :	447	483
Total:	75.9	72.4	71.5	67.4	75.0	75.5	55 dBA :	962	1040

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

Road Name: Clark Avenue
Vehicle Mix: $1 \quad$ Roadway Classification: Minor Avenue (Equiv. Lane Dist: 43.86 ft) \quad Centerline Distance to

Road Name: Clark Avenue

Roadway Classification: Minor Avenue
Centerline Distance to
Noise Contour (in feet)

|山|ㅆ쏭 $\underset{\sim}{\infty} 8$ | 0 |
| :--- |

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

South of Lew Davis Street

	Vehicle Type		
	REMEL Traffic Adj.	Dist Adj.	
Automobiles	67.36	2.09	-1.89
Medium Trucks	76.31	-15.15	-1.89
Heavy Trucks	81.16	-19.10	-1.89
Road Name:	Clark Avenue		
Average Daily Traffic: 24102 Vehicles			
NOISE PARAMETERS AT			

Road Name: Clark Avenue

South of Wardlow Road Segment:

Roadway Classification: Minor Avenue \begin{tabular}{l|l}
(Equiv. Lane Dist: 102.22 ft$)$ \& Centerline Distance to

 Noise Contour (in feet)

\& Ldn \& CNEL

\hline 70 dBA: \& 37 \& 41

 $\begin{array}{rrr}37 & 41 \\ 81 & 89 \\ 174 & 191\end{array}$

91

\hline 12

\hline

Total: \& 65.5 \& 62.2 \& 60.9 \& 54.9 \& 63.3 \& $\mathbf{6 3 . 9}$ \& $55 \mathrm{dBA}:$ \& 374 \& 412

\hline
\end{tabular}

Roadway Classification: Minor Avenue
 Road Name: Clark Avenue Average Daily Traffic: 27100 Vehicles Vehicle Speed: 40 MPH
Scenario: YEAR 2041 WITH PROJECT CONDITIONS
Road Name: Clark Avenue Road Name: Clark Avenue

Average Daily Traffic: 22552 Vehicles NOISE PARAMETERS Noise Adjustmen \begin{tabular}{l}
Vehicle Type

\hline Automobiles

Medium Truck

 NOISE PARAMETERS AT Vehicle Mix: 1 Vehicle Type

\hline Automobiles \& 67.36 \& 2.89

Medium Trucks \& 76.31 \& -14.35

Heavy Trucks \& 81.16 \& -18.30

\cline { 2 - 3 } \& \&

\hline Automobiles \& 67.36 \& 2.89

Medium Trucks \& 76.31 \& -14.35

Heavy Trucks \& 81.16 \& -18.30

\cline { 2 - 3 } \& \&

\hline Automobiles \& 67.36 \& 2.89

Medium Trucks \& 76.31 \& -14.35

Heavy Trucks \& 81.16 \& -18.30

\cline { 2 - 3 } \& \&
\end{tabular}

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL

Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft

North of Carson Street

Scenario: YEAR 2041 WITH PROJECT CONDITIONS
Road Name: Bellflower Boulevard

Road Name: $\begin{array}{l}\text { Bellflower Boulevard } \\ \text { Average Daily Traffic: } 32340 \text { Vehicles }\end{array} \quad \begin{array}{l}\text { Segment: }\end{array} \begin{array}{l}\text { South of Wardlow Road } \\ \text { Vehicle Mix: } 2\end{array}$

Road Name: Belflower Boulevard Segment:

Road Name: Bellflower Boulevard Segment: South of Spring Street

 \begin{tabular}{l}
Centerline Distance to

Noise Contour (in feet)

\hline

\& Ldn \& CNEL

\hline 70 dBA \& 51 \& 55
\end{tabular} $\begin{array}{rr}51 & 55 \\ 109 & 118 \\ 235 & 254\end{array}$ $\begin{array}{ll}235 & 254 \\ & 548\end{array}$ 506 $71.1 \quad$ West of Lakewood Boulevard $\quad 6$. Segment: West of Lakewood Boulevard

Roadway Classification: Major Avenue Centerline Distance to
Noise Contour (in feet)

CNEL
77
167
359
773 Ldn下思 두 713

Vehicle Mix. 2
INE (Equiv. Lane Dist: 36.66 ft)
FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft
Roadway Classification: Major Avenue

Roadway Classification: Local

Centerline Distance to

$\underset{\sim}{\sim} \stackrel{\sim}{n}$

$52 \quad 57$

Roadway Classification: Local

Noise Contour (in feet)

әпиәл \forall ло!eW :uo!!eo!!!sselО Кемреоу

Average Daily Traffic: 28130 Vehicles				Vehicle Speed: 40 MPH			Vehicle Mix: 2			Roadway Classification: Major Avenue			
Vehicle Type	NOISE PARAMETERS AT 55 FEET FROM CENTERLINE						(Equiv. Lane Dist: 43.23 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	2.80	0.84	-1.20	69.8	67.4	66.1	60.1	68.5	69.2	70 dBA :	50	54
Medium Trucks	76.31	-12.06	0.84	-1.20	63.9	44.7	36.9	46.1	52.3	52.3	65 dBA:	108	117
Heavy Trucks	81.16	-9.84	0.84	-1.20	71.0	54.0	46.2	55.4	61.6	61.6	60 dBA :	233	252
				Total:	73.9	67.6	66.2	61.5	69.4	69.9	55 dBA:	502	544

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements
West of Paramount Boulevard

$\begin{array}{lllllllll}70.5 & 64.2 & 62.8 & \mathbf{5 8 . 1} & \mathbf{6 6 . 0} & \mathbf{6 6 . 5} & 55 \mathrm{dBA}: & \mathbf{5 4 0} & 585\end{array}$
West of Lakewood Boulevard
Segment: West of Lakewood Boulevard

Road Name: Carson Street \quad Segment:
Average Daily Traffic: 46850 Vehicles \quad Vehicle Speed: 40 MPH
Average Daily Traffic: 46850 Vehicles Vehicle Speed: 40 MPH Vehicle Mix: $2 \quad$ Roadway Classification: Major Avenue

Vehicle Type	NOISE PARAMETERS AT 75 FEET FROM CENTERLINE						(Equiv. Lane Dist: 66.85 ft)				Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	c Adj.	Dist Adj	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	5.02	-2.00	-1.20	69.2	66.8	65.5	59.5	67.9	68.5	70 dBA :	62	67
Medium Trucks	76.31	-9.85	-2.00	-1.20	63.3	44.1	36.3	45.5	51.6	51.7	65 dBA :	134	145
Heavy Trucks	81.16	-7.63	-2.00	-1.20	70.3	53.3	45.6	54.8	60.9	61.0	60 dBA :	288	313
				Total:	73.3	67.0	65.6	60.9	68.8	69.3	55 dBA :	621	674

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements Site Conditions: Soft
Vehicle Mix: $2 \quad$ Roadway Classification: Major Avenue

Vehicle Type	NOISE PARAMETERS AT 60 FEET FROM CENTERLINE				FROM CENTERLINE (Equiv. Lane Dist: 49.44 ft)						Centerline Distance to Noise Contour (in feet)		
	Noise Adjustments				Unmitigated Noise Levels								
	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	67.36	4.54	-0.03	-1.20	70.7	68.3	67.0	60.9	69.4	70.0	70 dBA:	62	68
Medium Trucks	76.31	-10.33	-0.03	-1.20	64.8	45.5	37.8	47.0	53.1	53.2	65 dBA:	135	146
Heavy Trucks	81.16	-8.11	-0.03	-1.20	71.8	54.8	47.0	56.3	62.4	62.4	60 dBA :	290	314
				Total:	74.8	68.5	67.1	62.3	70.3	70.8	55 dBA :	625	677

Scenario: YEAR 2041 WITH PROJECT CONDITIONS
Road Name: Carson Street
Road Name: Carson Street
Average Daily Traffic: 39760 Vehicles Vehicle Speed: 40 MPH Vehicle Mix: $2 \quad$ Roadway Classification: Major Avenue

Segment: East of Clark Avenue

Road Name: Average Daily	Vardlow fic: 175	ehicle		Vehicle S	$\begin{array}{r} \text { Segme } \\ \text { ed: } 35 \mathrm{MP} \end{array}$		East of Vehicle	lark Avenu ix: 1		dway	lassific		enue
		PARA	ETERS	45 FEE	ROM CE	TERL		quiv. Lane	.		Ce	tan	
		oise Ad	ustments			Unm	mitigated	Noise Lev			Noise C	(
Vehicle Type	REMEL	ffic Adj.	Dist Adj.	Finite Adj	Leq Peak	Leq Day	Leq Eve.	Leq Night	Ldn	CNEL		Ldn	CNEL
Automobiles	65.11	1.59	1.67	-1.20	67.2	65.0	63.7	57.7	66.1	66.8	70 dBA:	25	28
Medium Trucks	74.83	-15.65	1.67	-1.20	59.6	38.4	44.4	26.1	39.3	42.0	65 dBA :	54	59
Heavy Trucks	80.05	-19.61	1.67	-1.20	60.9	35.6	32.2	36.8	43.0	43.1	60 dBA :	116	128
				Total:	68.7	65.1	63.8	57.8	66.2	66.8	55 dBA :	250	275

FHWA-RD-77-108 HIGHWAY TRAFFIC NOISE PREDICTION MODEL
Project: LBCC 2041 Master Plan for the LAC Improvements

East of Bellflower Boulevard

Roadway Classification: Major Avenue

Road Name: Spring Street \quad Segment:
Average Daily Traffic: 32680 Vehicles \quad Vehicle Speed: 40 MPH
Scenario: YEAR 2041 WITH PROJECT CONDITIONS

Road Name: Spring Street

1/3 Spectra												
Freq. (Hz):	6.3	8.0	10.0	12.5	16.0	20.0	25.0	31.5	40.0	50.0	63.0	80.0
LZeq	68.1	65.7	63.2	61.0	58.0	59.3	56.0	57.8	55.8	69.7	72.0	59.3
LZSmax	82.3	79.5	78.7	77.2	72.8	72.3	67.9	63.5	64.0	74.2	76.1	72.0
LZSmin	41.9	46.3	48.8	48.7	46.5	49.7	50.1	51.8	41.2	63.9	67.9	54.5
Freq. (Hz) :	100	125	160	200	250	315	400	500	630	800	1k	1.25k
LZeq	61.6	63.7	64.5	59.0	58.7	60.9	63.2	60.8	59.9	59.2	56.1	54.6
LZSmax	71.3	68.0	67.3	61.6	61.7	64.1	65.5	64.2	62.0	60.7	57.6	58.6
LZSmin	52.9	60.0	57.2	45.1	56.0	58.9	61.1	58.4	58.4	57.1	54.9	53.3
Freq. (Hz) :	1.6k	2k	2.5k	3.15 k	4 k	5k	6.3k	8k	10k	12.5k	16k	20k
LZeq	52.0	49.8	48.4	46.4	45.4	42.8	41.1	38.6	38.5	38.4	39.0	40.2
LZSmax	54.4	52.3	51.2	50.2	49.7	45.7	45.4	41.6	40.4	40.4	41.4	41.3
LZSmin	50.9	48.4	46.9	45.0	43.7	41.4	39.6	37.5	37.9	38.0	38.7	39.9
Calibration History												
Preamp										dB	1V/Pa	
PRM831				27	2013	17:53:07					-25.9	
PRM831				27	2013	13:36:08					-25.6	
PRM831				28	2013	15:34:24					-25.9	
PRM831				23	2013	10:17:33					-25.0	
PRM831				27	2013	19:15:30					-25.7	
PRM831				24	2013	12:00:16					-25.6	
PRM831					2013	07:50:44					-26.2	
PRM831				04	2013	13:47:46					-26.5	

1/3 Spectra												
Freq. (Hz):	6.3	8.0	10.0	12.5	16.0	20.0	25.0	31.5	40.0	50.0	63.0	80.0
LZeq	63.6	61.5	59.8	58.7	60.7	63.4	67.2	66.6	65.3	65.7	67.5	67.2
LZSmax	80.9	76.9	73.6	75.5	79.8	83.7	80.9	76.8	78.9	83.8	87.4	88.8
LZSmin	37.3	40.3	43.7	45.3	48.2	51.5	55.9	60.4	54.9	53.2	57.5	47.0
Freq. (Hz):	100	125	160	200	250	315	400	500	630	800	1k	1.25k
LZeq	61.7	61.0	54.9	52.9	57.0	53.2	57.3	54.1	52.1	54.5	53.3	52.7
LZSmax	76.0	71.0	69.8	65.8	64.6	65.6	67.0	71.0	67.1	65.9	72.9	73.0
LZSmin	52.1	48.8	46.7	42.4	46.2	44.6	43.2	38.5	38.6	39.0	39.4	38.2
Freq. (Hz) :	1.6k	2k	2.5k	3.15k	4k	5k	6.3k	8k	10k	12.5k	16k	20k
LZeq	52.5	50.9	50.7	49.0	46.4	44.5	43.0	41.7	41.1	40.0	39.6	40.0
LZSmax	75.9	69.6	63.7	63.8	64.4	64.7	63.3	62.7	62.7	60.8	57.9	52.5
LZSmin	37.2	35.4	34.6	33.1	32.6	32.8	33.6	34.7	35.9	36.7	37.7	39.4
Calibration History												
Preamp				Da						dB r	1V/Pa	
PRM831				27	2013	13:36:08					-25.6	
PRM831					2013	15:34:24					-25.9	
PRM831				23	2013	10:17:33					-25.0	
PRM831				27	2013	19:15:30					-25.7	
PRM831				24	2013	12:00:16					-25.6	
PRM831				15	2013	07:50:44					-26.2	
PRM831				04	2013	13:47:46					-26.5	

File Translated:

Model/Serial Number:
Firmware/Software Revs:
Name:
Descr1:
Descr2:
Setup/Setup Descr:
Location:
Note1:
Note2:
Overall Any Data
Start Time:
Elapsed Time:

Leq:		A Weight
		54.8 dBA
SEL:		81.9 dBA
Peak:		85.2 dBA
	19-May-2011	07:09:58
Lmax	(slow) :	67.9 dBA
	19-May-2011	07:09:50
Lmin	(slow):	43.7 dBA
	19-May-2011	07:11:17
Lmax	(fast) :	70.7 dBA
	19-May-2011	07:09:58
Lmin	(fast):	43.1 dBA
	19-May-2011	07:11:17
Lmax	(impulse):	72.1 dBA
	19-May-2011	07:09:58
Lmin	(impulse):	43.6 dBA
	19-May-2011	07:11:17

V:\Vista Env\2010\10022-Fresno Walmart\Noise Measurements\LD\15.slmdl
$824 /$ A3176
$4.283 / 3.120$

1021 Didrikson Way

Laguna Beach, CA 92651
slm\&rta.ssa / SLM \& Real-Time Analyzer
$30^{\prime} \mathrm{N}$ of vendor truck loading area for Fresno Walmart
Approx 70' S of Locust Ave CL
52F, 29.57 in Hg, 67\% Humid., no wind, clear sky

Spectra		
Date	Time	Run Time
19-May-2011	$07: 05: 53$	$00: 08: 30.5$

File Translated: V:\Vista Env\2010\10022-Fresno Walmart\Noise Measurements\LD\15.slmdl
Model/Serial Number: 824 / A3176
Current Any Data
Start Time:
19-May-2011 07:05:53
Elapsed Time:
00:08:30.5

		A Weight		C Weight		Flat	
Leq:		54.8 dBA		65.1 dBC		66.1 dBF	
SEL:		81.9 dBA		92.2 dBC		93.2 dBF	
Peak:		85.2 dBA		85.8 dBC		86.0 dBF	
	19-May-2011	07:09:58	19-May-2011	07:09:52	19-May-2011	07:09:52	
Lmax	(slow):	67.9 dBA		73.2 dBC		73.8 dBF	
	19-May-2011	07:09:50	19-May-2011	07:13:57	19-May-2011	07:13:57	
Lmin	(slow):	43.7 dBA		60.0 dBC		61.6 dBF	
	19-May-2011	07:11:17	19-May-2011	07:06:52	19-May-2011	07:06:51	
Lmax	(fast):	70.7 dBA		75.5 dBC		75.7 dBF	
	19-May-2011	07:09:58	19-May-2011	07:11:34	19-May-2011	07:11:34	
Lmin	(fast):	43.1 dBA		57.8 dBC		58.9 dBF	
	19-May-2011	07:11:17	19-May-2011	07:09:10	19-May-2011	07:09:10	
Lmax	(impulse):	72.1 dBA		76.8 dBC		77.1 dBF	
	19-May-2011	07:09:58	19-May-2011	07:11:34	19-May-2011	07:11:34	
Lmin	(impulse):	43.6 dBA		61.1 dBC		62.4 dBF	
	19-May-2011	07:11:17	19-May-2011	07:06:51	19-May-2011	07:09:10	
Calib	rated:	18-M	2011 13:09:02		Offset: -48	48.2 dB	
Check	ed:	19-M	011 06:46:08		Level: 113	.9 dB	
Calib	rator	not			Level: 114	. 0 dB	
Cal R	Records Count	: 0					
Inter	val Records	Dis			Number Inte	rval Records:	0
Histor	ry Records:	Dis			Number Hist	tory Records:	0
Run/S	top Records				Number Run/	Stop Records:	2

Note

Noise from swim meet, vehicles on Carson St and aircraft taking off from Long Beach Airport
76F, 29.91 in $\mathrm{Hg}, 51 \%$ hu, 2 mph wind, hazy sky

Overall Data								
LAeq							58.4	dB
LASmax			2018 Mar 30 12:38:41				67.5	dB
LApeak (max)			2018	Mar 30 12:43:36			94.1	dB
LASmin			2018 M	Mar 30 12:42:57			48.6	dB
LCeq							70.5	dB
LAeq							58.4	dB
LCeq - LAeq							12.1	dB
LAIeq							60.7	dB
LAeq							58.4	dB
LAIeq - LAeq							2.3	dB
Ldn							58.4	dB
LDay 07:00-22:00							58.4	dB
LNight 22:00-07:00							---	dB
Lden							58.4	dB
LDay 07:00-19:00							58.4	dB
LEvening 19:00-22:00							---	dB
LNight 22:00-07:00							---	dB
LAE							86.2	dB
\# Overloads							0	
Overload Duration							0.0	s
\# OBA Overloads							0	
OBA Overload Duration							0.0	S
Statistics								
LAS5.00							63.4	dBA
LAS10.00							61.8	dBA
LAS33. 30							58.0	dBA
LAS50.00							56.5	dBA
LAS66.60							55.2	dBA
LAS90.00							52.1	dBA
LAS > 65.0 dB (Exceedence Counts / Duration)							22.6	S
LAS > 85.0 dB (Exceedence Counts / Duration)							0.0	S
LApeak > 135.0 dB (Exceedence Counts / Duration)						0	0.0	S
LApeak > 137.0 dB (Exceedence Counts / Duration)							0.0	S
LApeak > 140.0 dB (Exceedence Counts / Duration)						\bigcirc	0.0	S
Settings								
RMS Weight						A W	ting	
Peak Weight						A W	ting	
Detector							Slow	
Preamp							M831	
Integration Method							near	
OBA Range							Low	
OBA Bandwidth						1/1	$1 / 3$	
OBA Freq. Weighting						Z W	ting	
OBA Max Spectrum							Max	
Gain							+0	dB
Under Range Limit							26.1	dB
Under Range Peak							75.8	dB
Noise Floor							17.0	dB
Overload							43.4	dB
1/1 Spectra								
Freq. (Hz): 8.0 16.0 31.5 63.0	125	250	500	1k	2k	4k	8k	16k
$\begin{array}{llll}\text { LZeq } & 60.0 & 63.3 & 64.6\end{array}$	64.9	59.0	55.3	54.3	47.5	38.6	28.3	22.8
$\begin{array}{lllll}\text { LZSmax } & 77.4 & 76.5 & 77.4 & 80.2\end{array}$	79.6	71.3	67.5	65.0	57.6	49.9	50.6	47.6
$\begin{array}{lllll}\text { LZSmin } & 49.8 & 55.5 & 58.3 & 52.8\end{array}$	52.1	45.5	43.9	44.1	36.5	29.9	16.1	13.3

1/3 Spectra												
Freq. (Hz):	6.3	8.0	10.0	12.5	16.0	20.0	25.0	31.5	40.0	50.0	63.0	80.0
LZeq	54.8	54.3	56.9	57.7	58.0	59.8	60.1	55.0	62.1	62.0	63.3	63.0
LZSmax	72.7	74.6	74.8	71.6	74.1	74.3	70.8	62.2	77.2	76.4	77.1	79.8
LZSmin	38.5	41.7	42.7	45.8	40.8	51.1	53.9	49.7	52.6	47.8	52.7	48.2
Freq. (Hz) :	100	125	160	200	250	315	400	500	630	800	1k	1.25k
LZeq	62.2	58.1	59.5	55.2	55.2	50.4	51.0	50.2	50.3	50.5	50.1	47.6
LZSmax	79.2	75.9	72.5	69.8	70.8	64.1	66.3	64.1	62.5	63.2	62.9	60.1
LZSmin	49.6	45.0	44.9	38.5	40.0	34.1	38.5	39.1	39.2	39.6	39.4	37.1
Freq. (Hz) :	1.6k	2k	2.5k	3.15 k	4k	5k	6.3k	8k	10k	12.5k	16k	20k
LZeq	45.0	42.3	39.1	37.0	32.5	27.4	24.3	24.0	21.5	18.8	18.1	14.0
LZSmax	55.8	53.0	51.1	50.2	45.4	42.3	42.8	47.4	45.4	43.3	42.6	37.8
LZSmin	34.3	30.5	27.7	26.9	24.5	18.6	12.0	10.7	8.7	7.9	8.9	8.6
Calibration History												
Preamp				Da						dB r	1V/Pa	
PRM831				30	2018	12:23:25					-25.8	
PRM831				07	2018	13:40:34					-25.8	
PRM831				28	2018	12:16:10					-25.9	
PRM831				30	2018	23:18:32					-26.2	
PRM831				30	2018	13:42:45					-26.2	
PRM831				30	2018	13:32:25					-26.0	
PRM831				30	2018	10:54:43					-26.0	
PRM831				06	2018	13:07:04					-26.0	
PRM831				19	2017	10:41:35					-25.5	
PRM831					2017	08:21:25					-25.2	
PRM831				11	2017	12:05:04					-25.5	

Session Report

2/1/2017

Information Panel

Name
Start Time
Stop Time
Device Name
Model Type
Device Firmware Rev

Comments

Summary Data Panel

Description	Meter	Value	Description	Meter	Value
Leq	1	58.9 dB			
Exchange Rate	1	3 dB	Weighting	1	A
Response	1	SLOW	Bandwidth	1	OFF
Exchange Rate	2	3 dB	Weighting	2	A
Response	2	FAST			

Statistics Chart

S087_BLH080004_01022017_072920: Statistics Chart

Exceedance Chart

S087_BLH080004_01022017_072920: Exceedance Chart

Statistics Table

dB:	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	\%
49:	0.00	0.00	0.00	0.00	0.00	0.04	0.02	0.06	0.11	0.05	0.29
50:	0.03	0.02	0.02	0.05	0.07	0.13	0.14	0.15	0.20	0.22	1.02
51:	0.27	0.43	0.25	0.49	0.41	0.41	0.45	0.50	0.53	0.73	4.47
52:	0.73	0.66	0.75	0.90	0.93	1.19	1.23	1.08	1.13	1.16	9.76
53:	1.26	1.36	1.12	1.16	1.21	1.29	1.22	1.26	1.20	1.27	12.35
54:	1.51	1.51	0.86	1.14	1.18	1.09	0.99	1.05	1.15	1.10	11.58
55:	1.05	1.08	1.09	1.14	1.07	0.98	1.02	0.93	0.95	0.96	10.27
56:	0.98	0.88	0.95	0.98	0.90	1.08	0.99	0.90	0.93	0.86	9.45
57:	1.02	1.07	0.68	0.95	0.83	0.81	0.69	0.66	0.69	0.67	8.06
58:	0.75	0.73	0.74	0.76	0.72	0.74	0.70	0.65	0.69	0.58	7.07
59:	0.52	0.52	0.57	0.55	0.58	0.51	0.54	0.50	0.54	0.59	5.43
60:	0.55	0.54	0.42	0.47	0.47	0.48	0.48	0.57	0.50	0.47	4.96
61:	0.52	0.47	0.50	0.47	0.46	0.44	0.50	0.42	0.40	0.34	4.51
62:	0.38	0.33	0.30	0.26	0.28	0.31	0.26	0.26	0.33	0.30	2.99
63:	0.26	0.25	0.15	0.18	0.18	0.15	0.21	0.16	0.16	0.15	1.86
64:	0.19	0.22	0.17	0.17	0.16	0.17	0.17	0.18	0.15	0.14	1.72
65:	0.15	0.13	0.13	0.12	0.12	0.11	0.14	0.17	0.19	0.15	1.41
66:	0.14	0.17	0.09	0.14	0.14	0.11	0.11	0.09	0.09	0.08	1.16
67:	0.12	0.08	0.06	0.07	0.06	0.07	0.07	0.07	0.06	0.05	0.71
68:	0.06	0.07	0.07	0.06	0.06	0.05	0.05	0.05	0.05	0.05	0.56
69:	0.04	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.01	0.23
70:	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.07
71:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03
72:	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02

Exceedance Table

	$\mathbf{0 \%}$	$\mathbf{1 \%}$	$\mathbf{2 \%}$	$\mathbf{3 \%}$	$\mathbf{4 \%}$	$\mathbf{5 \%}$	$\mathbf{6 \%}$	$\mathbf{\% 7}$	$\mathbf{\% 8}$	$\mathbf{\% 9}$
$0 \%:$		67.7	66.5	65.7	65.0	64.4	63.8	63.2	62.8	62.4
10\%:	62.1	61.8	61.5	61.3	61.1	60.9	60.7	60.5	60.3	60.1
20\%:	59.9	59.7	59.5	59.3	59.2	59.0	58.8	58.6	58.5	58.4
$30 \%:$	58.2	58.1	57.9	57.8	57.7	57.5	57.4	57.3	57.2	57.0
$40 \%:$	56.9	56.8	56.7	56.6	56.5	56.4	56.3	56.2	56.1	56.0
$50 \%:$	55.9	55.8	55.7	55.6	55.5	55.4	55.3	55.2	55.1	55.0
$60 \%:$	54.9	54.8	54.7	54.6	54.5	54.4	54.3	54.3	54.2	54.1

| 53.3 | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $70 \%:$ | 54.0 | 53.9 | 53.9 | 53.8 | 53.7 | 53.6 | 53.5 | 53.5 | 53.4 | 53.3 |
| $80 \%:$ | 53.2 | 53.1 | 53.0 | 53.0 | 52.9 | 52.8 | 52.7 | 52.6 | 52.5 | 52.5 |
| $90 \%:$ | 52.4 | 52.3 | 52.2 | 52.0 | 51.9 | 51.7 | 51.5 | 51.3 | 51.0 | 50.7 |
| $100 \%:$ | 49.3 | | | | | | | | | |

Logged Data Chart

S087_BLH080004_01022017_072920: Logged Data Chart

Date/Time

Traffic Impact Analysis Report
 LBCCD 2041 Master Plan

Liberal Arts Campus
Long Beach, California
January 19, 2018

Prepared for:

Chambers Group, Inc.
5 Hutton Centre Drive, Suite 750
Santa Ana, California 92707

LLG Ref. 2-17-3886-1

Prepared by:
Daniel A. Kloos, P.E. Senior Transportation Engineer

Under the Supervision of:
Paul W. Wilkinson, P.E.
Principal

Linscott, Law \& Greenspan, Engineers
2 Executive Circle
Suite 250
Invine, CA92614
999.825 .6175 T
949.825 .6173 ;
www.llgengineers.com

Table of Contents

Section Page
1.0 Introduction 1
1.1 Scope of Work 1
1.2 Study Area 2
2.0 Project Description 4
2.1 Site Access 4
3.0 Existing Conditions. 5
3.1 Existing Street System 5
3.2 Existing Traffic Volumes 6
3.3 Existing Public Transit. 6
3.4 Existing Bicycle Master Plan 6
3.5 Existing Intersection Conditions 6
3.5.1 Intersection Capacity Utilization Method of Analysis (Signalized Intersections). 6
3.5.2 Highway Capacity Manual Method of Analysis (Unsignalized Intersections) 7
3.6 Level of Service Criteria 7
3.7 Existing Level of Service Results 7
4.0 Traffic Forecasting Methodology 12
5.0 Project Traffic Characteristics 13
5.1 Project Traffic Generation 13
5.2 Project Traffic Distribution and Assignment 13
5.3 Existing Plus Project Traffic Conditions 13
6.0 Future Traffic Conditions 15
6.1 Ambient Traffic Growth 15
6.2 Cumulative Projects Traffic Characteristics 15
6.3 Year 2041 Cumulative Traffic Volumes 16
7.0 Traffic Impact Analysis Methodology 20
7.1 Impact Criteria and Thresholds 20
7.1.1 City of Long Beach 20
7.1.2 City of Lakewood 20
7.2 Traffic Impact Analysis Scenarios 21
8.0 Peak Hour Intersection Capacity Analysis 22
8.1 Existing Plus Project Analysis 22
8.1.1 Existing Plus Project Traffic Conditions 22
8.2 Year 2041 Traffic Conditions 23
8.2.1 Year 2041 Buildout Traffic Conditions (Without Project Traffic) 23
8.2.2 Year 2041 Buildout Plus Project Conditions 24

TABLE OF CONTENTS (CONTINUED)

SECTION Page
9.0 Recommended Improvements 31
9.1 Existing Plus Project Traffic Conditions 31
9.2 Year 2041 Plus Project Traffic Conditions 32
10.0 Summary Of Findings And Conclusions 33

ApPENDICES

APPENDIX

A. Existing Traffic Count Data
B. Intersection Level of Service Calculation Worksheets

List OF Figures

Section-Figure\# Following Page
1-1 Vicinity Map 3
2-1 Existing Site Aerial 4
2-2 Proposed Site Plan 4
3-1 Existing Roadway Conditions and Intersection Controls 6
3-2 Existing AM Peak Hour Traffic Volumes 6
3-3 Existing PM Peak Hour Traffic Volumes 6
3-4 Existing Long Beach Transit Map 6
3-5 Transit Stop Locations 6
3-6 Long Beach Bikeway Facilities 6
5-1 Project Traffic Distribution Pattern 14
5-1A Detailed Project Site Traffic Distribution Pattern 14
5-2 AM Peak Hour Project Traffic Volumes 14
5-3 PM Peak Hour Project Traffic Volumes 14
5-4 Existing Plus Project AM Peak Hour Traffic Volumes 14
5-5 Existing Plus Project PM Peak Hour Traffic Volumes 14
6-1 Location of Cumulative Projects 19
6-2 AM Peak Hour Cumulative Project Traffic Volumes 19
6-3 PM Peak Hour Cumulative Project Traffic Volumes 19
6-4 Year 2041 Buildout AM Peak Hour Traffic Volumes. 19
6-5 Year 2041 Buildout PM Peak Hour Traffic Volumes 19
6-6 Year 2041 Buildout Plus Project AM Peak Hour Traffic Volumes 19
6-7 Year 2041 Buildout Plus Project PM Peak Hour Traffic Volumes 19
9-1 Existing Plus Project Recommended Improvements 32
9-2 Year 2041 Buildout Plus Project Recommended Improvements 32

List of Tables

| SECTION—TABLE\# | PAGE |
| :--- | :--- | :--- |
| $3-1$ | Level of Service Criteria For Signalized Intersections ... 8 |
| $3-2$ | Level of Service Criteria For Unsignalized Intersections ... 9 |
| $3-3$ | Existing Peak Hour Intersection Capacity Analysis Summary.................................. 10-11 |
| $5-1$ | Project Traffic Generation Forecast... 14 |
| $6-1$ | Location and Description of Cumulative Projects.. 17-18 |
| $6-2$ | Cumulative Projects Traffic Generation Forecast.. 19 |
| $8-1$ | Existing Plus Project Peak Hour Intersection Capacity Analysis Summary 25-27 |
| $8-2$ | Year 2041 Plus Project Peak Hour Intersection Capacity Analysis Summary........ 28-30 |

Traffic Impact Analysis Report
 LBCCD 2041 Master Plan - Liberal Arts Campus
 Long Beach, California
 January 19, 2018

1.0 InTRODUCTION

This Traffic Impact Analysis report addresses the potential traffic impacts associated with the proposed LBCCD 2041 Master Plan - Liberal Arts Campus (hereinafter referred to as Project). The project site is generally bounded by Harvey Way to the north, Conant Street to the south, Faculty Avenue to the west and Clark Avenue to the east in the City of Long Beach, California. The proposed Project will generally consist of the construction of new campus facilities and the renovation of existing campus facilities to meet the District's instructional needs and to accommodate growth in the student body over the planning horizon.

1.1 Scope of Work

This traffic report documents the findings and recommendations of a traffic impact analysis conducted by Linscott, Law \& Greenspan, Engineers (LLG) to determine the potential impacts associated with the proposed Project. The traffic analysis evaluates the operating conditions at twenty-one (21) key study locations within the project vicinity, estimates the trip generation potential of the proposed Project, superimposes the project-related traffic volumes on the circulation system as it currently exists, and forecasts future operating conditions without and with the proposed Project. Where necessary, intersection improvements/mitigation measures are identified.

The project site has been visited and an inventory of adjacent area roadways and intersections was performed. Existing peak hour traffic information has been collected at twenty-one (21) key study locations on a "typical" weekday for use in the preparation of intersection level of service calculations. A "typical" weekday constitutes a Tuesday, Wednesday or Thursday and refers to a non-holiday condition when local schools are in session. Information concerning cumulative projects (planned and/or approved) in the vicinity of the proposed Project (i.e. within a 2-mile radius) has been researched at the Cities of Long Beach and Lakewood. Based on our research, there are four (4) cumulative projects located in the City of Long Beach and twenty-two (22) cumulative projects located in the City of Lakewood. These twenty-six (26) cumulative projects were considered in the cumulative traffic analysis for this project.

This traffic report satisfies the traffic impact requirements of the Cities of Long Beach and Lakewood and is consistent with the most current Congestion Management Program (CMP) for Los Angeles County. This traffic report analyzes existing and future weekday AM peak hour and PM peak hour traffic conditions for a Year 2041 traffic setting upon completion of the proposed Project. Peak hour traffic forecasts for the Year 2041 horizon year have been projected by increasing existing (2017) traffic volumes by an annual growth rate of 0.708 percent per year and adding traffic volumes generated by twenty-six (26) cumulative projects.

1.2 Study Area

A total of twenty-one (21) locations have been selected for evaluation based on discussions with City of Long Beach staff, and based on review of the existing transportation system surrounding the proposed Project site. Of the 21 identified locations, fourteen (14) are located in the City of Long Beach, three (3) are located in the City of Lakewood and four (4) are located jointly in the Cities of Long Beach and Lakewood. The 21 locations listed below provide regional and local access to the study area, as well as the project site, and define the extent of the boundaries for this traffic impact investigation. The local jurisdiction of each key study location is also identified.

Key Study Locations

1. Lakewood Boulevard at Del Amo Boulevard (City of Lakewood)
2. Clark Avenue at Del Amo Boulevard (City of Lakewood)
3. Lakewood Boulevard at Harvey Way (City of Long Beach/City of Lakewood)
4. Clark Avenue at Harvey Way (City of Long Beach)
5. Cherry Avenue at Carson Street (City of Long Beach)
6. Paramount Boulevard at Carson Street (City of Long Beach)
7. Lakewood Boulevard at Carson Street (City of Long Beach/City of Lakewood)
8. Faculty Avenue at Carson Street (City of Long Beach)
9. Clark Avenue at Carson Street (City of Long Beach)
10. Bellflower Boulevard at Carson Street (City of Long Beach/City of Lakewood)
11. Woodruff Avenue at Carson Street (City of Long Beach/City of Lakewood)
12. Clark Avenue at Lew Davis Street (City of Long Beach)
13. Lakewood Boulevard at Conant Street (City of Long Beach)
14. Faculty Avenue at Conant Street (City of Long Beach)
15. Clark Avenue at Conant Street (City of Long Beach)
16. Lakewood Boulevard at Wardlow Road (City of Long Beach)
17. Clark Avenue at Wardlow Road (City of Long Beach)
18. Bellflower Boulevard at Wardlow Road (City of Long Beach)
19. Lakewood Boulevard at Spring Street (City of Long Beach)
20. Clark Avenue at Spring Street (City of Long Beach)
21. Bellflower Boulevard at Spring Street (City of Long Beach)

Figure 1-1 presents a Vicinity Map, which illustrates the general location of the Project. It also identifies the 21 study locations on the surrounding street system.

The Volume-Capacity (V/C) and Level of Service (LOS) investigations at these key locations were used to evaluate the potential traffic-related impacts associated with area growth, cumulative projects and the proposed Project. When necessary, this report recommends intersection improvements that may be required to accommodate future traffic volumes and restore/maintain an acceptable Level of Service, and/or mitigates the impact of the project.

Included in this Traffic Impact Analysis are:

- Existing traffic counts,
- Forecast project traffic generation/distribution/assignment,
- Forecast cumulative project traffic generation/distribution/assignment,
- AM and PM peak hour capacity analyses for existing conditions,
- AM and PM peak hour capacity analyses for existing plus project conditions,
- AM and PM peak hour capacity analyses for future Year 2041 traffic conditions without and with the proposed Project, and
- Recommended Improvements.

engineers
$\mathrm{N}_{\text {No scale }}$
SOURCE: GOOGLE
\# $=$ STUDY INTERSECTION
暮 = PROJECT SITE

2.0 Project Description

The project site is generally bounded by Harvey Way to the north, Conant Street to the south, Faculty Avenue to the west and Clark Avenue to the east in the City of Long Beach, California. Figure 2-1 presents an aerial depiction of the existing site.

Figure 2-2 presents the proposed site plan for the proposed Project, which shows the locations of the proposed renovations and new construction. As shown, the proposed Project will generally consist of the construction of new campus facilities and the renovation of existing campus facilities to meet the District's instructional needs and to accommodate growth in the student body over the planning horizon. All project components are expected to be completed by the Year 2041.

The Liberal Arts Campus has a current baseline (Year 2017) student enrollment of 20,642 students. As stated above, the renovation of existing campus facilities and the construction of new campus facilities are required to meet the District's instructional needs and to accommodate growth in the student body. At completion of the Master Plan in the Year 2041, the Liberal Arts Campus is projected to accommodate a future student enrollment of 28,100 students, resulting in a net increase of 7,458 students over the existing student enrollment.

2.1 Site Access

Vehicular access to the Liberal Arts Campus would continue to be provided via various unsignalized access driveways located along Faculty Avenue, Harvey Way, Clark Avenue, Lew Davis Street and Conant Street.

N
FIGURE 2-2

PROPOSED SITE PLAN LBCCD 2041 MASTER PLAN - LIBERAL ARTS CAMPUS, LONG BEACH

3.0 Existing Conditions

3.1 Existing Street System

The principal local network of streets serving the project site are Carson Street, Lakewood Boulevard and Clark Avenue. The following discussion provides a brief synopsis of these key area streets. The descriptions are based on an inventory of existing roadway conditions.

Carson Street is generally a six-lane, divided roadway, oriented in the east-west direction that bisects the Liberal Arts Campus. The posted speed limit on Carson Street is 40 miles per hour (mph). On-street parking is generally not permitted along this roadway in the vicinity of the project, except between Clark Avenue and Bellflower Boulevard. Traffic signals control the study intersections of Carson Street at Cherry Avenue, Paramount Boulevard, Lakewood Boulevard, Clark Avenue, Bellflower Boulevard and Woodruff Avenue.

Lakewood Boulevard is generally a six-lane, divided roadway north of Del Amo Boulevard, generally a four-lane, divided roadway between Del Amo Boulevard and Carson Street, generally a six-lane, divided roadway between Carson Street and Conant Street and generally an eight-lane, divided roadway south of Conant Street, oriented in the north-south direction. The posted speed limit on Lakewood Boulevard is 40 mph north of Carson Street and 45 mph south of Carson Street. On-street parking is generally not permitted along this roadway north of Centralia Street, generally permitted along this roadway between Centralia Street and Carson Street and generally not permitted along this roadway south of Carson Street. Traffic signals control the study intersections of Lakewood Boulevard at Del Amo Boulevard, Harvey Way, Carson Street, Conant Street, Wardlow Road and Spring Street.

Clark Avenue is generally a four-lane, divided roadway north of Del Amo Boulevard, generally a three-lane, divided roadway between Del Amo Boulevard and Centralia Street, generally a two-lane, divided roadway between Centralia Street and Harvey Way, generally a three-lane, divided roadway between Harvey Way and Carson Street, generally a four-lane, divided roadway between Carson Street and Wardlow Road and generally a six-lane, divided roadway south of Wardlow Road, oriented in the north-south direction. Clark Avenue borders the project site to the east and currently provides access to the site via several driveways. The posted speed limit on Clark Avenue is 35 mph north of Carson Street and 40 mph south of Carson Street. On-street parking is generally permitted along this roadway between Del Amo Boulevard and Centralia Street, generally permitted on the east side of this roadway between Centralia Street and Conant Street and generally not permitted along this roadway south of Conant Street. Traffic signals control the study intersections of Clark Avenue at Del Amo Boulevard, Harvey Way, Carson Street, Lew Davis Street, Conant Street, Wardlow Road and Spring Street.

Figure 3-1 presents an inventory of the existing roadway conditions for the arterials and intersections evaluated in this report. This figure identifies the number of travel lanes for key arterials, as well as intersection configurations and controls for the key area study intersections.

3.2 Existing Traffic Volumes

Twenty-one (21) key study intersections have been identified as the locations at which to evaluate existing and future traffic operating conditions. Some portion of potential project-related traffic will pass through each of these intersections, and their analysis will reveal the expected relative impacts of the project. Existing daily, AM peak hour and PM peak hour traffic volumes for the locations evaluated in this report were obtained from daily machine and manual peak hour turning movement counts conducted by Transportation Studies Inc. in November 2017.

Figures 3-2 and 3-3 illustrate the existing AM and PM peak hour traffic volumes at the key study intersections evaluated in this report, respectively. Appendix A contains the detailed peak hour count sheets for the key intersections evaluated in this report.

3.3 Existing Public Transit

Long Beach Transit (LBT) provides public transit services in the vicinity of the proposed Project. Figure 3-4 graphically illustrates the LBT routes within the project study area, respectively. Figure 3-5 identifies the location of the existing bus stops in proximity to the Project site.

3.4 Existing Bicycle Master Plan

The City of Long Beach promotes bicycling as a means of mobility and a way in which to improve the quality of life within its community. The Bicycle Master Plan recognizes the needs of bicycle users and aims to create a complete and safe bicycle network throughout the City. The City of Long Beach Bicycle Facilities in the vicinity of the Project site (existing and proposed) is shown on Figure 3-6.

3.5 Existing Intersection Conditions

Existing AM and PM peak hour operating conditions for the key signalized study intersections were evaluated using the Intersection Capacity Utilization (ICU) methodology. All unsignalized intersections were evaluated using the Highway Capacity Manual (HCM) Operations methodology.

3.5.1 Intersection Capacity Utilization (ICU) Method of Analysis (Signalized Intersections)

In conformance with City of Long Beach, City of Lakewood and LA County CMP requirements, existing weekday peak hour operating conditions for the key signalized study intersections were evaluated using the Intersection Capacity Utilization (ICU) method. The ICU technique is intended for signalized intersection analysis and estimates the volume to capacity (V/C) relationship for an intersection based on the individual V/C ratios for key conflicting traffic movements. The ICU numerical value represents the percent signal (green) time, and thus capacity, required by existing and/or future traffic. It should be noted that the ICU methodology assumes uniform traffic distribution per intersection approach lane and optimal signal timing.

Per City of Long Beach and City of Lakewood requirements, the ICU calculations use a lane capacity of 1,600 vehicles per hour (vph) for left-turn, through, and right-turn lanes, and dual left turn capacity of $2,880 \mathrm{vph}$. A clearance adjustment factor of 0.10 was added to each Level of Service calculation.

N

= UNDIVIDED, $\mathrm{D}=$ DIVIDED
$\mathrm{DF}=$ DEFACTO RIGHT-TURN

FIGURE 3-2
o scale

$\frac{10}{N}$

FIGURE 3-3
no scale

$$
\frac{\text { KEY }}{\square=\text { PROJECT SITE }}
$$

(1)

SOURCE: CITY OF LONG BEACH
$\because=$ PROJECT SITE

The ICU value translates to a Level of Service (LOS) estimate, which is a relative measure of the intersection performance. The ICU value is the sum of the critical volume to capacity ratios at an intersection; it is not intended to be indicative of the LOS of each of the individual turning movements. The six qualitative categories of Level of Service have been defined along with the corresponding ICU value range and are shown in Table 3-1.

3.5.2 Highway Capacity Manual (HCM) Method of Analysis (Unsignalized Intersections)

The HCM unsignalized methodology for stop-controlled intersections was utilized for the analysis of the unsignalized intersections. This methodology estimates the average control delay for each of the subject movements and determines the level of service for each movement. For all-way stop controlled intersections, the overall average control delay measured in seconds per vehicle, and level of service is calculated for the entire intersection. For one-way and two-way stop-controlled (minor street stop-controlled) intersections, this methodology estimates the worst side street delay, measured in seconds per vehicle and determines the level of service for that approach. The HCM control delay value translates to a Level of Service (LOS) estimate, which is a relative measure of the intersection performance. The six qualitative categories of Level of Service have been defined along with the corresponding HCM control delay value range, as shown in Table 3-2.

3.6 Level of Service Criteria

According to the City of Long Beach, LOS D is the minimum acceptable condition that should be maintained during the peak commute hours, or the current LOS if the existing LOS is worse than LOS D (i.e. LOS E of F). For the study intersections in the City of Lakewood, LOS D is the minimum acceptable condition that should be maintained during the peak commute hours

3.7 Existing Level of Service Results

Table 3-3 summarizes the existing peak hour service level calculations for the twenty-one (21) key study intersections based on existing traffic volumes and current street geometrics. Review of Table 3-3 indicates that three (3) of the twenty-one (21) key study intersections currently operate at an unacceptable LOS during the AM and/or PM peak hours. The remaining eighteen (18) key study intersections currently operate at acceptable LOS D or better during the AM and/or PM peak hours. The intersections operating at an adverse level of service are:

	AM Peak Hour		PM Peak Hour	
Key Intersection	ICU/HCM	LOS	ICU/HCM	LOS
1. Lakewood Boulevard at Del Amo Boulevard	0.905	E	0.958	E
8. Faculty Avenue at Carson Street	47.7 s/v	E	40.0 s/v	E
10. Bellflower Boulevard at Carson Street	---	---	0.936	E

Appendix B presents the ICU/LOS and HCM/LOS calculation worksheets for the key study intersections for the AM peak hour and PM peak hour.

Table 3-1
Level of Service Criteria For Signalized Intersections

Level of Service (LOS)	Intersection Capacity Utilization Value (V/C)	Level of Service Description
A	≤ 0.600	EXCELLENT. No vehicle waits longer than one red light, and no approach phase is fully used. VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles. GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles. BAIR. Delays may be substantial during
C	$0.601-0.700$ ($\quad 0.801-0.900$	portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups. POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.
D	$0.901-1.000$	FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Potentially very long delays with continuously increasing queue lengths.
E	>1.000	

Table 3-2
Level of Service Criteria For Unsignalized Intersections ${ }^{1}$

Level of Service (LOS)	Highway Capacity Manual Delay Value (sec/veh)	Level of Service Description
A	≤ 10.0	Little or no delay
B	>10.0 and ≤ 15.0	Short traffic delays
C	>15.0 and ≤ 25.0	Average traffic delays
D	>25.0 and ≤ 35.0	Long traffic delays
E	>35.0 and ≤ 50.0	Very long traffic delays
F	>50.0	Severe congestion

[^27]Table 3-3
Existing Peak Hour Intersection Capacity Analysis Summary
$\left.\begin{array}{|l|c|c|c|c|c|}\hline & & & & \text { (1) } \\ \text { Existing }\end{array}\right]$

Notes:

- $\mathrm{s} / \mathrm{v}=$ seconds per vehicle
- Bold ICU/LOS or HCM/LOS values indicate adverse service levels

Table 3-3 (Continued)
Existing Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	Jurisdiction	Control Type	(1) Existing Traffic Conditions	
				ICU/HCM	LOS
Clark Avenue at 15. Conant Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Long Beach	$2 \varnothing$ Traffic Signal	$\begin{aligned} & 0.598 \\ & 0.545 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
Lakewood Boulevard at 16. Wardlow Road	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	Long Beach	$8 \varnothing$ Traffic Signal	$\begin{aligned} & 0.608 \\ & 0.633 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$
Clark Avenue at 17. Wardlow Road	$\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	Long Beach	$2 \varnothing$ Traffic Signal	$\begin{aligned} & 0.599 \\ & 0.607 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$
Bellflower Boulevard at 18. Wardlow Road	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	Long Beach	$2 \varnothing$ Traffic Signal	$\begin{aligned} & 0.790 \\ & 0.853 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$
Lakewood Boulevard at 19. Spring Street	$\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	Long Beach	$8 \varnothing$ Traffic Signal	$\begin{aligned} & 0.805 \\ & 0.813 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$
20. Clark Avenue at	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	Long Beach	$8 \varnothing$ Traffic Signal	$\begin{aligned} & 0.659 \\ & 0.622 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$
21. Bellflower Boulevard at Spring Street	$\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	Long Beach	$8 \varnothing$ Traffic Signal	$\begin{aligned} & 0.842 \\ & 0.765 \end{aligned}$	D C

Notes:

- $\mathrm{s} / \mathrm{v}=$ seconds per vehicle
- Bold ICU/LOS or HCM/LOS values indicate adverse service levels

4.0 Traffic Forecasting Methodology

In order to estimate the traffic impact characteristics of the proposed Project, a multi-step process has been utilized. The first step is traffic generation, which estimates the total arriving and departing traffic on a peak hour and daily basis. The traffic generation potential is forecast by applying the appropriate vehicle trip generation equations or rates to the project development tabulation.

The second step of the forecasting process is traffic distribution, which identifies the origins and destinations of inbound and outbound project traffic. These origins and destinations are typically based on demographics and existing/expected future travel patterns in the study area.

The third step is traffic assignment, which involves the allocation of project traffic to study area streets and intersections. Traffic assignment is typically based on minimization of travel time, which may or may not involve the shortest route, depending on prevailing operating conditions and travel speeds. Traffic distribution patterns are indicated by general percentage orientation, while traffic assignment allocates specific volume forecasts to individual roadway links and intersection turning movements throughout the study area.

With the forecasting process complete and project traffic assignments developed, the impact of the proposed project is isolated by comparing operational (LOS) conditions at selected key intersections using expected future traffic volumes with and without forecast project traffic. The need for sitespecific and/or cumulative local area traffic improvements can then be evaluated and the significance of the project's impacts identified.

5.0 Project Traffic Characteristics

5.1 Project Traffic Generation

Traffic generation is expressed in vehicle trip ends, defined as one-way vehicular movements, either entering or exiting the generating land use. Generation equations and/or rates used in the traffic forecasting procedure are typically found in the $10^{\text {th }}$ Edition of Trip Generation, published by the Institute of Transportation Engineers (ITE) [Washington D.C., 2017].

Table 5-1 summarizes the trip generation rates used in forecasting the vehicular trips generated by the proposed Project (i.e. student growth, net increase of 7,458 students) and presents the proposed Project's forecast peak hour and daily traffic volumes. As shown, the trip generation potential of the Project was estimated using ITE Land Use 540: Junior/Community College trip rates. Review of Table 5-1 shows that the proposed Project (i.e. net increase of 7,458 students) is forecast to generate 8,577 daily trips, with 820 trips (664 inbound, 156 outbound) forecast during the AM peak hour and 820 trips (459 inbound and 361 outbound) forecast during the PM peak hour on a typical weekday.

5.2 Project Traffic Distribution and Assignment

Figure 5-1 presents the traffic distribution pattern for the proposed Project. Figure 5-1A presents the detailed traffic distribution pattern focused to around the project site. Project traffic volumes both entering and exiting the project site have been distributed and assigned to the adjacent street system based on the following considerations:

- the site's proximity to major traffic carriers (i.e. Carson Street, Lakewood Boulevard, etc.),
- expected localized traffic flow patterns based on adjacent street channelization and presence of traffic signals,
- location of existing parking spaces, and
- ingress/egress availability at the project site.

The anticipated AM and PM peak hour project traffic volumes associated with the Project are presented in Figures 5-2 and 5-3, respectively. The traffic volume assignments presented in Figures 5-2 and 5-3 reflect the traffic distribution characteristics shown in Figure 5-1 and the traffic generation forecast presented in Table 5-1.

5.3 Existing Plus Project Traffic Conditions

The existing plus project traffic conditions have been generated based upon existing conditions and the estimated project traffic. These forecast traffic conditions have been prepared pursuant to the California Environmental Quality Act (CEQA) guidelines, which require that the potential impacts of a Project be evaluated upon the circulation system as it currently exists. This traffic volume scenario and the related intersection capacity analyses will identify the roadway improvements necessary to mitigate the direct traffic impacts of the Project, if any.

Figures 5-4 and 5-5 present projected AM and PM peak hour traffic volumes at the twenty-one (21) key study locations with the addition of the trips generated by the proposed Project to existing traffic volumes, respectively.

Table 5-1
Project Traffic Generation Forecast ${ }^{2}$

ITE Land Use Code / Project Description	Daily 2-Way	AM Peak Hour			PM Peak Hour		
		Enter	Exit	Total	Enter	Exit	Total
Generation Factors: - 540: Junior/Community College (TE/Student)	1.15	81\%	19\%	0.11	56\%	44\%	0.11
Generation Forecasts: - LBCCD - Liberal Arts Campus (Net Increase 7,458 Students)	8,577	664	156	820	459	361	820

Notes:

- TE/Student = Trip ends per student

[^28]

(1)

FIGURE 5-2
no scale

(1)

FIGURE 5-3
no scale

$\xrightarrow[\text { engineers }]{ }$

6.0 Future Traffic Conditions

6.1 Ambient Traffic Growth

Horizon year, background traffic growth estimates have been calculated using an ambient traffic growth factor. The ambient traffic growth factor is intended to include unknown and future cumulative projects in the study area, as well as account for regular growth in traffic volumes due to the development of projects outside the study area. The future growth in traffic volumes has been calculated at 0.708 percent per year. Applied to the Year 2017 existing traffic volumes, this factor results in a 16.992 percent growth in existing volumes to the planning horizon Year 2041.

Please note that the recommended ambient growth factor is consistent with the background traffic growth estimates contained in the most current Congestion Management Program for Los Angeles County. ${ }^{3}$

6.2 Cumulative Projects Traffic Characteristics

In order to make a realistic estimate of future on-street conditions prior to implementation of the proposed Project, the status of other known development projects (cumulative projects) has been researched at the Cities of Long Beach and Lakewood. With this information, the potential impact of the proposed Project can be evaluated within the context of the cumulative impact of all ongoing development. Based on our research, there are four (4) cumulative projects located in the City of Long Beach and twenty-two (22) cumulative projects located in the City of Lakewood that have either been built, but not yet fully occupied, or are being processed for approval. These twenty-six (26) cumulative projects have been included as part of the cumulative background setting.

Table 6-1 provides the location and a brief description for each of the twenty-six (26) cumulative projects. Figure 6-1 graphically illustrates the location of the cumulative projects. These cumulative projects are expected to generate vehicular traffic, which may affect the operating conditions of the key study intersections.

Table 6-2 presents the resultant trip generation for the twenty-six (26) cumulative projects. As shown in Table 6-2, the twenty-six (26) cumulative projects are forecast to generate a combined total of 9,088 daily trips, with 586 trips (318 inbound and 268 outbound) forecast during the AM peak hour and 640 trips (327 inbound and 313 outbound) forecast during the PM peak hour.

The AM and PM peak hour traffic volumes associated with the twenty-six (26) cumulative projects in the Year 2041 are presented in Figures 6-2 and 6-3, respectively.

[^29]
6.3 Year 2041 Cumulative Traffic Volumes

Figures 6-4 and 6-5 present the Year 2041 AM and PM peak hour cumulative traffic volumes at the key study intersections, respectively. Please note that the cumulative traffic volumes represent the accumulation of existing traffic, ambient growth traffic and cumulative projects traffic.

Figures 6-6 and 6-7 illustrate the Year 2041 forecast AM and PM peak hour traffic volumes, with the inclusion of the trips generated by the proposed Project, respectively.

Table 6-1
Location and Description of Cumulative Projects ${ }^{4}$

[^30]Table 6-1
Location and Description of Cumulative Projects ${ }^{5}$

No.	Cumulative Project	Location/Address	Description
City of Lakewood (Continued)			
22.	Carwood Carwash	2729-35 Carson Street	270 SF car wash expansion and demolition of 7,320 SF existing office building
23.	Stone Yoga Studio	3219 Carson Street	1,474 SF yoga studio
24.	Bubble Express Car Wash	2711 Del Amo Boulevard	2,496 SF car wash
25.	Starbucks	5906 Del Amo Boulevard	1,342 Sf coffee shop with drive-thru
26.	Laborers Local 1309	3971 Pixie Avenue	5,500 SF labor academy
	Notes: - $\mathrm{SF}=$ Square-feet - $\mathrm{DU}=$ Dwelling units		

[^31]Table 6-2
Cumulative Projects Traffic Generation Forecast ${ }^{6}$

Cumulative Project Description	Daily 2-Way	AM Peak Hour			PM Peak Hour		
		In	Out	Total	In	Out	Total
1. Staybridge Suites Hotel ${ }^{7}$	490	18	13	31	18	18	36
2. 4201 E. Willow Street ${ }^{8}$	1,388	38	31	69	79	79	158
3. New Coffee Shop	487	46	45	91	25	24	49
4. Northgate Market Expansion ${ }^{9}$	1,252	51	47	98	33	33	66
5. Law Office of Jeff Jung ${ }^{9}$	8	1	0	1	0	1	1
6. Sparx Logistics ${ }^{9}$	95	11	2	13	2	11	13
7. Thrivent 9	12	2	0	2	0	2	2
8. Image 2000^{9}	22	3	0	3	1	2	3
9. McDonalds ${ }^{9}$	469	15	14	29	10	10	20
10. Petco ${ }^{9}$	481	6	5	11	15	15	30
11. Kinecta Federal Credit Union ${ }^{9}$	162	--	--	--	12	15	27
12. Raising Cane's Chicken Fingers ${ }^{9}$	1,493	47	46	93	34	31	65
13. Dickey's Barbeque Pit	160	8	6	14	5	4	9
14. Outback Steakhouse ${ }^{9}$	517	--	-	--	18	9	27
15. Journeys ${ }^{9}$	67	1	1	2	2	2	4
16. Miniso ${ }^{9}$	50	1	0	1	1	2	3
17. Play Live Nation ${ }^{9}$	94	1	1	2	4	4	8
18. Box Lunch ${ }^{9}$	97	1	1	2	3	3	6
19. Burgerim	148	7	6	13	5	3	8
20. Morey's Music Store	105	2	1	3	4	4	8
21. Piggie's Adobo Taco Bar^{9}	155	7	6	13	5	2	7
22. Carwood Carwash ${ }^{9}$	-41	-8	0	-8	0	-7	-7
23. Stone Yoga Studio ${ }^{9}$	50	1	1	2	3	2	5
24. Bubble Express Car Wash ${ }^{9}$	350	17	9	26	18	17	35
25. Starbucks	826	30	29	59	22	21	43
26. Laborers Local $1309{ }^{9}$	151	12	4	16	8	6	14
Cumulative Projects Trip Generation Forecast	9,088	318	268	586	327	313	640

${ }^{6}$ Unless otherwise noted, Source: Trip Generation, $10^{\text {th }}$ Edition, Institute of Transportation Engineers (ITE), Washington, D.C. (2017).
7 Source: Traffic Impact Study for Proposed Staybridge Suites - Long Beach Airport, prepared by Crain \& Associates, dated September 2016.
8 Source: Long Beach Car Wash/Retail Traffic Analysis, prepared by LSA Associates, dated September 2010.
9 Source: Northgate Market Expansion Project Traffic Impact Analysis, prepared by LLG, dated October 2017.

(1)
$\#$ = STUDY INTERSECTION
= PROJECT SITE

(1)
$\#$ = STUDY INTERSECTION
= PROJECT SITE

$\#$ = STUDY INTERSECTION
FIGURE 6-7

7.0 Traffic Impact Analysis Methodology

The relative impacts of the proposed Project during the AM peak hour and PM peak hour were evaluated based on analysis of future operating conditions at the twenty-one (21) key study intersections, without, then with, the proposed Project. The previously discussed capacity analysis procedures were utilized to investigate the future volume-to-capacity relationships and service level characteristics at each study intersection. The significance of the potential impacts of the Project at each key intersection was then evaluated using the following traffic impact criteria.

7.1 Impact Criteria and Thresholds

7.1.1 City of Long Beach

Impacts to City of Long Beach intersections are considered significant if:

- An unacceptable peak hour Level of Service (LOS) (i.e. LOS E or F) at any of the key intersections is projected. The City of Long Beach considers LOS D (ICU $=0.801-0.900$) to be the minimum acceptable LOS for all intersections. For the City of Long Beach, the current LOS, if worse than LOS D (i.e. LOS E or F), should also be maintained; and
- The project increases traffic demand at the study intersection by 2% of capacity (ICU increase \geq 0.020), causing or worsening LOS E or F (ICU > 0.901).
- At unsignalized intersections, an impact is considered to be significant if the project causes an intersection operating at LOS D or better to degrade to LOS E or F, and the traffic signal warrant analysis determines that a traffic signal is justified.

7.1.2 City of Lakewood

Impacts to City of Lakewood intersections are considered significant if:

- An unacceptable peak hour Level of Service (LOS) (i.e. LOS E or F) at any of the key intersections is projected. The City of Lakewood considers LOS D (ICU $=0.801-0.900$) to be the minimum acceptable LOS for all intersections; and
- The project increases traffic demand at the study intersection by 2% of capacity (ICU increase \geq 0.020), causing or worsening LOS E or F (ICU > 0.901).
- At unsignalized intersections, an impact is considered to be significant if the project causes an intersection operating at LOS D or better to degrade to LOS E or F, and the traffic signal warrant analysis determines that a traffic signal is justified.

7.2 Traffic Impact Analysis Scenarios

The following scenarios are those for which volume/capacity calculations have been performed at the twenty-one (21) key study intersections for existing plus project and Year 2041 traffic conditions:
A. Existing Traffic Conditions;
B. Existing Plus Project Traffic Conditions;
C. Scenario (B) with Improvements, if necessary;
D. Year 2041 Cumulative Traffic Conditions,
E. Year 2041 Cumulative Plus Project Traffic Conditions; and
F. Scenario (E) with Improvements, if necessary.

8.0 Peak Hour Intersection Capacity Analysis

8.1 Existing Plus Project Analysis

Table 8-1 summarizes the peak hour Level of Service results at the twenty-one (21) key study intersections for existing plus project traffic conditions. The first column (1) of ICU/LOS values and HCM/LOS values in Table 8-1 presents a summary of existing AM and PM peak hour traffic conditions (which were also presented in Table 3-3). The second column (2) lists existing plus project traffic conditions. The third column (3) shows the increase in ICU value and/or HCM value due to the added peak hour Project trips and indicates whether the traffic associated with the Project will have a significant impact based on the LOS standards and significant impact criteria defined in this report. The fourth column (4) indicates the anticipated level of service with recommended improvements, discussed later in this report.

8.1.1 Existing Plus Project Traffic Conditions

Review of Columns 2 and 3 of Table 8-1 indicates that traffic associated with the proposed Project, when added to only existing traffic volumes, will significantly impact three (3) of the twenty-one (21) key study intersections, when compared to the LOS standards and significant impact criteria specified in this report. Although the intersections of Lakewood Boulevard/Del Amo Boulevard and Bellflower Boulevard/Carson Street are forecast to operate at unacceptable LOS E during the AM and/or PM peak hours with the addition of project traffic, the proposed Project is expected to add less than 0.020 to the ICU value, which results in a less than significant impact. The remaining sixteen (16) key study intersections currently operate and are forecast to continue to operate at an acceptable service level during the AM and PM peak hours with the addition of Project generated traffic to existing traffic. The intersections operating at an adverse level of service under existing plus project traffic conditions are as follows:

	AM Peak Hour		PM Peak Hour	
Key Intersection	ICU/HCM	LOS	ICU/HCM	LOS
2. Clark Avenue at Del Amo Boulevard	---	---	0.911	E
8. Faculty Avenue at Carson Street	77.0 s/v	F	$78.7 \mathrm{~s} / \mathrm{v}$	F
9. Clark Avenue at Carson Street	---	---	0.902	E

As shown in column 4, the implementation of improvements (discussed later in this report) at the impacted key study intersection of Faculty Avenue/Carson Street completely offsets the impact of project traffic and the key study intersection is forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining two impacted key study intersections of Clark Avenue/Del Amo Boulevard and Clark Avenue/Carson Street, additional capacity-enhancing improvements at these two key study intersections do not appear feasible due to physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these two locations will remain significant.

Appendix B presents the existing plus project ICU/LOS and HCM/LOS calculations for the twentyone (21) key study intersections. Appendix B also presents the existing plus project peak hour traffic signal warrants for key study intersection \#8.

8.2 Year 2041 Traffic Conditions

Table 8-2 summarizes the peak hour Level of Service results at the twenty-one (21) key study intersections for the Year 2041 horizon year. The first column (1) of ICU/LOS and HCM/LOS values in Table 8-2 presents a summary of existing AM and PM peak hour traffic conditions (which were also presented in Table 3-3). The second column (2) lists projected Year 2041 traffic conditions (existing plus ambient plus cumulative projects traffic) based on existing intersection geometry, but without any traffic generated from the proposed Project. The third column (3) presents forecast Year 2041 traffic conditions with the addition of Project traffic. The fourth column (4) shows the increase in ICU value and/or HCM value due to the added peak hour Project trips and indicates whether the traffic associated with the Project will have a significant impact based on the LOS standards and significant impact criteria defined in this report. The fifth column (5) indicates the anticipated level of service with recommended improvements, discussed later in this report.

8.2.1 Year 2041 Buildout Traffic Conditions (Without Project Traffic)

An analysis of future (Year 2041) cumulative traffic conditions indicates that the addition of ambient traffic growth and cumulative projects traffic will adversely impact thirteen (13) of the twenty-one (21) key study intersections. The remaining eight (8) key study intersections are forecast to continue to operate at acceptable levels of service during the AM and PM peak hours with the addition of ambient traffic growth and cumulative projects traffic. The locations projected to operate at an adverse LOS in the Year 2041, even without any project traffic, are as follows:

Key Intersection	AM Peak Hour		PM Peak Hour	
	ICU/HCM	LOS	ICU/HCM	LOS
1. Lakewood Boulevard at Del Amo Boulevard	1.070	F	1.136	F
2. Clark Avenue at Del Amo Boulevard	---	---	1.041	F
3. Lakewood Boulevard at Harvey Way	---	---	0.930	E
4. Clark Avenue at Harvey Way	---	---	0.944	E
5. Cherry Avenue at Carson Street	---	---	0.913	E
6. Paramount Boulevard at Carson Street	---	---	0.966	E
8. Faculty Avenue at Carson Street	192.3 s/v	F	$254.9 \mathrm{~s} / \mathrm{v}$	F
9. Clark Avenue at Carson Street	---	---	1.000	F
10. Bellflower Boulevard at Carson Street	---	---	1.083	F
11. Woodruff Avenue at Carson Street	---	---	0.992	E
18. Bellflower Boulevard at Wardlow Road	0.909	E	0.982	E
19. Lakewood Boulevard at Spring Street	0.930	E	0.948	E
21. Bellflower Boulevard at Spring Street	0.970	E	---	---

8.2.2 Year 2041 Buildout Plus Project Conditions

Review of Columns 3 and 4 of Table $8-2$ indicates that the added traffic associated with the proposed Project will significantly impact seven (7) of the twenty-one (21) key study intersections, when compared to the LOS standards and significant impact criteria specified in this report. Although the intersections of Lakewood Boulevard/Del Amo Boulevard, Clark Avenue/Del Amo Boulevard, Cherry Avenue/Carson Street, Woodruff Avenue/Carson Street, Bellflower Boulevard/Wardlow Road, Lakewood Boulevard/Spring Street and Bellflower Boulevard/Spring Street are forecast to operate at unacceptable LOS E and/or F during the AM and/or PM peak hours with the addition of project traffic, the proposed Project is expected to add less than 0.020 to the ICU value, which results in a less than significant impact. The remaining seven (7) key study intersections are forecast to continue to operate at an acceptable LOS with the addition of project generated traffic in the Year 2041. The seven (7) locations significantly impacted by the proposed Project in the Year 2041 are as follows:

	AM Peak Hour		PM Peak Hour	
Key Intersection	$\underline{\text { ICU/HCM }}$	LOS	$\underline{\text { ICU/HCM }}$	LOS
3. Lakewood Boulevard at Harvey Way	---	---	0.953	E
4. Clark Avenue at Harvey Way	---	---	0.965	E
6. Paramount Boulevard at Carson Street	---	---	0.995	E
7. Lakewood Boulevard at Carson Street	---	---	0.919	E
8. Faculty Avenue at Carson Street	346.4 s/v	F	538.3 s/v	F
9. Clark Avenue at Carson Street	---	---	1.038	F
10. Bellflower Boulevard at Carson Street	0.912	E	1.091	F

As shown in column 5, the implementation of improvements (discussed later in this report) at the impacted key study intersection of Lakewood Boulevard/Harvey Way offsets the impact of project traffic; however this location is still forecast to operate at unacceptable LOS E during the PM peak hour. The implementation of improvements at the impacted key study intersections of Clark Avenue/Harvey Way and Faculty Avenue/Carson Street completely offsets the impact of project traffic and the key study intersections are forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining four impacted key study intersections of Paramount Boulevard/Carson Street, Lakewood Boulevard/Carson Street, Clark Avenue/Carson Street and Bellflower Boulevard/Carson Street, additional capacity-enhancing improvements at these four key study intersections do not appear feasible due to physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these four locations will remain significant.

Appendix B also presents the Year 2041 plus project ICU/LOS and HCM/LOS calculations for the twenty-one (21) key study intersections. Appendix B also presents the Year 2041 plus project peak hour traffic signal warrants for key study intersection \#8.

Table 8-1

Existing Plus Project Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	(1) Existing Traffic Conditions		(2) Existing Plus Project Traffic Conditions		(3) Significant Impact		(4) Existing Plus Project Traffic Conditions with Improvements	
		ICU/HCM	LOS	ICU/HCM	LOS	Increase	Yes/No	ICU/HCM	LOS
Lakewood Boulevard at	AM	0.905	E	0.924	E	0.019	No	--	--
Del Amo Boulevard	PM	0.958	E	0.974	E	0.016	No	--	--
Clark Avenue at	AM	0.729	C	0.747	C	0.018	No	N.F.	N.F.
2. Del Amo Boulevard	PM	0.896	D	0.911	E	0.015	Yes	N.F.	N.F.
3. Lakewood Boulevard at	AM	0.728	C	0.753	C	0.025	No	--	--
3. Harvey Way	PM	0.803	D	0.826	D	0.023	No	--	--
4. Clark Avenue at	AM	0.749	C	0.783	C	0.034	No	--	--
H. Harvey Way	PM	0.819	D	0.839	D	0.020	No	--	--
5. Cherry Avenue at	AM	0.643	B	0.652	B	0.009	No	--	--
5. Carson Street	PM	0.791	C	0.810	D	0.019	No	--	--
6. Paramount Boulevard at	AM	0.600	B	0.628	B	0.028	No	--	--
6. Carson Street	PM	0.839	D	0.868	D	0.029	No	--	--
7. Lakewood Boulevard at	AM	0.623	B	0.651	B	0.028	No	--	--
7. Carson Street	PM	0.762	C	0.793	C	0.031	No	--	--

Notes:

- $\mathrm{s} / \mathrm{v}=$ seconds per vehicle (delay)
- Bold ICU/LOS and HCM/LOS values indicate adverse service levels
- N.F. = None Feasible

Table 8-1 (Continued)

Existing Plus Project Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	(1) Existing Traffic Conditions		(2) Existing Plus Project Traffic Conditions		(3) Significant Impact		(4) Existing Plus Project Traffic Conditions with Improvements	
		ICU/HCM	LOS	ICU/HCM	LOS	Increase	Yes/No	ICU/HCM	LOS
Faculty Avenue at 8. Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 47.7 \mathrm{~s} / \mathrm{v} \\ & 40.0 \mathrm{~s} / \mathrm{v} \end{aligned}$	E E	$\begin{gathered} 77.0 \mathrm{~s} / \mathrm{v} \\ 78.7 \mathrm{~s} / \mathrm{v} \end{gathered}$	F F	$\begin{aligned} & 29.3 \mathrm{~s} / \mathrm{v} \\ & 38.7 \mathrm{~s} / \mathrm{v} \end{aligned}$	Yes Yes	$\begin{aligned} & 18.5 \mathrm{~s} / \mathrm{v} \\ & 15.3 \mathrm{~s} / \mathrm{v} \end{aligned}$	C C
Clark Avenue at 9. Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.665 \\ & 0.865 \end{aligned}$	B D	$\begin{aligned} & 0.726 \\ & \mathbf{0 . 9 0 2} \end{aligned}$	C E	$\begin{aligned} & 0.061 \\ & \mathbf{0 . 0 3 7} \end{aligned}$	No Yes	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$
Bellflower Boulevard at 10. Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.762 \\ & \mathbf{0 . 9 3 6} \end{aligned}$	C E	$\begin{aligned} & 0.794 \\ & \mathbf{0 . 9 4 5} \end{aligned}$	C E	$\begin{aligned} & 0.032 \\ & 0.009 \end{aligned}$	No No		
Woodruff Avenue at 11. Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.705 \\ & 0.853 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.720 \\ & 0.871 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.018 \end{aligned}$	No No	--	--
Clark Avenue at 12. Lew Davis Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.503 \\ & 0.576 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.577 \\ & 0.649 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0.074 \\ & 0.073 \end{aligned}$	No No		--
13. Lakewood Boulevard at 13. Conant Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.611 \\ & 0.685 \end{aligned}$	B B	$\begin{aligned} & 0.613 \\ & 0.743 \end{aligned}$	B C	$\begin{aligned} & 0.002 \\ & 0.058 \end{aligned}$	No No	--	--
Faculty Avenue at 14. Conant Street	AM PM	$\begin{aligned} & 0.419 \\ & 0.373 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.537 \\ & 0.494 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.118 \\ & 0.121 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	--	--

Notes:

- $\mathrm{s} / \mathrm{v}=$ seconds per vehicle (delay)
- Bold ICU/LOS and HCM/LOS values indicate adverse service levels
- N.F. = None Feasible

Table 8-1 (Continued)

Existing Plus Project Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	(1) Existing Traffic Conditions		(2) Existing Plus Project Traffic Conditions		(3) Significant Impact		(4) Existing Plus Project Traffic Conditions with Improvements	
		ICU/HCM	LOS	ICU/HCM	LOS	Increase	Yes/No	ICU/HCM	LOS
15. Clark Avenue at	AM	0.598	A	0.673	B	0.075	No	--	--
Conant Street	PM	0.545	A	0.573	A	0.028	No	--	--
16. Lakewood Boulevard at	AM	0.608	B	0.623	B	0.015	No	--	--
16. Wardlow Road	PM	0.633	B	0.644	B	0.011	No	--	--
17. Clark Avenue at	AM	0.599	A	0.634	B	0.035	No	--	--
17. Wardlow Road	PM	0.607	B	0.632	B	0.025	No	--	--
18. Bellflower Boulevard at	AM	0.790	C	0.807	D	0.017	No	--	--
18. Wardlow Road	PM	0.853	D	0.860	D	0.007	No	--	--
19. Lakewood Boulevard at	AM	0.805	D	0.820	D	0.015	No	--	--
19. Spring Street	PM	0.813	D	0.820	D	0.007	No	--	--
20. Clark Avenue at	AM	0.659	B	0.661	B	0.002	No	--	--
			B		B	0.014	No	--	--
21. Bellflower Boulevard at	AM	0.842	D	0.861	D	0.019	No	--	--
Spring Street	PM		C	0.772	C	0.007	No	--	--

Notes:

- $\mathrm{s} / \mathrm{v}=$ seconds per vehicle (delay)
- Bold ICU/LOS and HCM/LOS values indicate adverse service levels

Table 8-2
Year 2041 Plus Project Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	(1) Existing Traffic Conditions		(2) Year 2041 Buildout Traffic Conditions		(3) Year 2041 Buildout Plus Project Traffic Conditions		(4) Significant Impact		(5) Year 2041 Buildout Plus Project Traffic Conditions with Improvements	
		ICU/HCM	LOS	ICU/HCM	LOS	ICU/HCM	LOS	Increase	Yes/No	ICU/HCM	LOS
Lakewood Boulevard at 1. Del Amo Boulevard	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.905 \\ & 0.958 \end{aligned}$	$\begin{aligned} & \text { E } \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 1.070 \\ & 1.136 \end{aligned}$	\mathbf{F}	$\begin{aligned} & 1.089 \\ & 1.152 \end{aligned}$	\mathbf{F}	$\begin{aligned} & 0.019 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$		
2. Clark Avenue at Del Amo Boulevard	$\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	$\begin{aligned} & 0.729 \\ & 0.896 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.841 \\ & \mathbf{1 . 0 4 1} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{F} \end{aligned}$	$\begin{aligned} & 0.859 \\ & \mathbf{1 . 0 5 7} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{F} \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.016 \end{aligned}$	No No		
3. Lakewood Boulevard at 3. Harvey Way	$\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	$\begin{aligned} & 0.728 \\ & 0.803 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.839 \\ & \mathbf{0 . 9 3 0} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 0.864 \\ & \mathbf{0 . 9 5 3} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.025 \\ & \mathbf{0 . 0 2 3} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0.864 \\ & \mathbf{0 . 9 0 6} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$
Clark Avenue at 4. Harvey Way	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.749 \\ & 0.819 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.864 \\ & \mathbf{0 . 9 4 4} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 0.898 \\ & \mathbf{0 . 9 6 5} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 0.034 \\ & \mathbf{0 . 0 2 1} \end{aligned}$	No Yes	$\begin{aligned} & 0.843 \\ & 0.877 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$
Cherry Avenue at 5. Carson Street	$\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	$\begin{aligned} & 0.643 \\ & 0.791 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 0.739 \\ & 0.913 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { E } \end{aligned}$	$\begin{aligned} & 0.749 \\ & \mathbf{0 . 9 3 2} \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { E } \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.019 \end{aligned}$	No No		
Paramount Boulevard at 6. Carson Street	$\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$	$\begin{aligned} & 0.600 \\ & 0.839 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.687 \\ & \mathbf{0 . 9 6 6} \end{aligned}$	$\begin{gathered} \text { B } \\ \text { E } \end{gathered}$	$\begin{aligned} & 0.714 \\ & 0.995 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { E } \end{aligned}$	$\begin{aligned} & 0.027 \\ & \mathbf{0 . 0 2 9} \end{aligned}$	No Yes	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$
7. Lakewood Boulevard at Carson Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.623 \\ & 0.762 \\ & \hline \end{aligned}$	B C	$\begin{aligned} & 0.718 \\ & 0.887 \end{aligned}$	C D	$\begin{aligned} & 0.745 \\ & \mathbf{0 . 9 1 9} \end{aligned}$	C E	$\begin{aligned} & 0.027 \\ & \mathbf{0 . 0 3 2} \end{aligned}$	No Yes	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$

Notes:

- $\mathrm{s} / \mathrm{v}=$ seconds per vehicle (delay)
- Bold ICU/LOS and HCM/LOS values indicate adverse service levels
- N.F. = None Feasible

Table 8-2 (Continued)
Year 2041 Plus Project Peak Hour Intersection Capacity Analysis Summary

Key Intersection	Time Period	(1) Existing Traffic Conditions		(2) Year 2041 Buildout Traffic Conditions		(3) Year 2041 Buildout Plus Project Traffic Conditions		(4) Significant Impact		(5) Year 2041 Buildout Plus Project Traffic Conditions with Improvements	
		ICU/HCM	LOS	ICU/HCM	LOS	ICU/HCM	LOS	Increase	Yes/No	ICU/HCM	LOS
Faculty Avenue at 8. Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 47.7 \mathrm{~s} / \mathrm{v} \\ & 40.0 \mathrm{~s} / \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & \mathbf{E} \end{aligned}$	$192.3 \mathrm{~s} / \mathrm{v}$ $254.9 \mathrm{~s} / \mathrm{v}$	$\begin{aligned} & \mathbf{F} \\ & \mathbf{F} \end{aligned}$	$\begin{aligned} & 346.4 \mathrm{~s} / \mathrm{v} \\ & 538.3 \mathrm{~s} / \mathrm{v} \end{aligned}$	\mathbf{F}	$154.1 \mathrm{~s} / \mathrm{v}$ 283.4 s/v	Yes Yes	$\begin{aligned} & 24.2 \mathrm{~s} / \mathrm{v} \\ & 19.6 \mathrm{~s} / \mathrm{v} \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { C } \end{aligned}$
Clark Avenue at 9. Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.665 \\ & 0.865 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.768 \\ & \mathbf{1 . 0 0 0} \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { F } \end{aligned}$	$\begin{aligned} & 0.820 \\ & \mathbf{1 . 0 3 8} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.052 \\ & \mathbf{0 . 0 3 8} \end{aligned}$	No Yes	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$
10. Bellflower Boulevard at Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.762 \\ & 0.936 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 0.880 \\ & 1.083 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{F} \end{aligned}$	$\begin{aligned} & 0.912 \\ & 1.091 \end{aligned}$	E F	$\begin{aligned} & 0.032 \\ & 0.008 \end{aligned}$	Yes No	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$	$\begin{aligned} & \text { N.F. } \\ & \text { N.F. } \end{aligned}$
Woodruff Avenue at 11. Carson Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.705 \\ & 0.853 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.822 \\ & 0.992 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 0.837 \\ & \mathbf{1 . 0 0 9} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{F} \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.017 \end{aligned}$	No No		
Clark Avenue at 12. Lew Davis Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.503 \\ & 0.576 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.571 \\ & 0.658 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0.645 \\ & 0.728 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 0.074 \\ & 0.070 \end{aligned}$	No No		--
Lakewood Boulevard at 13. Conant Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.611 \\ & 0.685 \end{aligned}$	B B	$\begin{aligned} & 0.702 \\ & 0.790 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 0.702 \\ & 0.848 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.058 \end{aligned}$	No No		
Faculty Avenue at 14. Conant Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.419 \\ & 0.373 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.473 \\ & 0.420 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.591 \\ & 0.541 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.118 \\ & 0.121 \end{aligned}$	No No		

Notes:

- $\mathrm{s} / \mathrm{v}=$ seconds per vehicle (delay)
- Bold ICU/LOS and HCM/LOS values indicate adverse service levels
- N.F. = None Feasible

Table 8-2 (Continued)
Year 2041 Plus Project Peak Hour Intersection Capacity Analysis Summary

Key Intersection		Time Period	(1) Existing Traffic Conditions		(2) Year 2041 Buildout Traffic Conditions		(3) Year 2041 Buildout Plus Project Traffic Conditions		(4) Significant Impact		(5) Year 2041 Buildout Plus Project Traffic Conditions with Improvements		
		ICU/HCM	LOS	ICU/HCM	LOS	ICU/HCM	LOS	Increase	Yes/No	ICU/HCM	LOS		
15.	Clark Avenue at		AM	0.598	A	0.683	B	0.757	C	0.074	No	--	--
	Conant Street	PM	0.545	A	0.620	B	0.649	B	0.029	No	--	--	
16.	Lakewood Boulevard at	AM	0.608	B	0.696	B	0.712	C	0.016	No	--	--	
	Wardlow Road	PM	0.633	B	0.728	C	0.739	C	0.011	No	--	--	
17.	Clark Avenue at	AM	0.599	A	0.686	B	0.721	C	0.035	No	--	--	
	Wardlow Road	PM	0.607	B	0.694	B	0.720	C	0.026	No	--	--	
18.	Bellflower Boulevard at	AM	0.790	C	0.909	E	0.926	E	0.017	No	--	--	
	Wardlow Road	PM	0.853	D	0.982	E	0.989	E	0.007	No	--	--	
19.	Lakewood Boulevard at	AM	0.805	D	0.930	E	0.945	E	0.015	No	--	--	
	Spring Street								0.007	No	--	--	
20.	Clark Avenue at	AM	0.659	B	0.756	C	0.758	C	0.002	No	--	--	
				B		C		C	0.014	No	--	--	
21.	Bellflower Boulevard at	AM	0.842	D	0.970	E	0.989	E	0.019	No	--	--	
				C		D	0.888	D	0.007	No	--	--	

Notes:

- $\mathrm{s} / \mathrm{v}=$ seconds per vehicle (delay)
- Bold ICU/LOS and HCM/LOS values indicate adverse service levels

9.0 ReCOMMENDED IMPROVEMENTS

For those intersections where projected Project traffic volumes are expected to result in unacceptable operating conditions (as defined by a City's significant impact criteria), traffic impact studies of this type typically recommend (identify) improvement measures that change the intersection geometry to increase capacity. These capacity improvements involve roadway widening and/or re-striping to reconfigure (add lanes) to specific approaches of a key intersection. The identified improvements are expected to:

- mitigate the impact of existing traffic, Project traffic and future non-project (ambient traffic growth and cumulative project) traffic and
- improve Levels of Service to an acceptable range and/or to pre-project conditions.

9.1 Existing Plus Project Traffic Conditions

The results of the intersection capacity analysis presented previously in Table 8-1 shows that the proposed Project will significantly impact three (3) of the twenty-one (21) key study intersections under the "Existing Plus Project" traffic scenario. The following are improvements recommended to mitigate the existing plus project traffic impacts:

- No. 2 - Clark Avenue at Del Amo Boulevard: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
- No. 8 - Faculty Avenue at Carson Street: Install signage to restrict southbound left-turn movements during the AM peak period (7:00 AM - 9:00 AM) and during the PM peak period (4:00 PM - 6:00 PM). The installation of this improvement is subject to the approval of the City of Long Beach.
- No. 9 - Clark Avenue at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.

Figure 9-1 graphically illustrates the existing plus project recommended improvements.

9.2 Year 2041 Plus Project Traffic Conditions

The results of the intersection capacity analysis presented previously in Table 8-2 shows that the proposed Project will significantly impact seven (7) of the twenty-one (21) key study intersections under the "Year 2041 Plus Project" traffic scenario. The following are improvements recommended to mitigate the Year 2041 plus project traffic impacts:

- No. 3 - Lakewood Boulevard at Harvey Way: Restripe Harvey Way to provide an exclusive westbound right-turn lane. Given that this key study intersection is located jointly in the Cities of Long Beach and Lakewood, the installation of this improvement is subject to the approval of the City of Long Beach and the City of Lakewood. It should be noted that these improvements cannot be guaranteed by the proposed Project or the City of Long Beach as the improvements would also require approval from the City of Lakewood. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
- No. 4 - Clark Avenue at Harvey Way: Restripe Harvey Way to provide an exclusive eastbound right-turn lane. The installation of this improvement is subject to the approval of the City of Long Beach.
- No. 6 - Paramount Boulevard at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
- No. 7 - Lakewood Boulevard at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
- No. 8 - Faculty Avenue at Carson Street: Install signage to restrict southbound left-turn movements during the AM peak period (7:00 AM - 9:00 AM) and during the PM peak period (4:00 PM - 6:00 PM). The installation of this improvement is subject to the approval of the City of Long Beach.
- No. 9 - Clark Avenue at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
- No. 10 - Bellflower Boulevard at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.

Figure 9-2 graphically illustrates the Year 2041 plus project recommended improvements.

$\mathbf{N}_{\text {No scale }}$

10.0 Summary Of Findings And Conclusions

- Project Description - The project site is generally bounded by Harvey Way to the north, Conant Street to the south, Faculty Avenue to the west and Clark Avenue to the east in the City of Long Beach, California. The proposed Project will generally consist of the construction of new campus facilities and the renovation of existing campus facilities to meet the District's instructional needs and to accommodate growth in the student body over the planning horizon. All project components are expected to be completed by the Year 2041.

The Liberal Arts Campus has a current baseline (Year 2017) student enrollment of 20,642 students. As stated above, the renovation of existing campus facilities and the construction of new campus facilities are required to meet the District's instructional needs and to accommodate growth in the student body. At completion of the Master Plan in the Year 2041, the Liberal Arts Campus is projected to accommodate a future student enrollment of 28,100 students, resulting in a net increase of 7,458 students over the existing student enrollment.

Vehicular access to the Liberal Arts Campus would continue to be provided via various unsignalized access driveways located along Faculty Avenue, Harvey Way, Clark Avenue, Lew Davis Street and Conant Street.

- Study Scope - Twenty-one (21) key study locations were selected for detailed peak hour level of service analyses under Existing Traffic Conditions, Existing Plus Project Traffic Conditions and Year 2041 Traffic Conditions without and with the proposed Project.

Key Study Locations

1. Lakewood Boulevard at Del Amo Boulevard (City of Lakewood)
2. Clark Avenue at Del Amo Boulevard (City of Lakewood)
3. Lakewood Boulevard at Harvey Way (City of Long Beach/City of Lakewood)
4. Clark Avenue at Harvey Way (City of Long Beach)
5. Cherry Avenue at Carson Street (City of Long Beach)
6. Paramount Boulevard at Carson Street (City of Long Beach)
7. Lakewood Boulevard at Carson Street (City of Long Beach/City of Lakewood)
8. Faculty Avenue at Carson Street (City of Long Beach)
9. Clark Avenue at Carson Street (City of Long Beach)
10. Bellflower Boulevard at Carson Street (City of Long Beach/City of Lakewood)
11. Woodruff Avenue at Carson Street (City of Long Beach/City of Lakewood)
12. Clark Avenue at Lew Davis Street (City of Long Beach)
13. Lakewood Boulevard at Conant Street (City of Long Beach)
14. Faculty Avenue at Conant Street (City of Long Beach)
15. Clark Avenue at Conant Street (City of Long Beach)
16. Lakewood Boulevard at Wardlow Road (City of Long Beach)
17. Clark Avenue at Wardlow Road (City of Long Beach)
18. Bellflower Boulevard at Wardlow Road (City of Long Beach)
19. Lakewood Boulevard at Spring Street (City of Long Beach)
20. Clark Avenue at Spring Street (City of Long Beach)
21. Bellflower Boulevard at Spring Street (City of Long Beach)

- Existing Traffic Conditions - Three (3) of the twenty-one (21) key study intersections currently operate at an unacceptable LOS during the AM and/or PM peak hours. The remaining eighteen (18) key study intersections currently operate at acceptable LOS D or better during the AM and/or PM peak hours. The intersections operating at an adverse level of service are:

	AM Peak Hour		PM Peak Hour	
Key Intersection	ICU/HCM	LOS	ICU/HCM	LOS
1. Lakewood Boulevard at Del Amo Boulevard	0.905	E	0.958	E
8. Faculty Avenue at Carson Street	$47.7 \mathrm{~s} / \mathrm{v}$	E	40.0 s/v	E
10. Bellflower Boulevard at Carson Street	---	---	0.936	E

- Project Trip Generation - The proposed Project (i.e. net increase of 7,458 students) is forecast to generate 8,577 daily trips, with 820 trips (664 inbound, 156 outbound) forecast during the AM peak hour and 820 trips (459 inbound and 361 outbound) forecast during the PM peak hour on a typical weekday.
- Cumulative Projects Traffic Characteristics - The twenty-six (26) cumulative projects are forecast to generate a combined total of 9,088 daily trips, with 586 trips (318 inbound and 268 outbound) forecast during the AM peak hour and 640 trips (327 inbound and 313 outbound) forecast during the PM peak hour.
- Existing Plus Project Traffic Conditions - The proposed Project, when added to only existing traffic volumes, will significantly impact three (3) of the twenty-one (21) key study intersections, when compared to the LOS standards and significant impact criteria specified in this report. Although the intersections of Lakewood Boulevard/Del Amo Boulevard and Bellflower Boulevard/Carson Street are forecast to operate at unacceptable LOS E during the AM and/or PM peak hours with the addition of project traffic, the proposed Project is expected to add less than 0.020 to the ICU value, which results in a less than significant impact. The remaining sixteen (16) key study intersections currently operate and are forecast to continue to operate at an acceptable service level during the AM and PM peak hours with the addition of Project generated traffic to existing traffic. The intersections operating at an adverse level of service under existing plus project traffic conditions are as follows:

	AM Peak Hour		PM Peak Hour	
Key Intersection	ICU/HCM	LOS	ICU/HCM	LOS
2. Clark Avenue at Del Amo Boulevard	---	---	0.911	E
8. Faculty Avenue at Carson Street	77.0 s/v	F	78.7 s/v	F
9. Clark Avenue at Carson Street	---	--	0.902	E

The implementation of improvements at the impacted key study intersection of Faculty Avenue/Carson Street completely offsets the impact of project traffic and the key study
intersection is forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining two impacted key study intersections of Clark Avenue/Del Amo Boulevard and Clark Avenue/Carson Street, additional capacity-enhancing improvements at these two key study intersections do not appear feasible due to physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these two locations will remain significant.

- Year 2041 Buildout Plus Project Traffic Conditions - The added traffic associated with the proposed Project will significantly impact seven (7) of the twenty-one (21) key study intersections, when compared to the LOS standards and significant impact criteria specified in this report. Although the intersections of Lakewood Boulevard/Del Amo Boulevard, Clark Avenue/Del Amo Boulevard, Cherry Avenue/Carson Street, Woodruff Avenue/Carson Street, Belfflower Boulevard/Wardlow Road, Lakewood Boulevard/Spring Street and Bellflower Boulevard/Spring Street are forecast to operate at unacceptable LOS E and/or F during the AM and/or PM peak hours with the addition of project traffic, the proposed Project is expected to add less than 0.020 to the ICU value, which results in a less than significant impact. The remaining seven (7) key study intersections are forecast to continue to operate at an acceptable LOS with the addition of project generated traffic in the Year 2041. The seven (7) locations significantly impacted by the proposed Project in the Year 2041 are as follows:

	AM Peak Hour			PM Peak Hour	
Key Intersection	$\underline{\text { ICU/HCM }}$	$\underline{\text { LOS }}$		$\underline{\text { ICU/HCM }}$	$\underline{\text { LOS }}$
3. Lakewood Boulevard at Harvey Way	---	---	0.953	E	
4. Clark Avenue at Harvey Way	---	---	0.965	E	
6. Paramount Boulevard at Carson Street	---	---	0.995	E	
7. Lakewood Boulevard at Carson Street	---	---	0.919	E	
8. Faculty Avenue at Carson Street	$346.4 \mathrm{~s} / \mathrm{v}$	F	$538.3 \mathrm{~s} / \mathrm{v}$	F	
9. Clark Avenue at Carson Street	---	---	1.038	F	
10. Bellflower Boulevard at Carson Street	0.912	E	1.091	F	

The implementation of improvements at the impacted key study intersection of Lakewood Boulevard/Harvey Way offsets the impact of project traffic; however this location is still forecast to operate at unacceptable LOS E during the PM peak hour. The implementation of improvements at the impacted key study intersections of Clark Avenue/Harvey Way and Faculty Avenue/Carson Street completely offsets the impact of project traffic and the key study intersections are forecast to operate at an acceptable LOS during the AM and PM peak hours. For the remaining four impacted key study intersections of Paramount Boulevard/Carson Street, Lakewood Boulevard/Carson Street, Clark Avenue/Carson Street and Bellflower Boulevard/Carson Street, additional capacity-enhancing improvements at these four key study intersections do not appear feasible due to physical and right-of-way restrictions that prohibit any additional widening and/or restriping. Therefore, the impacts at these four locations will remain significant.

- Recommended Existing Plus Project Improvements - The results of the intersection capacity analysis presented previously in Table 8-1 shows that the proposed Project will significantly impact three (3) of the twenty-one (21) key study intersections under the "Existing Plus Project" traffic scenario. The following are improvements recommended to mitigate the existing plus project traffic impacts:
> No. 2 - Clark Avenue at Del Amo Boulevard: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
> No. 8 - Faculty Avenue at Carson Street: Install signage to restrict southbound left-turn movements during the AM peak period (7:00 AM - 9:00 AM) and during the PM peak period (4:00 PM - 6:00 PM). The installation of this improvement is subject to the approval of the City of Long Beach.
> No. 9 - Clark Avenue at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
- Recommended Year 2041 Buildout Plus Project Improvements - The results of the intersection capacity analysis presented previously in Table 8-2 shows that the proposed Project will significantly impact seven (7) of the twenty-one (21) key study intersections under the "Year 2041 Plus Project" traffic scenario. The following are improvements recommended to mitigate the Year 2041 plus project traffic impacts:
> No. 3 - Lakewood Boulevard at Harvey Way: Restripe Harvey Way to provide an exclusive westbound right-turn lane. Given that this key study intersection is located jointly in the Cities of Long Beach and Lakewood, the installation of this improvement is subject to the approval of the City of Long Beach and the City of Lakewood. It should be noted that these improvements cannot be guaranteed by the proposed Project or the City of Long Beach as the improvements would also require approval from the City of Lakewood. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
> No. 4 - Clark Avenue at Harvey Way: Restripe Harvey Way to provide an exclusive eastbound right-turn lane. The installation of this improvement is subject to the approval of the City of Long Beach.
> No. 6 - Paramount Boulevard at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
> No. 7 - Lakewood Boulevard at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
> No. 8 - Faculty Avenue at Carson Street: Install signage to restrict southbound left-turn movements during the AM peak period (7:00 AM - 9:00 AM) and during the PM peak period (4:00 PM - 6:00 PM). The installation of this improvement is subject to the approval of the City of Long Beach.
> No. 9 - Clark Avenue at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.
> No. 10 - Bellflower Boulevard at Carson Street: No physical mitigation measures are feasible; any additional turn lanes will require widening and additional right-of-way. As such, the impact at this location is considered significant and unavoidable and a statement of overriding considerations will be required for this location.

LONG BEACH COMMUNITY COLLEGE DISTRICT

ACKNOWLEDGEMENTS

Eloy Ortiz Oakley
Superintendent-president

FACILITIES ADVISORY COMMITTEE

Robert Maxell
Ann-Marie Gabel
Richard Estacio
Kim Hatch
Karen Kane
Alicia Kruizenga
Emmanuel Ndoumna
Tim Wootton
Medhanie Ephrem

Co-Chairperson Co-Chairperson Classified Staff Faculty Faculty Management Team
Adjunct Faculty
Facilities
Facilities

TABLE OF CONTENTS 01 eXecutive summary

EXECUTIVE SUMMARY	1
PROJECT LIST	2
PROJECT PHASES	6
LIBERALARTS CAMPUS	
2041 FACILITIES MASTER PLAN	9
PROPOSED LOCAL BUDGET/FUNDING SOURCES/	11
DESCRIPTIONS	13
2041 FACILITIES MASTER PLAN SCHEDULE	31

03 PACIFIC COAST CAMPUS

2041 FACILITIES MASTER PLAN 37
PROPOSED LOCAL BUDGET/FUNDING SOURCES/ 39
DESCRIPTIONS
DETAILED PROJECT DESCRIPTIONS 40
2041 FACILITIES MASTER PLAN SCHEDULE 47
04 DISTRICT WIDE SERVICES
PROPOSED LOCAL BUDGET/FUNDING SOURCES/ 51
DESCRIPTIONS
DETAILED PROJECT DESCRIPTIONS 52
2041 FACILITIES MASTER PLAN SCHEDULE 61
05 FUNDING Projections

EXECUTIVE SUMMARY

This document was prepared by Facilities Planning \& Program Services, Inc. ("FPPS") to provide the following information for each of the projects proposed to be a part of the LBCCD 2041 Facilities Master Plan:

- Project description for each of the projects
- Definition of activities/tasks that will be performed during each phase of project delivery
- Size and estimated cost of each project
- Funding sources for each project
- Timeframe for delivery of each project
- Estimated funding amounts that will be needed each year through 2041 (Estimated Cash Flow)

FPPS worked with LBCCD and its various representatives and consultants to derive an understanding of the projects envisioned for the Master Plan in order to generate a list of proposed projects. Based on information provided by LBCCD, the type and size of each project was established and a probable cost of each project was estimated. The estimated cost of each project was broken down to define what portion of the total cost should be allocated to construction, contingencies (i.e. construction, design, and project contingencies), soft costs, and escalation.

In addition to the cost analysis described above, six phases of project delivery were defined for each project. The six phases include Planning, Design, DSA Review \& Approval, Bid \& Award, Construction, and Project Closeout. FPPS then calculated an estimated cost and an appropriate schedule duration for each phase of every project.

Based on all of the preceding, the Master Plan Schedule was generated to graphically display the timeframes in which the six phases of each project are expected to occur for the entire duration of the Master Plan through 2041. This step was followed by the allocation of estimated costs to each of the activities (i.e. each of the six phases) displayed in the Master Plan Schedule.

Knowing the duration of each activity for every project, together with the cost of each such activity, enabled FPPS to then calculate the amount of funds that will be needed during each increment of time throughout the entire duration of the Master Plan through 2041. The amount and timing of funds needed are displayed in the Estimated Cash Flow that is included at the end of this report.

PROJECT LIST

The Project List spreadsheet that follows is a summary overview of the 2041 Facilities Master Plan projects to be completed over the next 25 years. The projects are listed in order of construction but only if isolated by project site, such as the LAC, PCC or District Wide designations.

The information contained in some of the columns may not be fully evident, therefore, explanations and definitions are provided as follows:

ASSIGNABLE SQUARE FEET (ASF): The sum of all areas on all floors of a building that are available for assignment, such as classrooms, labs, offices, etc.

GROSS SQUARE FEET (GSF): The sum of all areas on all floors of a building included within the outside faces of the exterior walls.

CONSTRUCTION COST: The cost is determined by multiplying the GSF times a unit cost per square foot. The unit costs vary by type of building and are based upon standards from the California Community Colleges or professional cost estimates.

TOTAL COST: The cost is determined by multiplying the Construction Cost by a factor of 1.4 to 1.8, depending upon project type. The factor varies due to type of construction, size of the project and complexity of the project. This factor covers such "soft" costs as architectural/engineering services, plan check approval, legal fees, testing/inspection, construction management, furniture, technology and equipment. The Total Cost estimated at this time for all projects is $\$ 785,878,836$.

TOTAL COST INCLUDING ESCALATION: Due to ongoing increases for both construction and "soft" costs, this column adds a 3\% cost-of-living factor which is compounded annually to the year that construction commences. The Total Cost Including Escalation is estimated at $\$ 1,008,451,288$.

POTENTIAL STATE FUNDING: This column shows potential sources of State revenue due to the fact that the project may qualify for capital outlay funding. The State revenues reduce the dollars noted in the Total Cost Including Escalation column. At this time, the estimated State match for potential projects is $\$ 78,666,290$ If State funding does not come to fruition, the Long Term Renovation Contingency will be used in its place.

MEASURE E 2008 AVAILABLE FUNDS: Reflects dollars that are available from the District's 2008 bond that will be utilized to reduce the dollars noted in the Total Cost Including Escalation column. The amount available at this time is $\$ 162,578,701$.

EXECUTIVE SUMMARY
LBCCD 2041 FACILITIES MASTER PLAN - PROJECT LIST

Purple font is data from IPP / FPP
Green font is data from Facility Inventory
4/7/16

Location	Construction Type	Proposed Bond Projects List	Cost Estimate Details (as of 2/10/16)			Total Cost 25 Year Plan (Constrn Cost x 1.6) Unless Othrws Noted)	Construction Dates		Total Cost Including Escalation	Potential State Funding Amounts	Measure E 2008 Available Funds	Amts Required After Deducting State \& Measure E Funding
			Assignable Sq. Ft. (ASF)	$\begin{gathered} \text { Gross } \\ \text { Sq. Ft. } \\ \text { (GSF) } \end{gathered}$	ConstructionCost(GSF x Unit Cost)							
							Start	Finish				
PCC	Reno/New	Buildings QQ/RR - Electrical Program / Dyer Hall / Lifetime Learning	NA	NA	NA	20,302,962	2015/16	2016/17	20,302,962		20,302,962	0
LAC	Renovation	Building D-Science	NA	NA	NA	11,930,197	2016/17	2017/18	12,288,103		12,288,103	0
LAC/PCC	New	District Wide Security Monitoring Systems (Cameras)	-	-	-	10,000,000	2016/17	2016/17	10,000,000		5,691,257	4,308,743
LAC	Renovation	Building P - Language Arts	NA	NA	NA	8,418,168	2016/17	2017/18	8,670,713		8,670,713	0
LAC	Renovation	Building J - Auditorium	NA	NA	NA	23,215,711	2017/18	2018/19	24,629,548		24,629,548	0
LAC	Renovation	Outdoor Kinesiology Labs	NA	NA	9,375,000	15,000,000	2018/19	2019/20	16,390,500		4,206,980	12,183,520
LAC	New	Building W - Aquatic Center	NA	NA	15,625,000	25,000,000	2019/20	2020/21	28,137,500		350,000	27,787,500
PCC	Renovation	Building MM - Construction Trades Ph1	13,033	17,819	9,524,000	15,238,400	2020/21	2021/22	17,665,877	6,858,000	7,798,722	3,009,155
PCC	New	Building P2 - Parking Structure	NA	NA	12,857,143	18,000,000	2021/22	2022/23	21,493,800			21,493,800
PCC	Renovation	Building MM - Construction Trades Ph2	10,514	15,749	7,546,079	12,073,726	2021/22	2022/23	14,417,237	9,706,535	2,367,191	2,343,511
PCC	New	Building 00-Classroom	105,000	150,000	60,000,000	96,000,000	2021/22	2024/25	118,070,400	20,000,000		98,070,400
LAC	Renovation	Building E-College Center	33,858	50,276	18,853,500	30,165,600	2022/23	2023/24	37,100,671		18,168,765	18,931,906
PCC	Demolition	Building FF - Demolish Fine Arts / Senior Center	7,988	10,640	1,250,000	2,000,000	2023/24	2024/25	2,533,600		1,105,190	1,428,410
LAC	New	Building M - Liberal Arts	57,379	81,970	33,576,409	53,722,254	2024/25	2026/27	70,096,798	20,601,755	32,942,452	16,552,591
LAC	Renovation	Building O2-Economic \& Workforce Development / Foundation	37,015	51,302	16,673,150	26,677,040	2024/25	2026/27	34,808,202			34,808,202

[^32]EXECUTIVE SUMMARY
LBCCD 2041 FACILITIES MASTER PLAN - PROJECT LIST

Purple font is data from IPP / FPP
Green font is data from Facility Inventory

Location	Construction Type	Proposed Bond Projects List	Cost Estimate Details (as of 2/10/16)			Cost Construction Dates			Total Cost Including Escalation	Potential State Funding Amounts	Measure E 2008 Available Funds	Amts Required After Deducting State \& Measure E Funding
			$\begin{gathered} \text { Assignable } \\ \text { Sq. Ft. } \\ \text { (ASF) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Gross } \\ & \text { Sq. Ft. } \\ & \text { (GSF) } \end{aligned}$	ConstructionCost(GSF x Unit Cost)	25 Year Plan (Constrn Cost x 1.6) Unless Othrws Noted)	Construction Dates					
							Start	Finish				
LAC	New	Building G - Performing Arts	30,000	42,857	21,696,429	34,714,286	2026/27	2028/29	49,495,629	15,000,000	12,531,982	21,963,647
LAC	Renovation	Building K - Art	23,419	29,479	10,317,650	16,508,240	2029/30	2030/31	25,719,838		1,691,210	24,028,628
LAC	Renovation	Building R - Primary Gymnasium	51,988	78,024	23,407,200	37,451,520	2030/31	2032/33	60,098,454		165,367	59,933,087
LAC	Renovation	Building Q-Secondary Gymnasium	27,254	30,270	9,081,000	14,529,600	2033/34	2034/35	24,735,191		308,241	24,426,950
LAC	Renovation	Building B - Classroom	29,528	44,357	13,307,100	21,291,360	2034/35	2036/37	37,334,400	6,500,000		30,834,400
LAC	Demolition	Building F - Demolish Family / Consumer Education	10,496	15,387	1,250,000	2,000,000	2037/38	2037/38	3,720,600		1,000,000	2,720,600
LAC	Renovation	Building 01 - IITS / Warehouse	17,370	26,560	8,632,000	13,811,200	2037/38	2038/39	26,463,640			26,463,640
LAC	Renovation	Building S - Stadium	NA	NA	32,142,857	45,000,000	2037/38	2039/40	88,812,000		3,060,341	85,751,659
LAC	New	Building CDC - Child Development Center	12,000	17,143	6,857,143	10,971,429	2038/39	2039/40	21,022,354			21,022,354
PCC	Renovation	PCC Walkways \& Wayfinding	NA	NA	1,632,653	2,285,714	2017/18	2040/41	2,572,571		332,958	2,239,613
TBD	New	Joint Use Facility	30,000	42,857	15,625,000	25,000,000	2019/20	2020/21	27,317,500			27,317,500
LAC	Renovation	LAC Walkways \& Wayfinding	NA	NA	3,265,306	4,571,429	2018/19	2040/41	4,995,200		1,301,370	3,693,830
LAC/PCC		Technology Refresh / Replacement	-	-	-	60,000,000	2016/17	2040/41	69,558,000			69,558,000
LAC/PCC		Enterprise Wide Computer System	-	-	-	20,000,000	2016/17	2040/41	20,000,000			20,000,000
LAC/PCC		Landscaping	-	-	-	20,000,000	2016/17	2040/41	20,000,000		2,359,166	17,640,834

EXECUTIVE SUMMARY
LBCCD 2041 FACILITIES MASTER PLAN - PROJECT LIST

Purple font is data from IPP / FPP
Green font is data from Facility Inventory

The exhibit below documents the various phases associated with the construction of a building from the earliest planning stages through construction and project closeout. Specifically, it indicates the six (6) stages of project development as follows: Planning, Design, DSA Review, Bid and Award, Construction and Closeout.

The purpose of this exhibit is to convey the specific tasks under each phase and provide a better understanding of the construction process and the multitude of procedural steps that are necessary to implement a facility project. It is not uncommon for a project to take 31-60 months from conception (Planning) to move-in (Closeout).

PLANNING \& PROGRAMMING								
Establish goals	SCHEMATIC DEsIGN							
	Site relationship Bubble or block diagrams (adiacencies)	DESICN DEVELOPMENT						
Collect facts		Dimensioned Floor plans Building sections	CONSTRUGTION DOCUMENTS					
Test concepts				dSA REVIEW				
Determine needs	Circulation \& access diagrams				BID \& AWARD			
Define the problem	Preliminary floor plans	Exterior elevations	Specifications	Presubmittal meeting		CONSTRUCTION		
Function	Building Massing	Typical details	Contract forms and conditions	DSA submittal package	RFQ / RFP		Occupancy	
Form	Design concepts / system selections	Selection of finishes	General requirements	Bin time	RFP response(s)	Update BIM Doc's (if applicable)		CLOSEOUT
Budget	Architectural	Outine specifications	General conditions	DSA review	Evaluate RFP response(s)	A/E Construction Administration Services	Move Management Services	
Schedule	Civil	Foundation system definition	Bidding requirements	DSA review meetings	Interview(s)	Submittal Review \& Approval	Moving Company Services	As-Builts
Describe space requirements	Structural	Framing system definition	Bid forms	DSA comments	Selection / recommendation	RFI's / ASI's	User Punchlists	M8O Manuals
Use / type of space	Mechanical	Exterior envelope definition	Constructability reviews	Response to DSA comments	Contract negotiations	Change Orders		Warranties
Ancillary / support space	Electrical	Engineering systems definition	Value engineering reviews	DSA Backcheck	Preparation of Board Docket	Pay Application Certification		Final BIM Doc's (if applicable)
Adjacency requirements	Budget Update	Major equipment selections	Budget Update	DSA Stampout	Recommendation to Board	Field Observations		Reconcile all financial matters
Amount of area	Schedule Update	Budget Update	Schedule Update		Board approval to award	Punch List/ Final Inspections		Settement of disputes
Number of people	District/College review \& approval	Schedule Update	BIM Studies (ff applicable)		Execution of contract	Commissioning		Final lien releases
Furnishings \& equipment		District/College review \& approval	District/College review \& approval		Notice to proceed	Owner Rep / Project Manager Services		Consent of Surety
District/College review \& approval						IOR Services		Final payments
						Material Testing \& Engineering Services		Notice of Completion
						M \& O Training		DSA Certification

LIBERAL ARTS CAMPUS

BUILDING KEY

EXISTING FACILITIES

A)Student services

C NURSING
(1) bookstor
(2)LIBRARY/LEARNING RESOURCE CENTER
(P) Parking
(1) MULT-DISCIPLINARY ACADEMIC / ADMINISTRATION
(MATH / CULINARY ARTS
© CAMPUS POLICE / CENTRAL PLANT
(2) FACILITIES

RENOVATIONS
B)CLASSROo
(D) science
E) college center
(1) auditorium
(k) art

P Ianguage arts
© SECONDARY GYMNASIUM
®PRIMARY GYMNASIUN
(3) (tadium
(1) IITS / WAREHOUSE
(2) ECONOMIC \& WORKFORCE DEVELOPMENT

DEMOLITION

(f) FAMILY \& CONSUMER STUDY
) MUSIC RADIO / T
(h) THEATRE ART
(a2) ATHLETICS
FACILITIES WAREHOUSE
(4) FACILITIES WAREHOUSE

FIELD HOUSE

NEW CONSTRUCTION

(6) PERFORMING ARTS
M) Liberalarts
(N) aquatic center
(o) CHILD DEVELOPMENT CENTER

47/16		PROPOSED PROJECTS	Estimated Total Project Cost (includes escalation)	Construction Cost	Contingencies Proj Contingencies)	All Other	Proposed Local Budget	Potential State Funding	$\begin{gathered} \hline \text { Measure E } \\ 2008 \text { Bond } \\ \text { Fund } \\ \hline \end{gathered}$	PROJECT DESCRIPTIONS
LAC	1	Building D - Science	12,288,103	7,680,064	1,626,367	2,981,672	0		12,288,103	Building D was constructed in 1973 and requires a major renovation for improved technology and academic functionality. Work includes improving 16,000 square feet of various science and allied health learning environments with modern technology, relocation of electrical systems for improved maintenance access, and upgrading of elevators for ADA compliance.
LAC	2	Building P - Language Arts	8,670,713	5,419,196	1,147,594	2,103,923	0		8,670,713	Constructed in 1935, Building P requires a comprehensive renovation to upgrade electrical power systems, update HVAC equipment, address plumbing/storm drainage issues, modernize classrooms and enlarge some classrooms.
LAC	3	Building J - Auditorium	24,629,548	15,393,468	3,259,793	5,976,287	0		24,629,548	The college auditorium was constructed in 1956 and requires a renovation of basic building systems, aesthetic improvements, expansion of instructional space, ADA compliance, and installation of a fire suppression system and HVAC for this high occupancy facility.
LAC	4	Outdoor Kinesiology Labs	16,390,500	10,244,063	2,169,331	3,977,106	12,183,520		4,206,980	This project is a renovation of outdoor playing fields and support areas to include the installation of artificial turf on some fields, new scoreboards and bleachers, use of water saving irrigation systems and upgrading of storage facilities.
LAC	5	LAC Walkways \& Wayfinding	4,995,200	3,122,000	661,129	1,212,071	3,693,830		1,301,370	In order to improve wayfinding and facility identification, this project provides for a uniform signage program and improved pedestrian walkways for better circulation.
LAC	6	Building W - Aquatic Center	28,137,500	17,585,938	3,724,081	6,827,481	27,787,500		350,000	This project is the construction of a new 50 meter $\times 25$ yard pool as well as a $12,000 \mathrm{sq}$. ft. (approx.) shower/locker facility in a location near the existing pool. The existing pool has extensive maintenance and repair problems that cannot be cost effectively addressed, thereby requiring this project.
LAC	7	Building E-College Center	37,100,671	23,187,919	4,910,383	9,002,369	18,931,906		18,168,765	Constructed in 1968, the College Center Building is overdue for this major renovation. Scope of work includes updating the operational building systems, correction of deficiencies in the HVAC system, replacement and upgrading of the electrical system, changes for ADA and structural compliance and aesthetic improvements to modernize the facility.
LAC	8	Building M - Liberal Arts	70,096,798	43,810,499	9,277,517	17,008,782	16,552,591	20,601,755	32,942,452	This project involves replacing both of the outdated M \& N Buildings (constructed in 1935) with a new 81,970 square foot state-of-the-art facility to meet academic needs and instructional objectives in the liberal arts.
LAC	9	 Workforce Development / Foundation	34,808,202	21,755,126	4,606,968	8,446,108	34,808,202			This building was purchased by the District after it was originally constructed by a private developer. Since the building was not constructed in accordance with Division of State Architect (DSA) requirements, the District wishes to make structural improvements to the facility to ensure compliance with codes related to use of the facility as a California community college building.
LAC	10	Building G - Performing Arts	49,495,629	27,497,572	7,764,020	14,234,037	21,963,647	15,000,000	12,531,982	Construction of this new Performing Arts Building replaces the existing Buildings G and H. These two buildings are outdated and no longer provide adequate instructional support for music and theatre arts. The new building addresses facility needs associated with these programs by providing modern instructional classrooms, private music practice rooms and performance areas.
LAC	11	Building K - Art	25,719,838	16,074,899	3,404,096	6,240,843	24,028,628		1,691,210	The Art Building was constructed in 1952, and except for some minor renovation work, has never undergone a major remodel. This project represents a complete renovation and modernization of the facility, including building systems, ADA compliance and general refurbishment of the existing structure.
LAC	12	Building R - Primary Gymnasium	60,098,454	37,561,534	7,954,207	14,582,713	59,933,087		165,367	The Building R Primary Gymnasium was constructed in 1952 and requires a significant renovation to address structural/seismic code compliance, ADA access, new HVAC systems and a general modernization of the facility.

[^33]LBCCD 2041 FACILITIES MASTER PLAN - PROPOSED LOCAL BUDGET / FUNDING SOURCES / PROJECT DESCRIPTIONS

DETAILED PROJECT DESCRIPTIONS BUILDING D-SCIENCE

The LAC Science Building (Bldg. D) is an 81,132 gross square foot, 3 story facility It was constructed in 1973 and due to age and the need for improved technology and academic functionality, portions of the building require renovation. This project renovates 16,000 square feet of the facility with a scope of work as follows: 1 . Improve classroom learning environments for anatomy, allied health, diagnostic medical imaging, medical assisting, and physiology with modern technology and functionality; 2. Relocate electrical systems to the ground floor for improved maintenance abilities; 3. Provide new fiber data backbone into the building; 4. Upgrade both elevators to be ADA compliant; and 5. Enhance interior building signage.

SIGNIFICANCE: Renovation of Building D makes major improvements to the facility to better meet the academic needs associated with changes in technology and instructional methodologies of the science curriculum. These changes are imperative to meet educational objectives and better prepare students in the sciences.

PROJECT TYPE: Renovation.
ESTIMATED COST (includes escalation): \$12,288,103

SCHEDULE: The approximate construction schedule for this project is noted on item 1 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

BUILDING P - LANGUAGE ARTS

Project involves the comprehensive renovation of this 16,016 gross square foot facility that was constructed in 1935. The primary objective of this project is to upgrade Building P's functional building systems. Scope of work includes upgrading and/or replacement of the electrical power systems, HVAC, plumbing, storm drainage, fire alarm and telecommunication systems.

The renovation will also include changes to enhance and improve the academic teaching spaces to include enlargement and modernization of classrooms as well as updating the interior building finishes.

SIGNIFICANCE: Renovation of this building provides a significantly improved learning environment and building functionality to better serve the English and Journalism Departments.

PROJECT TYPE: Renovation.
ESTIMATED COST (includes escalation): \$8,670,713
SCHEDULE: The approximate construction schedule for this project is noted on item 2 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS BUILDINGJ-AUDITORIUM

The scope of work for this project involves the complete renovation of this 37,878 gross square foot auditorium building that was built in 1956. The project will include adding 14,119 gross square feet in the North West corner as a second floor addition to accommodate, dance, theater classes, storage and offices. In addition, the project will include the installation of air conditioning systems as well as general refurbishment of the facility to improve electrical power systems, address plumbing issues, provide enhanced telecommunication capability, upgrade lighting and make aesthetic improvements to this aging facility. ADA compliance items to be updated will include a new elevator for access to the basement area and second floor. In addition, the auditorium and lobby space will have a fire suppression system installed along with a voice annunciated fire alarm system.

SIGNIFICANCE: The improvements and renovation of this building shal accommodate the future needs of such programs as dance, music and drama for both instruction as well as performance. Besides facility changes to meet academic programmatic needs, the renovation addresses major building system upgrades and fire, life-safety issues related to such high occupancy areas as the 900 seat auditorium.

PROJECT TYPE: Renovation.
ESTIMATED COST (includes escalation): \$24,629,548

SCHEDULE: The approximate construction schedule for this project is noted on item 3 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

OUTDOOR KINESIOLOGY LABS

This project is a renovation of the physical education outdoor playing fields to better accommodate instructional needs as well as intercollegiate athletics. The renovation is also necessary due to age deterioration of the fields. Scope of work may include the installation of artificial turf on some fields, upgrading of storage facilities, improved field lights, ADA compliance, scoreboards, bleachers and installation of water savin irrigation systems.

SIGNIFICANCE: Renovation and upgrading of the outdoor fields will provide enhanced and modernized labs to meet the long terms needs of the physical education programs.

PROJECT TYPE: Renovation.
ESTIMATED COST (includes escalation): \$16,390,500

SCHEDULE: The approximate construction schedule for this project is noted on item 4 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS WALKWAYS AND WAYFINDING

The scope of work associated with this project includes a number of elements associated with improvements to the LAC campus as follows: 1. New and revised walkways throughout the campus to allow for better pedestrian access and circulation; and 2. Development and installation of a uniform signage program to allow for more efficient wayfinding and facility identification.

SIGNIFICANCE: This project represents an effort to allow students, staff and visitors to circulate freely and efficiently throughout the campus and provides for easy identification of buildings and services. The walkway and wayfinding program will comply with ADA requirements.

PROJECT TYPE: Renovation.
ESTIMATED COST (including escalation): \$4,995,200

SCHEDULE: The approximate construction schedule for this project is noted on item 5 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: The specific location of this project is not depicted on the 2041 Facilitie Master Plan site map since the work will occur throughout the campus

BUILDING W- AQUATIC CENTER

Due to its age, the existing swimming pool has significant and extensive repair issues that cannot be cost effectively addressed. The Aquatic Center project involves construction of a new 50 meter $\times 25$ yd. pool. Scope of work also includes construction of a support building of approximately 12,000 square feet to provide showers, locker rooms, storage, pool equipment and office space. The new pool will be constructed along Carson Street to better accommodate its increased space needs.

SIGNIFICANCE: The Aquatic Center project addresses the major and costly repair problems associated with the existing pool and shall provide a modern, state- of- the - art complex to meet the needs of the instructional Kinesiology program as well as intercollegiate athletics. This project also provides much needed shower and locker room facilities when the existing gyms are closed for renovation at a later phase of the 2041 Master Plan Schedule.

PROJECT TYPE: New Construction.

ESTIMATED COST (includes escalation): \$28,137,500

SCHEDULE: The approximate construction schedule for this project is noted on item 6 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS

BUILDING E-COLLEGE CENTER
The College Center is a two story, 50,276 gross square foot building that was constructed in 1968. The facility houses the campus food service, kitchen, dining area, and offices. The offices house several support programs such as student government offices, veteran's center, international students and a reading/writing success center. Other than a minor cosmetic renovation in 1991, the building is overdue for a major renovation. This project represents a comprehensive effort to update the operational building systems and make minor interior improvements for more efficient use of the facility.

More specific scope of work includes a comprehensive renovation, replacement or upgrade of building operational systems including: electrical distribution along with replacement of the original oil control switch, plumbing and fixtures, HVAC system, fire alarm and overhead sprinkler system, and lighting. Any upgrades related to ADA compliance and structural safety shall also be addressed as well as aesthetic improvements to modernize the facility.

SIGNIFICANCE: The significance of this project is that it completely renovates a primary campus building thereby bringing it up to date in terms of applicable safety codes and building systems. The renovated building allows the diverse functions that utilize this facility to more efficiently serve students in a modernized up-to-date environment.

PROJECT TYPE: Renovation.
ESTIMATED COST (includes escalation): \$37,100,671
SCHEDULE: The approximate construction schedule for this project is noted on item 7 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

BUILDING M- LIBERAL ARTS

This project will replace two buildings (Buildings M \&N) constructed in 1935. The current facilities are aging and in need of significant repair. The heating and cooling systems are outdated and the electrical systems are insufficient to meet current demands for technology and those teaching methodologies supported by these new technologies. ADA compliant access has also been a problem with Building M that requires attention.

The proposed project is construction of an 81,970 gross square foot building to provide new classrooms, laboratory facilities, a modern technology center for the Computer Information Systems and Business Technology Departments, faculty offices, and support areas for general education instruction. Included within the new building will be meeting/conference areas as well as some larger classrooms to support educational objectives.

A Final Project Proposal (FPP) has been submitted and approved by the California Community Colleges Board of Governors, for this project. Assuming a statewide higher education bond is approved by California voters, State funding of nearly $\$ 21$ million may be provided to help offset the construction cost of this project.

SIGNIFICANCE: This project replaces the existing M \& N Buildings at LAC, which were constructed in 1935 and can no longer meet the college's educational and facility master plans. The new Liberal Arts Building provides for a state-of-the-art educational facility that will address instructional plans and objectives well into the 21st century for such academic disciplines as Language Arts, Foreign Languages, Speech Communications, Consumer Education, Computer Information Systems and Business Technology.

PROJECT TYPE: New Construction.
ESTIMATED COST (includes escalation): \$70,096,798
SCHEDULE: The approximate construction schedule for this project is noted on item 8 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS BUILDING O2-ECONOMIC \& WORK FORCE
DEVELOPMENT/FOUNDATION

The O2 Building at the LAC was constructed in 2001 by a private developer under the California Uniform Building Code. In 2010, the District purchased the building as well as the property upon which it was constructed. As a result, the 51,302 gross square foot building became part of the LAC site. Since the acquisition, the facility has been utilized for non-instructional support services such as Economic \& Work Force Development and the Foundation

In order to meet requirements of the California Field Act and the State Education Code, it is necessary for the District to obtain certification of this building by the Division of State Architect. This process will require structural enhancements to obtain DSA approval.

In addition to the DSA certification, the scope of work for this project shall include the conversion of existing warehouse space into offices and related support space.

SIGNIFICANCE: The significance of this project is that it brings the facility into full DSA structural code compliance for California community colleges and allows the building to be utilized for any function, including instructional uses.

PROJECT TYPE: Renovation
ESTIMATED COST (includes escalation): \$34,808,202
SCHEDULE: The approximate construction schedule for this project is noted on item 9 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

BUILDING G- PERFORMING ARTS

The new Performing Arts Building is a 42,857 gross square foot facility that replaces the existing and outmoded Music (Bldg. G) and Theatre Arts (Bldg. H) at the LAC. The scope of work for this project includes a building with instructional classrooms, specialized labs, private music practice rooms, faculty/staff offices, storage and support spaces. It also provides for smaller scale performance areas and the campus radio station.

SIGNIFICANCE: This project replaces older buildings that are unable to meet current educational needs. The new Performing Arts Building provides for a larger state-of-the-art facility that will meet the long term curricular requirements of the music and theatre departments.

PROJECT TYPE: New Construction.
ESTIMATED COST (includes escalation): \$49,495,629

SCHEDULE: The approximate construction schedule for this project is noted on item 10 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS

BUILDING K- ART

The Art building was constructed in 1952 and is a 29,479 gross square foot, one story building. Except for some minor renovation work in 1995, the building has never undergone a major remodel. This project represents a complete renovation and modernization of the facility to include replacement of the HVAC systems, electrical power upgrades, improved data communication wiring, roof replacement, painting, ADA compliance and general refurbishment of the existing structure.

SIGNIFICANCE: In order to continue use of this facility and meet the needs of modern technologies and curriculum, the building requires a comprehensive renovation. Through the renovation process, the life of this building will be extended for many years and continue to serve the instructional needs of the campus and the students it serves.

PROJECT TYPE: Renovation.
ESTIMATED COST (includes escalation): \$25,719,838
SCHEDULE: The approximate construction schedule for this project is noted on item 11 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

BUILDING R - PRIMARY GYMNASIUM
Building R was constructed in 1952 and is a two story building consisting of 78,053 gross square feet. There was a relatively minor renovation of the facility in 1963 but it has never undergone a comprehensive remodel or major renovation. The building consists of a large gym, offices, and shower/locker facilities.

The renovation of this facility shall include structural/seismic code enhancements, changes to provide for ADA access, new HVAC systems, and various improvements to modernize the aesthetics of the building.

SIGNIFICANCE: Due to the age of this facility and the type of construction, the structural enhancements are essential to ensure the safety of persons utilizing the gymnasium as well as to ensure the buildings long term use in the event of potential seismic activity. In addition, by addressing the issues of access, the building will serve the needs of disabled persons and allow for full compliance with the Americans with Disabilities Act (ADA).

PROJECT TYPE: Renovation.
ESTIMATED COST (includes escalation): $\$ 60,098,454$
SCHEDULE: The approximate construction schedule for this project is noted on item 12 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS BUILDING Q - SECONDARY GYMNASIUM

Building Q is a one story building constructed in 1952 and consists of 30,270 gross square feet. Since construction, except for minor repairs and ongoing or scheduled maintenance, the building has never undergone a major renovation.

This project is very similar in scope to the proposed work for the primary Gymnasium (Building R). The work will include addressing issues related to instructional space needs, training areas, structural/seismic upgrades, ADA compliance, fire life-safety improvements, lighting, HVAC system upgrades and aesthetic improvements.

SIGNIFICANCE: This renovation project is essential in order to insure seismic safety of the facility as well as the safety of all persons utilizing the building. In addition, by completing various physical changes to the facility, full accessibility compliance will be realized.

PROJECT TYPE: Renovation.

ESTIMATED COST (includes escalation): $\$ 24,735,191$

SCHEDULE: The approximate construction schedule for this project is noted on item
13 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.
LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

BUILDING B- CLASSROOM

This project is a comprehensive renovation of the existing Building B. The building is a three story, 44,357 gross square foot facility that was constructed in 1971. Except for the usual scheduled maintenance projects including an HVAC upgrade in 2010, there has been no major upgrade of this facility. Because of the nature of the programs housed in this facility as well as its age, the building is definitely due for a significant renovation

Scope of work shall include electrical power upgrades, data and communication improvements, conversion of some general classrooms to lab functions, creation of large lecture halls, better lighting and general modernization of the facility in terms of utility and aesthetics.

SIGNIFICANCE: The renovated building will better meet the educational objectives of programs planned for this facility including Anthropology, Family and Consumer Education as well as several others. In addition, master planned facilities such as the QQ and MM Buildings at PCC will allow the Electrical and Drafting/Auto Cad programs to be relocated from Building B to these new facilities.

PROJECT TYPE: Renovation.

ESTIMATED COST (includes escalation): \$37,334,400
SCHEDULE: The approximate construction schedule for this project is noted on item 14 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS BUILDING F- FAMILY/CONSUMER EDUCATION

This project will demolish the existing one story 15,387 gross square foot Family/ Consumer Education Building that was constructed in 1952. Because of the age of this facility it is outmoded in terms of meeting the long term program objectives of the Family and Consumer Education Department. It is simply not cost effective to renovate this facility to meet modern standards. In addition, future construction of the adjacent Performing Arts Building and/or the College Center will require removal of this building to meet current fire codes.

The Family and Consumer Education programs will be relocated to the newly renovated Building B-Classroom.

SIGNIFICANCE: This project not only eliminates an older building that has a very limited lifespan in terms of meeting educational objectives but it also provides a construction site for a new building that is scheduled in the District's 2041 Facilities Master Plan.

PROJECT TYPE: Demolition.
ESTIMATED COST (includes escalation): $\$ 3,720,600$
SCHEDULE: The approximate construction schedule for this project is noted on item 15 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

BUILDING O1 - IITS/WAREHOUSE

The O1 Building at the LAC was constructed in 2001 by a private developer under the California Uniform Building Code. In 2010, the District purchased the building as well as the property upon which it was constructed. As a result, the 26,560 gross square foot building became part of the LAC site. Since acquisition, the facility has been utilized for the Instructional and Information Technology Services (IITS) Department and the warehouse

In order to meet requirements of the California Field Act and the State Education Code, it is necessary for the District to obtain certification of this building by the Division of State Architect (DSA). This process shall require structural enhancements in order to obtain DSA approval.

The scope of work shall also include minor construction work within the facility to improve space utilization.

SIGNIFICANCE: The significance of this project is that it brings the facility into full DSA structural compliance for California community colleges and allows the building to be utilized for any function, including instructional uses.

PROJECT TYPE: Renovation.
ESTIMATED COST (includes escalation): \$26,463,640

SCHEDULE: The approximate construction schedule for this project is noted on item 16 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS BUILDING S - STADIUM

This important community sports facility, which was constructed in 1949, requires major renovation to address issues related to ADA access, water intrusion and structural upgrading of the facility to meet Division of State Architect (DSA) seismic requirements.

Prior to commencement of the project, a comprehensive engineering analysis of the structure and mechanical systems shall be required.

SIGNIFICANCE: Due to the nature of this facility as a stadium it is often occupied by hundreds of spectators and participants. As the facility approaches 70 years of age it is imperative for life-safety that improvements be made to this aging stadium in order to address potential structural issues as well as disabled person access required under the ADA.

PROJECT TYPE: Renovation.

ESTIMATED COST (includes escalation): \$88,812,000

SCHEDULE: The approximate construction schedule for this project is noted on item 17 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

BUILDING CDC- CHILD DEVELOPMENT CENTER

The existing Child Development Center is located off-site but is part of the LAC. It consists of two (2) one story building of approximately 9,042 gross square feet. The facility was constructed in two phases, with the vast majority of the construction taking place in 1971.

This project is the new construction of a replacement for the existing Child Development Center. The new facility will not be constructed until approximately 2037, as noted in the 2041 Facilities Master Plan. New construction will be necessary at that time because the existing structures will be over 65 years old when construction commences.

The proposed new project is approximately 12,000 gross square feet, or roughly 25% larger than the existing facility. Elements of the new building will include children's classrooms, food preparation and service, staff and children's restrooms, offices and support/storage spaces. In addition, construction will include a comprehensive outdoor area for exercise and creative play.

SIGNIFICANCE: This project is an essential educational program because it is the "laboratory" setting for the college's Child Development Program. Construction of the new facility will ensure that future teachers and child development professionals are provided with an appropriate and modern learning environment.

PROJECT TYPE: Construction.

ESTIMATED COST (includes escalation): \$21,022,354

SCHEDULE: The approximate construction schedule for this project is noted on item 18 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

LBCCD 2041 FACILITIES MASTER PLAN SCHEDULE

	2015	016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
LAC	JFMAMJJAS	MAMJJAS	fmamjJaso	MAMJJA	FMAMJJA	MJJA	AMJJASO	MAMJJASO	MAMJJASOND	FMAMJJASOND	FMAMJJASON	FMAMJJAS
1. Building D - Science Planning Design Bldg D DSA Review \& Approval Bid \& Award Building D Construction Closeout												
2. Building P-Language Arts Planning Design Building P DSA Review \& Approval Bid \& Award Building P Construction - Building P Closeout	$\square_{\mathrm{A}}^{\mathrm{A}}$											
3. Building J-Auditorium Planning Design Building J DSA Review \& Approval - Bldg J Bid \& Award Building J Construction - Building J Closeout												
4. Outdoor Kinesiology Labs Planning Design DSA Review \& Approval Bid \& Award Construction Closeout												
5. LAC Walkways \& Wayfinding Planning Design DSA Review \& Approval Bid \& Award										2024-2039	2040	2041
			\|							2024-2039	2040	2041
6. Building W - Aquatic Center Planning Design DSA Review \& Approval Bid \& Award Construction Closeout												
LAC	$\frac{\text { MAMJJASOND }}{2015}$	$\frac{\text { J FMAMJJASON }}{2016}$	$\frac{\text { dJ FMAMJJASON }}{}$	[$\frac{\text { FMAMJJASon }}{}$	$\frac{\text { D J FMAMJIASOND }}{2019}$	JfMAMJJASOND	$\frac{\text { FMAMJJASOND }}{\text { 2021 }}$	$\frac{\text { FMAMJIASOND }}{2022}$	$\frac{\text { JFMAMJJASond }}{}$	$\frac{\text { MAMJJASON }}{2024}$	$\frac{\text { MAMJJASON }}{2025}$	$\begin{aligned} & \text { MJJASOND } \\ & \hline 2026 \\ & \hline \end{aligned}$

[^34]LBCCD 2041 FACILITIES MASTER PLAN SCHEDULE
(WITH ESTIMATED $\$$ VALUES INDICATED FOR EACH PROIECT)
FPPS $A 1$
миим

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
	JFMAMJJASON	JFMAMJJASOND	JfmamJJASOND	FMAMJJASOND	MMJASOND	MJJASOND	JfmAMJJASON	MAMJJASOND	MAMJJASOND	MJJAson	MJJASON	MJJASOND
7. Building E-College Center Planning Design Building E DSA Rvw \& Apprvl - Building E Bid \& Award Building E Construct Building E Closeout												
8. Building \mathbf{M} - Liberal Arts Planning Design Building M / N DSA Review Building Design Bid \& Award Building M/N Construct Building M/N Closeout (2037)												J FM 2027
9. Bldg O2-Economic \& Workforce Development / foundation Planning Design Building 02 DSA Review Building 02 Bid \& Award Building O2 Construct Swing Space Construct Building 02 Closeout									and move into swing sp			
10. Building G - Performing Arts Planning Bldg H Design Building H DSA Review Building H Bid \& Award Building H												
Planning BIdg G Design Building G DSA Review Building G Bid \& Award Building G												
LAC	$\frac{1015}{}$	JFMAMJJAS OND	$\frac{\text { FMAMJJASOND }}{2017}$	$\frac{2018}{}$	JFMAMJJASOND	JFMAMJJASOND	$\frac{\text { FMAMJJASOND }}{2021}$	$\frac{\text { FMAMJJASOND }}{2022}$	J FMAMJJASOND	JFMAMJJASOND	J JMAMJJASOND	$\frac{\text { JFMAMJJASOND }}{} \frac{2026}{}$

BUILDING KEY

EXISting FACILItIES
(AA)MULTIDISCIPLINARY / ADMINISTRATION
(BB MULTIDISCIPLINARY
©C)KINESIOLOGY
(0)MULTIDISCIPLINARY
© (-) STUDENT CENTER / multidisciplinary
(6)STUDENT SUPPORT SERVICES / CAFETERIA
(HH)CHILD DEVELOPMENT CENTER
(II) SHEET METAL / WELDING
(II) ADVANCED TRANSPORTATION/
(®k) GREENHOUSE
(4) UBRARY/LEARNING RESOURCE CENTER
(NIN HORTICULTURE
(v) facilities/ Centralplant

RENOVATIONS

(mim Construction trades
RR) ELECTRICAL
DEMOLITION
(II) CLASSROOM / DYER HRE

NEW CONSTRUCTION

@qELECTRICAL/ DYER HALL/LIFETIME LEARNING
(0) CLASSROom
(22) PARKING STRUCTURE

LBCCD 2041 FACILITIES MASTER PLAN - PROPOSED LOCAL BUDGET / FUNDING SOURCES / PROJECT DESCRIPTIONS

DETAILED PROJECT DESCRIPTIONS BUILDINGS QQ/RR - ELECTRICAL/ DYER HALL/ LIFETIME LEARNING

The scope of work for this project consists of the following: 1. Construction of a new two story building of approximately 24,839 square feet that will house the Lifetime Learning Center, the Electrical Department and Dyer Hall (Building QQ); 2. Renovation of existing one story building of approximately 6,104 square feet (Building RR); and 3. Approximately 98,000 square feet of site work including new landscape and hardscape, a new parking lot, a new work yard and installation of new utilities.

SIGNIFICANCE: This project provides for an improved facility to house the Electrical Department, Lifetime Learning Center and Dyer Hall, thereby meeting the long term needs of these programs. More specifically, the project promotes collaboration between such fields as alternate fuels, electrical department and horticulture. It also provides dedicated space for robotics and automation equipment as well as a work yard for solar panels.

PROJECT TYPE: New Construction and Renovation.
ESTIMATED COST (includes escalation): \$20,302,962
SCHEDULE: The approximate construction schedule for this project is noted on item 19 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS BUILDING MM - CONSTRUCTION TRADES (PHASE 1)

This project involves a major renovation of the existing 13,288 gross square foot facility, which was constructed in 1957, as well as construction of a new 4,531 gross square foot addition to the building. A California Chancellor's Office Final Project Proposal (FPP) has been approved for this project. However, State funding is contingent upon voter approval of a Community College Construction Bond. Renovation includes upgrading of the facility including electrical systems, data communication systems, ADA access compliance, HVAC system replacement, lighting, plumbing, and aesthetic improvements.

SIGNIFICANCE: Renovation of the Construction Trades Building upgrades the facility and its operating systems. It adds significant life to this facility and corrects a number of deficiencies that will improve its use in the training of students in the areas of air conditioning, refrigeration and the construction trades.

PROJECT TYPE: Renovation and New Construction.

ESTIMATED COST (includes escalation): \$17,665,877
SCHEDULE: The approximate construction schedule for this project is noted on item 20 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

[^35]
BUILDING P2-PARKING STRUCTURE

The intent of this project is to construct a new multi-story parking structure at PCC
to serve approximately 500-600 vehicles. This is the only viable alternative to meeting vehicular parking demands due to limited land availability.

SIGNIFICANCE: The new parking structure shall address the long term student and staff parking needs associated with the construction of a number of new instructional buildings at PCC, and make progress towards better sustainability by installing solar panels on top of the structure.

PROJECT TYPE: New Construction.
ESTIMATED COST (includes escalation): \$21,493,800
SCHEDULE: The approximate construction schedule for this project is noted on item 21 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS BUILDING MM - CONSTRUCTION TRADES (PHASE 2)

This project involves the construction of a 15,749 gross square feet addition to the existing structure. The new construction will provide space for the Drafting and Architecture Programs.

An Initial Project Proposal (IPP) has been approved by the California Community College Chancellor's Office. The next step will be to submit a Final Project Proposa (FPP) for this project which, if approved, would make the project eligible for State capital outlay funding. However, the project is undergoing a review to determine eligibility for new construction. If it does not qualify, the facility will be renovated

SIGNIFICANCE: Whether this project constructs a new facility or renovates the existing space, the result will be a modern up-to-date facility to meet the instructional requirements for drafting and Architectural Programs.

PROJECT TYPE: Renovation.
ESTIMATED COST (includes escalation): \$14,417,237
SCHEDULE: The approximate construction schedule for this project is noted on item 22 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

BUILDING OO-CLASSROOM

The Classroom Building project involves the new construction of a large 150,000 gross square foot instructional building. The building shall be multi-disciplinary in nature and will include classroom facilities, large lecture rooms, meeting areas, extensive state-of-the-art computer labs, as well as faculty offices and support space.

SIGNIFICANCE: This project represents an important academic component to the campus and provides long term instructional space and educational opportunities for the students at the Pacific Coast Campus. It also allows for a more comprehensive curriculum so that students at PCC can take the majority of their required classes at this single location.

PROJECT TYPE: New Construction.
ESTIMATED COST (includes escalation): \$118,070,400

SCHEDULE: The approximate construction schedule for this project is noted on item 23 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

DETAILED PROJECT DESCRIPTIONS BUILDING FF - DEMO FINE ARTS/SENIOR CENTER

Building FF was constructed in 1936 and is 10,640 gross square feet in size. Due to the age of this facility and overall condition, it is not cost effective to renovate the building to meet future educational standards and program needs. Therefore, this project is demolition of the existing Building FF

SIGNIFICANCE: The existing programs housed in this facility (Lifetime Learning Center and Dyer Hall) shall be relocated to the QQ Building which is being constructed earlier in the 2041 Facilities Master Plan. The former Building FF site shall be utilized for a new campus entry including a student drop-off area and vehicular turnabout.

PROJECT TYPE: Demolition.

ESTIMATED COST (includes escalation): \$2,533,600

SCHEDULE: The approximate construction schedule for this project is noted on item 24 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location is indicated on the 2041 Facilities Master Plan site map.

WALKWAYS AND WAYFINDING

The scope of work associated with this project includes a number of elements associated with improvements to the PCC campus as follows: 1. New and revised walkways throughout the campus to allow for better pedestrian access and circulation; and 2. Development and installation of a uniform signage program to allow for more efficient wayfinding and facility identification.

SIGNIFICANCE: This project represents an effort to allow students, staff and visitors to circulate freely and efficiently throughout the campus and provides for easy identification of buildings and services. The walkway and wayfinding program wil comply with ADA requirements to insure access by disabled persons

PROJECT TYPE: Renovation.

ESTIMATED COST (includes escalation): \$2,572,571

SCHEDULE: The approximate construction schedule for this project is noted on item 25 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule

LOCATION: The specific location of this project is not depicted on the 2041 Facilitie Master Plan site map since the work shall occur throughout the campus.

LBCCD 2041 FACILITIES MASTER PLAN SCHEDULE
(WITH ESTIMATED \$ VALUES INDICATED FOR EACH PROJECT)

FPPS 24

PCC	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
	JFMAMJJASOND	JFMAMJJASOND	DFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND.	JFMAMJJASON	FMAMJJASOND
24. Building FF - Demolish Fine Arts / Senior Center												
Planning												
DesignDSA Review \& Approval												
OSA Review \& ApprovalBid \& Award												
Construction												
Closeout 2,533,600												
25. PCC Walkways \& WayfindingPlanning												
${ }^{\text {Pranning }}$												
DSA Review \& Approval												
Construction												
2,572,571												
										2024-2039	2040	2041
	JFMAMJJASOND	JFMAMJJASOND	DJMAMJJASOND	JfmamJJasond	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND.	JFMAMJJASOND	JfmamJJASOND.	JFMAMJJASOND	JJMAMJJASOND
	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026

DISTRICT WIDE SERVICES

4/7/16			$\begin{array}{\|cc\|} \hline \text { Estimated Total } \\ \text { Project Cost } \\ \text { (includes escalation) } \end{array}$	Construction Cost		All Other	Proposed Local Budget	$\begin{gathered} \hline \text { Potential } \\ \text { State } \\ \text { Funding } \\ \hline \end{gathered}$	$\begin{gathered} \text { Measure E } \\ 2008 \text { Bond } \\ \text { Fund } \\ \hline \end{gathered}$	PROJECT DESCRIPTIONS
		PROPOSED PROJECTS			Contingencies Proj Contingencies)					
$\begin{aligned} & \text { LAC } \\ & \text { PCC } \end{aligned}$	26	District Wide Security Monitoring Systems	10,000,000	7,500,000	1,000,000	1,500,000	4,308,743		5,691,257	The Security Systems project installs surveillance cameras at all District facilities in order to improve safety and security for faculty, students, staff and the public. The cameras shall be located to provide coverage in such areas as parking lots, building entries/exits, and other locations for crime prevention and public safety.
$\begin{aligned} & \text { LAC } \\ & \text { PCC } \end{aligned}$	27	Joint Use Facility	27,317,500	17,073,438	3,615,551	6,628,511	27,317,500			This project provides for the construction of a new educational facility for collaborative programs with Long Beach Unified School District and Long Beach State University. The facility shall include classrooms, labs, large lecture spaces, meeting rooms, offices, flexible multi-purpose areas and support spaces. The specific location for this project has not been determined.
$\begin{aligned} & \text { LAC } \\ & \text { PCC } \end{aligned}$	28	Technology Refresh/Replacement	69,558,000	52,168,500	6,955,800	10,433,700	69,558,000			This project involves the long-term improvement, acquisition and replacement of technology driven hardware and equipment, throughout the District. It is essential in order to keep pace with ever changing technology and allow District students to be educated and trained on the most up-to-date equipment.
$\begin{aligned} & \text { LAC } \\ & \text { PCC } \end{aligned}$	29	Enterprise Wide Computer Systems	20,000,000	15,000,000	2,000,000	3,000,000	20,000,000			This project provides for the acquisition of new integrated software for the management of the District's financial resources, human resources and student records.
$\begin{aligned} & \text { LAC } \\ & \text { PCC } \end{aligned}$	30	Landscaping	20,000,000	14,286,000	2,016,000	3,698,000	17,640,834		2,359,166	This project is for the design and installation of landscaping elements at both the LAC and PCC campuses. The scope of work includes landscaping of new areas as well as the renovation of existing areas in order to refresh the plant palette and provide drought resistant plant material for conservation of irrigation water.
$\begin{aligned} & \text { LAC } \\ & \text { PCC } \end{aligned}$	31	Infrastructure Projects	25,000,000	15,625,000	3,310,000	6,065,000	25,000,000			A long term need exists for constantly updating the physical plant's infrastructure. This project shall provide funding during the life of the 2041 Facilities Master Plan for purposes of upgrading and/or replacing various infrastructure elements such as natural gas lines, chilled water lines, hot water lines, electrical distribution systems, and data/communication systems.
$\begin{aligned} & \text { LAC } \\ & \text { PCC } \end{aligned}$	32	Energy / Water Conservation Projects	25,000,000	17,857,500	2,520,000	4,622,500	25,000,000			Due to ever increasing energy rates as well as requirements to reduce water consumption, this project allows the District to take proactive steps to reduce the utilization of these utilities. Various projects shall be funded including such examples as the comprehensive use of reclaimed water, solar power, lighting retrofits, water saving sprinklers/timers and installation of new and developing technologies to conserve energy.
$\begin{aligned} & \text { LAC } \\ & \text { PCC } \end{aligned}$	33	Minor Campus Improvements	30,000,000	21,429,000	3,024,000	5,547,000	29,239,507		760,493	During the implementation of the 2041 Facilities Master Plan, the District will be faced with the need for completing a wide array of smaller projects that do not fall into the categories of capital outlay funding or do not meet the State funded parameters for scheduled maintenance. This project provides the funding vehicle for these smaller projects that may be needed to meet educational and program objectives during the life of the Master Plan.
$\begin{aligned} & \text { LAC } \\ & \text { PCC } \end{aligned}$	34	Surface Parking Improvements	10,000,000	7,143,000	1,008,000	1,849,000	9,454,310		545,690	The scope of work for this project is an ongoing program to maintain or improve the District's surface parking lots at all locations during implementation of the 2041 Facilities Master Plan. Over the next 25 years, all the District's parking lots shall require regular and ongoing maintenance ranging from slurry sealing to replacement. This project protects and also extends the life of the multitude of surface parking lots.
		Total:	236,875,500	168,082,438	25,449,351	43,343,711	227,518,894		9,356,606	

[^36]DETAILED PROJECT DESCRIPTIONS SECURITY SYSTEMS (CAMERAS)

In the interest of student and staff security and safety, this project installs surveillance cameras in parking lots, building entries and exits, and other locations necessary for crime prevention and public safety. The project includes installations at both the LAC and PCC campuses

SIGNIFICANCE: This project represents a significant commitment to the safety and security of all students, staff, faculty and the public when utilizing District facilities.

PROJECT TYPE: New Equipment and Installation.
ESTIMATED COST (includes escalation): \$10,000,000

SCHEDULE: The approximate construction schedule for this project is noted on item 26 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: The specific locations required for this project are not noted on the 2041 Facilities Master Plan site maps since the work is performed throughout each campus.

MAY 2016 DISTRICT 52

DETAILED PROJECT DESCRIPTIONS

JOINT USE FACILITY

This project is the construction of an educational facility to provide opportunities for collaborative programs with Long Beach Unified School District and Long Beach State University. The facility shall include classrooms, labs, large lecture spaces, meeting rooms, offices, flexible multi-purpose areas and support spaces. The facility will be designed to address the needs of the District as well as the two collaborative partners.

SIGNIFICANCE: This unique facility will provide important educational opportunities for the students of the Long Beach area as the District creates a model partnership of collaboration between the Long Beach Unified School District (K-12) and Long Beach State University. These opportunities are endless and far reaching as lock step barriers of age and grade levels are replaced with program innovation, educational reform,
and learning designed for the future.
PROJECT TYPE: New Construction.

ESTIMATED COST (includes escalation): \$27,317,500
SCHEDULE: The approximate construction schedule for this project is noted on item 27 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Project location to be determined

TECHNOLOGY REFRESH/REPLACEMENT

This project provides for the long term improvement, acquisition, and replacement of technology driven hardware and equipment throughout the District.

SIGNIFICANCE: The importance of this project is that it allows the District to keep pace with the growth, changes and replacement of technology driven products so that it remains on the cutting edge of student instruction and management efficiency. Only in so doing can the District be educating and training its students to be prepared for the workplace of tomorrow.

PROJECT TYPE: Not Applicable
ESTIMATED COST (includes escalation): \$69,558,000
SCHEDULE: Expenditures shall occur annually in order to maintain the needed refresh cycle for existing classrooms, labs and administrative technology. The approximate construction schedule for this project is noted on item 28 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule

LOCATION: The project shall be implemented throughout the District. Therefore, it is not indicated on the 2014 Facilities Master Plan site maps.

DETAILED PROJECT DESCRIPTIONS ENTERPRISE WIDE COMPUTER SYSTEM

This project provides financial resources for the acquisition of new integrated software for the management of the District's financial, human resources and student records. The system would meet the District's needs with web enabled capabilities such as on-line registration, electronic paystubs, enrollment analytics, and enhanced communication tools that increase operational efficiency while minimizing costs.

SIGNIFICANCE: This project allows the District to not only manage its data better and more efficiently but it also provides a systems approach that will grow with the District to provide seamless sharing of core person data for students, faculty, staff and alumni. Such information is a critical requirement of institutions of higher learning and essential to the long term needs of Long Beach Community College District.

PROJECT TYPE: Not Applicable
ESTIMATED COST (includes escalation): \$20,000,000
SCHEDULE: The approximate construction schedule for this project is noted on item 29 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: This project will be implemented District wide to serve the needs of al locations, facilities and functions. Therefore, it is not shown on the 2041 Facilities Master Plan site maps.

LANDSCAPING

This project provides for the design and installation of landscaping elements at both the LAC and PCC campuses. Scope of work includes new areas to be landscaped as well as the renovation of certain existing areas due to plant material that requires replacement or is inappropriate for the application. One emphasis of the landscaping project will be the utilization of drought tolerant planting material to conserve the use of irrigation water.

SIGNIFICANCE: This project provides for the installation of landscape materials which are visually pleasing, provide aesthetic improvements to the site, and assist the District in accomplishing its goal of water use reduction

PROJECT TYPE: Not Applicable.
ESTIMATED COST (including escalation): \$20,000,000

SCHEDULE: The approximate construction schedule for this project is noted on item 30 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule

LOCATION: This project shall be implemented in various locations at both the LAC and PCC. Therefore, it is not specifically depicted on the 2041 Facilities Master Plan site plans.

DETAILED PROJECT DESCRIPTIONS INFRASTRUCTURE PROJECTS

This project shall provide funding for various infrastructure projects at both of the District's campuses to support the 2041 Facilities Master Plan. There is no specific schedule or timeframe for implementation of this project but the work will occur as needed to support any changes, alterations, replacements or installations of the various infrastructure systems. Typically, this work may include gas lines, chilled water lines for building cooling, hot water lines, electrical distribution and wiring, and data/ communication systems

SIGNIFICANCE: The importance of this project is that it will provide a budget to meet the replacement and upgrading of various infrastructure systems to improve and maintain the operational backbone necessary to support the physical plant.

PROJECT TYPE: Not Applicable
ESTIMATED COST (includes escalation): $\$ 25,000,000$

SCHEDULE: The approximate construction schedule for this project is noted on item 31 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: No specific location has been determined for this project but the infrastructure work will be accomplished throughout the District's facilities. Therefore, it is not shown on the 2041 Facilities Master Plan site maps,

ENERGY/WATER CONSERVATION PROJECT(S)

Due to ever increasing energy rates as well as requirements to curtail water consumption, it is imperative that the District take proactive steps to reduce use of these utilities. This project utilizes technology and equipment to accomplish that objective via the use of lighting upgrades/retrofits, reclaimed water, solar power, water saving sprinklers/timers, artificial turf, specialized plant material that requires very little irrigation, and other energy saving measures

SIGNIFICANCE: As noted above, this project assists the District to save energy and reduce the utilization of water. It represents a commitment that will provide dividends of budgetary savings as well as a reduction in the use of ever decreasing natural resources.

PROJECT TYPE: Not Applicable.
ESTIMATED COST (including escalation): \$25,000,000
SCHEDULE: The approximate construction schedule for this project is noted on item 32 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: This project will occur at both the LAC and PCC campuses. Because of its wide ranging scope and locations throughout the campuses, it is not shown on the 2041 Facilities Master Plan site maps.

DETAILED PROJECT DESCRIPTIONS

MINOR CAMPUS IMPROVEMENTS

This project is actually a myriad of smaller projects that may be required during implementation of the 2041 Facilities Master Plan. These projects are wide ranging and involve improvements to facilities that may be required to meet educational and program objectives. Just a few examples would be the renovation of a laboratory to serve the needs of a new program in that room or, rewiring a machine shop to accommodate a specialized milling tool. These are just a few examples, of the many projects that would be funded by this resource.

SIGNIFICANCE: The importance of this project is that it provides financial resources that can be utilized to make minor improvements to facilities that are not large enough for capital outlay funding or do not fall into the State funded parameters for scheduled maintenance

PROJECT TYPE: Not Applicable

ESTIMATED COST (including escalation): \$30,000,000
SCHEDULE: The approximate construction schedule for this project is noted on item 33 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: Because this project will occur in different facilities on both campuses, it is not specifically shown on the 2041 Facilities Master Plan site maps.

SURFACE PARKING IMPROVEMENTS

The scope of work for this project is an ongoing program to improve the District's parking lots at both the LAC and PCC. In some cases it might involve only a new seal coat on the existing asphalt surfaces or in other cases it might require the demolition of the parking lot and installation of new base material and asphalt. Each surface parking lot will be evaluated to determine the required improvements.

SIGNIFICANCE: The District's parking lots are an important physical asset of the college campuses since students and staff utilize these lots heavily. This project wil protect that asset and ensure commuter students have a safe and available area in which to park their vehicles and pursue their educational objectives.

PROJECT TYPE: Not Applicable
ESTIMATED COST (including escalation): $\$ 10,000,000$
SCHEDULE: The approximate construction schedule for this project is noted on item 34 of the spreadsheet entitled LBCCD 2041 Facilities Master Plan Schedule.

LOCATION: The parking lot improvements project shall occur at all vehicular parking lots throughout the District's campuses. Therefore, it is not depicted on the 2041
Facilities Master Plan site maps.

LBCCD 2041 FACILITIES MASTER PLAN SCHEDULE

					2019	2020	2021	2022	2023	2024	2025	
district wide	JFMAMJJASON	MJJASO	mJJASond	FMAMJJASO	mamJJason	mamjoaso	FMAMJJASON	FMAMJJASON	FMAMJJASOND	FmamjJason	FmamJJason	FMAMJJAS
26. District Wide Security Monitoring Systems (Cameras) Planning Design DSA Review \& Approval Bid \& Award Construction Closeout												
27. Joint Use Facility Planning Design DSA Review \& Approval Bid \& Award Construction Closeout			7			\square						
27,317,500										2024-2039	2040	2041
28. Technology Refresh/Replacement 2016/17-2040/41 (approx 294 mos) 69,558,000												0/41
29. Enterprise Wide Computer System 2016/17-2040/41 (approx 294 mos) 20,000,000											20	0/41
30. Landscaping 2016/17-2040/41 (approx 294 mos) 20,000,000											204	0/41
31. Infrastructure Projects 2016/17-2040/41 (approx 294 mos) 25,000,000												0/41
32. Energy/Water Conservatn Projects 2015/16-2040/41 (approx 309 mos) 25,000,000												0/41
33. Minor Campus Improvements 2016/17-2040/41 (approx 294 mos) 30,000,000												$\frac{10 / 41}{101}$
34. Surface Parking Improvements 2016/17-2040/41 (approx 294 mos) 10,000,000												$10 / 41$
236,875,500										2024-2039	2040	2041
	JFMAMJ JAS OND 2015	$\frac{\text { JFMAMJ JASOND }}{} \frac{2016}{}$	$\frac{\text { JFMAMJJASOND }}{} \frac{2017}{}$	$\frac{\text { JFMAMJJASOND }}{} \frac{2018}{}$	$\frac{\text { JFMAMJJASOND }}{\text { 2019 }}$	$\frac{\text { JFMAMJJASOND }}{}$	JFMAMJJASOND	$\frac{\text { JFMAMJJASOND }}{} \frac{2022}{}$	$\frac{\text { FMAMJJASOND }}{} \frac{2023}{}$	$\frac{\text { FMAMJJAS OND }}{\text { 2024 }}$	$\frac{\text { FMAMJJASOND }}{}$	$\frac{\text { FMAMJJAS OND }}{2026}$

[^37]THIS PAGE IS INTENTIONALLY LEFT BLANK

FUNDING PROJECTIONS

		ojet value	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
	62.5% 3750%	$\begin{array}{ll} c \\ \text { c } & 7,680,064 \\ \text { Nc } & 4,608,339 \end{array}$																											
Planning	4.96\%	609,887	609,887																										
Design Bldg D	7.72\%	948,714	948,714																										
DSA Revew \& Approval	4.41\%	542,122 406592	60,236	481,886																									
Construction	62.50\%	7,680,064		${ }_{853,30}^{40,52}$	6,826,724																								
Closeout	3.88\%	474,357			474,357																								
12,288,103	13.24\%	1,626,367	232,338	8,43	1,043,585																								
2. Building P- language Ars	62.50\% 37.50\%																												
Planning	4.96\%	430,348	430,348																										
Design Building P	7.72\%	669,430	669,430																										
DSA Review \& Approval	4.41\%	382,531		${ }^{382,531}$																									
Bid \& Award Building P P Construction- Building P P	3.31% 62.50%	286,899 $5,419,196$		191,266																									
${ }_{\text {Closeout }}{ }_{8.670,713}$	${ }^{\text {3.8.06\% }}$	344,715				223,143																							
8,670,713	13.24\%	1,147,594	165,254	165,254	693,500	123,587																							
	${ }^{62.50 \%}$	C ${ }^{15,393,468}$																											
3. Butaing J - Auditorium	37.00\%																												
Design Building J	4.972\%	$1,222,42$ $1,901,546$ 1	${ }_{\text {1,222,422 }}^{63,899}$	1,267,977																									
DSA Review \& Approval- Bldg J	4.41\%	1,086,598		724,398	362,199																								
Bid \& Award Building J	${ }^{3.31 \%}$	814,948			814,948																								
Construction - Building J Closeout	$\begin{gathered} 6.250 \% \\ 3.86 \% \end{gathered}$	15,33,468 ${ }_{\text {95,773 }}$			4,810,459	$\begin{array}{r} 10,583,009 \\ 316,924 \end{array}$	633,849																						
24,629,548	13.24\%	3,259,93	314,337	419,116	844,973	1,441,172	240,195																						
	5.50\%	${ }^{\text {c 10, } 1024,063}$																											
4. Outdoor Kinesiology Labs	37.50\%	Nc $6,146,438$																											
Planing	4.96\%	813,499 $12,54,43$ 10.0		650,799	162,700																								
DSA Review \& Approval	${ }_{4}^{7.14 \%}$	$1,265,443$ 723,110				642,765																							
Bid \& Award	3.31\%	542,33				${ }^{522,333}$																							
Construction	62.50\%	10,24,063				1,024,406	9,219,566																						
16,30,500	3.306\% 13.24\%	2,169,331		96,415	289,24	381,951	1,401,721																						
	62.50\%	C 3,122,000																											
5. LAC Walkways \& Wayinding	37.50\%	Nc $1,873,200$																											
Planning	4.96\%	24,924																											
Design	7.72\%	385,59			385,659																								
DSA Review \& Approval	4.41\%	220,376			45	122,431																							
${ }^{\text {Bid } 8 \text { Award }}$	3.31\%	165,282				165,282																							
Construction	62.50\%	3,122,000				46,597	139,791	139,791	139,791	139,791	139,791	139,791	139,791	139,791	139,791	133,791	139,791	133,791	139,791	139,791	139,791	139,791	139,791	139,791	139,791	139,791	139,791	139,791	
Closeout 4,995,200	3.8.6\%	- 6661,129			${ }^{119,003}$	${ }^{86,166}$	20,93	20,493	20,93	20,93	20,93	20,93	20,993	20,433	20,93	20,993	20,93	20,93	20,993	20,433	20,93	20,993	20,993	20,93	20,993	20,993	20,93	20,933	cine192829 5,12
	62.50\%	C 17,585,938																											
6. Building W - Aquatic Center	37.50\%	Nc 10,551,563																											
Planning	4.96\%	1,396,530			1,163,775	232,755																							
Design	7.72\%	2,172,381				2,172,381																							
DSA Review \& Approval	4.41\%	1,241,360				137,29																							
${ }^{\text {Bid } ~ \& ~ A w a r d ~}$	3.31\%	${ }^{\text {931,020 }}$					931,020																						
Construction Closeout	62.50\% 3.86\%	$17,58,938$ $1,08,190$					925,576	11,106,008	5,553,454 $1,086,190$																				
Closeout 28,137,500	3.8.8\% 13.24\%	$11,882,100$ 3,74,081			199,504	478,810	557,403	1,421,922	- ${ }_{\text {1,066,441 }}^{1}$																				
	\%	5																											
LAC		roiect Value	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

LAC		סject Value	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
7 . Building E-College Center	$\begin{aligned} & 62.50 \% \\ & 37.50 \% \end{aligned}$																												
Planning	4.96\%	1,841,394						1,841,394																					
Design Building E	7.72\%	2,864,390						1,273,062	1,591,328																				
DSA R Rw \& Apprvl - Builing E	4.41\%	1,636,794							1,273,062	36,732																			
Bid \& Award Building E Construct Buiding E	3.3.31\%	$1,227,596$ $23,189,919$								$1,227,596$ 6,956376	13,912,75																		
Cosstrect buiding E Closeut	${ }^{63.85 \%}$	1,432,195										2,1832,192																	
37,100,671	${ }^{13.284 \%}$	4,910,383						526,112	631,35	1,212,346	1,793,357	747,232																	
8. Building M - Liberal Arts	-62.50\%	C 4.81810499																											
Planning	4.96\%	3,479,069								3,479,069																			
Design Building M / N	7.72\%	${ }_{5,411,885}$								1,803,62	3,607,923																		
DSA Review Building Design	4.41\%	3,092,506									1,374,477	1,718,059																	
Bid \& AWard Building M / N Construct Building M	${ }_{\text {cher }}^{\substack{3.31 \% \\ 62.50 \%}}$	$2,319,379$ $43,810,499$										2,319,399 4.86783	19.471 .333	19,471,333															
Closeout (2037)	3.88\%	2,75,943													2,75,943														
70,06,798	13.24\%	9,277,517								${ }^{897,824}$	1,077,389	1,457,468	2,597,05	2,597,05	649,426														
	62.50\%	c 21,755,126																											
9. Building 02-Economic \& Workforce	37.50\%	Nc 13,053,076																											
Planning	4.96\%	1,727,613								1,727,613																			
Design Building 02	7.72\%	2,687,388								1,492,999	1,194,399																		
DSA Review Building 02	4.41\%	1,535,656									1,365,028	170,628																	
Bid \& Award Building 02	${ }^{3.31 \%}$	1,151,742										1,151,74																	
Construct Swing Space Construct Buiding 02	$\begin{gathered} \text { incl below } \\ 62.50 \% \end{gathered}$	(inct below										2,175,513	13,053,076																
Closeout	3.86\%	1,343,699																											
34,808,202	13.24\%	4,60,968								460,697	502,58	699,239	1,682,445	1,261,909															
10. Building G - Performing Arts	55.56\% 44.44%																												
Planning Idg H	${ }^{2.94 \%}$	1,455,754										1,213,128	242,626																
Design uuilding H	4.58\%	${ }_{\text {2,264,506 }}^{1,2}$											2,264,506																
DSA Review Building H	2.61\%	1,294,003											287,566	1,006,477															
Bid \& Amard Building H	1.96\%	970.503												970.503															
Planning Blidg G	2.944% 4.588	1,455,754										1,213,128	2424,626 2,264506																
Design Building G DSA Review Building G	${ }^{4.58 \%}$ 2.1\%	$2,264,506$ $1,294,003$											$2,264,506$ 287566																
- Bid R Award Building 6	2.1.9\%	1,294,003 970,503												${ }^{\text {1,00, }} 9$															
Construct Building H	${ }^{27.78 \%}$	13,748,786													5,728,661	6,874,33	1,145,732												
Closeout	2.29\%	1,132,253															1,132,253												
Construct Swing Space for Bldg G Construct Building G		inc belew i3,78,786													5,728,661	6,874,393	1,145,732												
Closeout	2.29\%	1,132,253															1,123,253												
49,495,629	15.69\%	7,764,020										375,78	901,288	901,628	2,163,165	2,415,473	1,006,447												
11. Building K-Art	62.50\% 37.50\%																												
Planning	4.96\%			,																									
Design	7.72\%	1, 1, $1,885,723$		${ }_{\text {1,241,077 }}$																									
DSA Review \& Approval	4.41\%	1,134,699			1,134,699																								
Bid \& Award	3.31\%	851,024				1,024																							
Construct Swing Space for Bldg K	incl below	inct below																											
Construct Building K Closeout	${ }^{62.50 \%}$	16,074,899				3,214,980	12,85,919																						
25,71, ${ }^{\text {c38 }}$	(13.24\%	3,404,096		351,047	382,961	684,365	1,58,578	${ }_{\text {392, } 97145}$																					
	\%	s																											
LAC		oject value	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

LAC		foject Value	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	20	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
12. Building R - Primary Gynmansium Planning Design DSA Review \& Approval Bid \& Award Construction Closeout	62.50\% 37.50\%	$\|$$c$ $37,561,534$ NC $22,53,920$																											
	4.96\%	2,982,828				2,982,828																							
	7.72\%	4,639,954				2,53, 884	2,109,070																						
	${ }^{4.41 \%}$	2,651,402 1,985						589,201																					
	62.50\%	37,561,534						10,517,29	18,029,56	9,014,768																			
	3.86\%	$2,319,977$ 7,954207					987419	411	2,386,262	2,319,977																			
	62.50\%	C 1, , $5,55,9,994$																											
13. Building Q - Secondary Gymnasium Planning Design DSA Review \& Approval Bid \& Award Construction Closeout	37.50\%	Nc $9.2,27,697$																											
	4.96\%	1,227,666						${ }^{613,833}$	613,833																				
	7.72\% 4.41%	$1,099,702$ 1,091258							1,909,702																				
	${ }^{4.41 \%}$ 3.31\%	$\begin{array}{r}1,091,258 \\ 818,44 \\ \hline\end{array}$							退,251	970,007 818,444																			
	62.50\%	15,459,494								858,861	10,30,330	4,294,304																	
	3.86\%	954,51 3,27,75						113,323	453,292	524,643	1,30,510	$\begin{aligned} & 954,851 \\ & 87,007 \end{aligned}$																	
14. Building B-Classroom Planning Design DSA Review \& Approval Bid \& Award Construction Closeout	62.50\%	C 23,33,000																											
	37.50\%	NC 14,000,400																											
	4.96\%	${ }^{1,852,994}$							926,497																				
	${ }_{7}^{7.72 \%}$	$2,888,435$ $1,677,106$ 1,23									1,64, 106																		
	3.31\%	1,235,329									1,23,329																		
	62.50\%	23,334,000										11,667,000	11,667,000																
	3.8.2\%								164,711	658,842	658,842	1,537,29	1,537,299	384,325															
15. Building F - Demolish Family / Consumer Education Planning	50\%	2,325,375																											
	50\%	nc $1,395,225$																											
	4.96\%	184,662																					184,662						
	7.72\%	287,252																					71,813	215,439					
DSA Review \& ApproBid \& Award	4.41\%	164,144																						166,144					
	3.31\%	促,108																											
Relocate Occupants Demo Bldg F / Construct Courtyd Closeout (2038)	62.50\%	2,325,375																							1,162,688	1,162,688			
	3.86% 13.24%	143,626 492432																								143,626			
3,720,600	62.50\%																						20,000						
	37.50\%																												
16. Building O1- IITS / Warehouse Planning Design DSA Review \& Approval Bid \& Award Construction Closeout	4.96\%	1,313,453																					1,313,453						
	7.72\%	2,043,149																						2,043,149					
	${ }^{\text {4.41\% }}$	1,167,514																						518,895	${ }^{648,619}$				
		875,635 16,539775																							875,635 3,67505				
	6. ${ }_{\text {62.5\% }}^{3.86 \%}$	$16,539,75$ $1,021,574$																							3,675,506		$\begin{array}{\|l\|} \hline 1,837,753 \\ 1,021,574 \end{array}$		
	13.24\%	3,502,541																					222,484	484,967	790,317	1,401,016	583,57		
17. Building 5 - Stadium Planning Design Building DSA Review \& Approval Bid \& Award Construction Closeout	71.43\%	c 6, $3,43,143$																											
	28,57\%	NC $25,374,857$																											
	${ }^{\text {3.78\% }}$	${ }^{3,388,437}$																					3,38,437						
	5.83\%	$5,242,23$ $2,985,27$																						5,242,23					
	2.52\%	2,238,958																							2, 238,958				
	ר	63,437,143																								31,718,51	31,718,57		
	10.08\%	${ }_{8,95,832}$																					537,300	1,074,700	1.074,700	2,786,259	2,786,29	696,65	
LAC	\%	5																											
		roject Value	2015	2016		2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036		2038	2039	2040	204

PCC		jeect Value	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
19.Bbiding Qa/RR-Electrical	50\%	c 12,68,351																											
Program / Dyer Hall / Lifetime	37.50\%	мc $7,613,611$																											
Planning	4.96\%	1,007,684	1,007,884																										
Design	7.72\%	1,567,508	1,56,508																										
DSA Review Building QQ/RR	4.11\%	899,719	719																										
Bid \& Award Constrution	${ }_{\substack{3.31 \% \\ 62.50 \%}}$	671,789 $12,689,351$	335,895	${ }_{\text {10,57,459 }} \begin{array}{r}35,95 \\ \hline\end{array}$	2,114,892																								
Closeout	3.86\%	783,754			783,754																								
20,302,962	13.24\%	2,687,157	690,983	9,170	03																								
	\% 0 \%	c 11,041,173																											
20. Building MM - Construction Trades Phase 1	50\%	NC $6,624,704$																											
Planning	4.96\%	876,799				876,799																							
Design Building	7.72\%	1,36,910				340,977	1,022,932																						
DSA Review \& Approval Bid \& Award Bld Mm	4.41% 331%	779,377					51,585	${ }^{259,792}$																					
Bid \& Award Bldg MM Construct Bldg MM		584,533 $11,041,173$						588,533 $4,731,931$	6,309,242																				
Closeout	3.88\%	6881,955							681,955																				
17,665,877	13.24\%	2,338,131				196,403	336,691	746,001	1,059,036																				
	23\%	C 15,352,714																											
21. Building P2-Parking Structure	28.57\%	Nc 6,141																											
Planning	${ }^{3.78 \%}$	${ }^{812,791}$						812,791																					
Design	5.88\%	$1,264,341$ 722981						1,264,341																					
DSA Review \& Approval Bid \& Award	3.36\% 2.5\% 1	$72,3,481$ 541,861																											
Construction	71.43\%	15,32,714								15,352,714																			
Closeout	${ }^{2.94 \%}$	${ }^{632,171}$								121378	632,171																		
21,493,800	-10.08\%							325,116	325,116																				
22. Building MM - Construction Trades	35\%	nc 5.406,464																											
Phase 2																													
Planning	4.96\%	715,561					357,781																						
Design Building	7.72\%	1,113,096						1,113,096																					
DSA Review \& Approval	${ }^{4.41 \%}$	636,055 4770041						282,691	353,364																				
Bid \& Award Bldg MM Construct Swing Space	${ }_{\text {c }}^{3} \begin{aligned} & 3.31 \% \\ & \text { incl below }\end{aligned}$	477,091 incl below							477,041																				
Construct Bldg MM	62.50\%	9,001,773								9,010,773																			
Closeout	3.86\%	556,548									556,548																		
14,417,237	13.24\%	1,908,164					44,035	264,207	264,207	1,068,572	267,143																		
23. Building oo- Classroom	62.50\% 37.50\%																												
Planning	4.96\%	5,86,112					976,685	4,883,426																					
Design	7.72\%	9,115,729						5,31,509	3,98,221																				
DSA Review \& Approval	4.41\%	5,208,988							4,051,435	1,157,533																			
Bid \& Award	3.31\%	3,906,741								3,906,741																			
Construction	62.50\%	73,794,000								19,131,778	32,797,33	21,864,889																	
Closeout 118,070,400	3.86\%	4,557,865					156,270				4,375,550	4,557,865																	
	${ }^{62.50 \%}$	c 1,583,500																											
24. Building FF- Demolish Fine Arts/	\%	nc 950,100																											
Senior center																													
Planning	4.96\%	125,749 19509 11780								12,749 78,24																			
Design	${ }^{7} 7.72 \%$	${ }^{1955,699}$								78,244	117,365																		
DSA Reveew \& Approval Bid \& Award	${ }^{4.141 \%}$	111,776 88832										${ }_{8,832}$																	
Construction	${ }_{62.50 \%}$											1,583,500																	
closeout	3.86\%	97,804										97,804																	
2,533,600	13.24\%	335,329								28,743	57,45	249,102																	
PCC	\%	$\underline{5}$																											
		roject Value	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

PCC		joet value	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
	62.50\%	c 1,607,857																											
25. PCC Walkways \& Wayfinding	37.50\%	nc 964,714																											
Planning	4.96\%	127,683		127,683	198,618																								
DSA Review \& Approval	4.41\%	113,996			88,274	25,21																							
${ }^{\text {Bid }} 8$ Award	${ }^{3.31 \%}$	${ }^{85,122}$				${ }^{85,122}$																							
${ }_{\text {Construction }}^{\text {Closeout }}$		$1,607,857$ 99,309				${ }^{41,331}$	${ }^{71,197}$	71,197	71,197	71,197	71,197	71,197	71,197	71,197	71,97	71,197	71,197	71,197	71,197	71,197	71,197	71,197	71,197	71,197	${ }^{71,197}$	71,197	71,197		99,309
2,572,571	13.24\%	30,487		15,322	61,288	31, 226	10,438	10,438	10,438	10,438	10,488	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	10,438	2,610
Sub Tota:		197,05,447	4,497,789	12,422,529	3,87,829	1,597,679	3,495,613	22,900,086	20,540,288	54,40,020	39,30,448	32,52, 548	${ }_{81,635}$	${ }_{81,355}$	${ }^{81,635}$	${ }_{81,635}$	${ }_{81,635}$	${ }_{81,355}$	${ }_{81,635}$	${ }_{81,355}$	${ }^{81,635}$	${ }_{81,635}$	${ }_{81,355}$	${ }_{81,355}$	${ }_{81,635}$	${ }_{81,635}$	${ }_{81,635}$	${ }^{81,635}$	101,918
PCC	\%	5																											
PCC	Pro	roject Value	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

SUMMARY

PCC:	197,056,447	4,497,789	12,422,529	3,873,829	1,997,679	3,495,613	22,900,086	20,50, 828	54,40,020	39,30, 448	32,52, 548	81,635	${ }_{81,635}$	${ }_{81,635}$	81,635	${ }_{81,635}$	81,635	${ }_{81,635}$	81,635	81,635	${ }_{81,635}$	${ }_{81,635}$	${ }_{81,635}$	81,635	81,335	81,635	81,635	101,918
vide:	236,875,500	1,022,718	6,79,556	13,70	10,981,565	16,85, 380	21,06	8,580,007	205,69	8,99,690	8,095,690	8,095,6	8,99,690	8,995,690	8,09,690	8,095,900	8,09,690	195,690	8,095,900	8,095,6	8,99,690	8,99,690	099,60	8,99,690	8,095,60	8,95,6	8,095,	4,047,845
tat:	1,000,45, 288	10,87, 322	28,077,43	45,351,674	42,552,385	55,762037	77,31,389	65,08,413	103,122,380	87,541,413	81,971,998	64,87,569	46,219,861	$25,313,464$	24,501,867	13,90,026	8,37,609	8,37,609	8,337,609	8,337,609	8,37,609	14,072,667	19,47,157	24,40,392	63,160,094	57,24,645	11,666,291	4,347

THIS PAGE IS INTENTIONALLY LEFT BLANK

[^0]:

[^1]: ${ }^{1}$ DSEIR, Air Quality and Greenhouse Gases Assumptions, Pages 13-14.
 ${ }^{2}$ DSEIR, Executive Summary, page 6.

[^2]: ${ }^{2}$ The increase in square footage included in the revisions to the Draft SEIR are already accounted for in the analysis as worst-case assumptions were made in the modeling scenario.

[^3]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^4]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^5]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^6]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^7]: 33
 2025
 1.2 Other Project Characteristics

 2.2

 Precipitation Freq (Days)
 Operational Year
 0.029

 | Urbanization | Urban | Wind Speed (m / s) |
 | :--- | :--- | :--- |
 | Climate Zone | 9 | |
 | Utility Company | Southern California Edison | |
 | CO2 Intensity 702.44 | CH4 Intensity
 $(\mathrm{lb} / \mathrm{MWhr})$ | |

 $\begin{array}{lll}\underset{(\mathrm{lb} / \mathrm{MWhr})}{\text { CO2 Intensity }} & 702.44 & \begin{array}{l}\text { CH4 Intensity } \\ (\mathrm{Ib} / \mathrm{MWhr})\end{array}\end{array}$
 1.3 User Entered Comments \& Non-Default Data

[^8]: Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsit and connecting offsite

[^9]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^10]: 33
 2025
 0.006

 Precipitation Freq (Days)
 Operational Year
 N2O Intensity
 (16/MWhr)
 1.2 Other Project Characteristics

 $$
 2.2
 $$

 | 1.2 Other Project Characteristics | | |
 | :--- | :--- | :--- |
 | Urbanization | Urban | Wind Speed (m/s) |
 | Climate Zone | 9 | |
 | Utility Company | Southern California Edison | |
 | Co2 Intensity
 (lb/MWhr) | 702.44 | CH4 Intensity
 $(\mathrm{lb} / \mathrm{MWhr})$ |

 1.3 User Entered Comments \& Non-Default Data

[^11]: Mobile Land Use Mitigation - Transit Station 0.1 mile. Improve Pedestrian Network onsit and connecting offsite

[^12]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^13]: 33
 2030
 0.006

 Precipitation Freq (Days)
 Operational Year
 N2O Intensity
 (lb/MWhr)
 $\begin{array}{lll}\text { 1.2 Other Project Characteristics } & \\ \text { Urbanization } & \text { Urban } & \text { Wind Speed (m/s) } \\ \text { Climate Zone } & 9 & \\ \text { Utility Company } & \text { Southern California Edison } & \\ \begin{array}{lll}\text { CO2 Intensity } \\ \text { (lb/MWhr) }\end{array} & 702.44 & \begin{array}{l}\text { CH4 Intensity } \\ (\mathrm{lb} / \mathrm{MWhr})\end{array}\end{array}$
 2.2
 -
 1.3 User Entered Comments \& Non-Default Data

[^14]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^15]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^16]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^17]: 33
 2035
 0.006

 Precipitation Freq (Days)
 Operational Year
 N2O Intensity
 (1b/MWhr)
 1.2 Other Project Characteristics

 | Urbanization | Urban | Wind Speed (m/s) |
 | :--- | :--- | :--- |
 | Climate Zone | 9 | |
 | Utility Company | Southern California Edison | |
 | CO2 Intensity
 (lb/MWhr) | 702.44 | CH4 Intensity
 $(\mathrm{lb} / \mathrm{MWhr})$ |

 1.3 User Entered Comments \& Non-Default Data

[^18]: $\begin{array}{lll}\text { 1.2 Other Project Characteristics } & \\ \text { Urbanization } & \text { Urban } & \text { Wind Speed (m/s) } \\ \text { Climate Zone } & 9 & \\ \text { Utility Company } & \text { Southern California Edison } & \\ \begin{array}{lll}\text { CO2 Intensity } \\ \text { (Ib/MWhr) }\end{array} & 702.44 & \begin{array}{l}\text { CH4 Intensity } \\ (\mathrm{lb} / \mathrm{MWhr})\end{array}\end{array}$
 $\begin{array}{lll}\text { 1.2 Other Project Characteristics } & \\ \text { Urbanization } & \text { Urban } & \text { Wind Speed (m/s) } \\ \text { Climate Zone } & 9 & \\ \text { Utility Company } & \text { Southern California Edison } & \\ \begin{array}{lll}\text { CO2 Intensity } \\ \text { (Ib/MWhr) }\end{array} & 702.44 & \begin{array}{l}\text { CH4 Intensity } \\ (\mathrm{Ib} / \mathrm{MWhr})\end{array}\end{array}$
 $\begin{array}{lll}\text { 1.2 Other Project Characteristics } & \\ \text { Urbanization } & \text { Urban } & \text { Wind Speed (m/s) } \\ \text { Climate Zone } & 9 & \\ \text { Utility Company } & \text { Southern California Edison } & \\ \begin{array}{lll}\text { CO2 Intensity } \\ \text { (Ib/MWhr) }\end{array} & 702.44 & \begin{array}{l}\text { CH4 Intensity } \\ (\mathrm{Ib} / \mathrm{MWhr})\end{array}\end{array}$
 $\begin{array}{lll}\text { 1.2 Other Project Characteristics } & \\ \text { Urbanization } & \text { Urban } & \text { Wind Speed (m/s) } \\ \text { Climate Zone } & 9 & \\ \text { Utility Company } & \text { Southern California Edison } & \\ \begin{array}{lll}\text { CO2 Intensity } \\ \text { (Ib/MWhr) }\end{array} & 702.44 & \begin{array}{l}\text { CH4 Intensity } \\ (\mathrm{Ib} / \mathrm{MWhr})\end{array}\end{array}$

[^19]: 33
 2040
 0.006

 Precipitation Freq (Days)
 Operational Year
 N2O Intensity
 (1b/MWhr)
 1.2 Other Project Characteristics

 $$
 2.2
 $$

 | Urbanization Urban | Wind Speed (m/s) | |
 | :--- | :--- | :--- |
 | Climate Zone | 9 | |
 | Utility Company | Southern California Edison | |

 1.3 User Entered Comments \& Non-Default Data

[^20]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^21]: 33
 2040

 1.2 Other Project Characteristics

 | 1.2 Other Project Characteristics | | |
 | :--- | :--- | :--- |
 | Urbanization | Urban | Wind Speed (m/s) |
 | Climate Zone | 9 | |
 | Utility Company | Southern California Edison | |
 | Co2 Intensity
 (lb/MWhr) | 702.44 | CH4 Intensity
 $(\mathrm{lb} / \mathrm{MWhr})$ |

 1.3 User Entered Comments \& Non-Default Data

[^22]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^23]: 33
 2040
 0.006

 Precipitation Freq (Days)
 Operational Year
 N2O Intensity
 (Ib/MWhr)
 $\begin{array}{lll}\text { 1.2 Other Project Characteristics } & \\ \text { Urbanization } & \text { Urban } & \text { Wind Speed (m/s) } \\ \text { Climate Zone } & 9 & \\ \text { Utility Company } & \text { Southern California Edison } & \\ \begin{array}{lll}\text { Co2 Intensity } \\ \text { (Ib/MWhr) }\end{array} & 702.44 & \begin{array}{l}\text { CH4 Intensity } \\ (\mathrm{lb} / \mathrm{MWhr})\end{array}\end{array}$
 2.2
 -
 1.3 User Entered Comments \& Non-Default Data

[^24]: 4.1 Mitigation Measures Mobile

 Increase Transit Accessibility
 Improve Pedestrian Network

[^25]: Road Name: Beliflower Boulevard
 Average Daily Traffic: 27480 Vehicles
 Roadway Classification: Boulevard Centerline Distance to

 Noise Contour (in feet) | (in feet) | |
 | :---: | ---: |
 | Ldn | CNEL |
 | 41 | 45 | $\begin{array}{ll}41 & 45 \\ 89 & 96\end{array}$ $192 \quad 208$ 448 :ұиәшбәs South of Wardlow Road

[^26]: Road Name: Lakewood Boulevard
 Roadway Classification: Regional Corridor

 Segment: North of Harvey Way
 North of Carson Street
 Vehicle Mix: 3 Roadway Classification: Regional Corridor

 Road Name: Lakewood Boulevard

 | Automobiles | 67.36 |
 | :--- | ---: |
 | Medium Trucks | 76.31 |
 | Heavy Trucks | 81.16 |
 | | |
 | Road Name: \quad Lakewood | |
 | Average Daily Traffic: 338 | |

 | Automobiles | 67.36 | 4.06 |
 | :--- | ---: | ---: |
 | Medium Trucks | 76.31 | -13.76 |
 | Heavy Trucks | 81.16 | -17.95 |

 Average Daily Traffic: 33800 Vehicles
 Segment:

[^27]: 1 Source: Highway Capacity Manual (Unsignalized Intersections).

[^28]: 2 Source: Trip Generation, 10th Edition, Institute of Transportation Engineers, (ITE) [Washington, D.C. (2017)].

[^29]: 3 Source: Congestion Management Program for Los Angeles County; Appendix D - Guidelines for CMP Transportation Impact Analysis; Exhibit D-1; General Traffic Volume Growth Factors.

[^30]: 4 Source: City of Long Beach and City of Lakewood Planning Departments.

[^31]: 5 Source: City of Long Beach and City of Lakewood Planning Departments.

[^32]: 32041 FACILITIES MASTER PLAN MAY 2016

[^33]: 112041 FACILITIES MASTER PLAN MAY 2016

[^34]: 312041 FACILITIES MASTER PLAN | MAY 2016

[^35]: 412041 FACILITIES MASTER PLAN MAY 2016

[^36]: 512041 FACILITIES MASTER PLAN | MAY 2016

[^37]: 612041 FACILITIES MASTER PLAN | MAY 2016

